Skip to main content
Log in

Alginate/gelatin/boron-doped hydroxyapatite-coated Ti implants: in vitro and in vivo evaluation of osseointegration

  • Research Article
  • Published:
Bio-Design and Manufacturing Aims and scope Submit manuscript

Abstract

In this study, boron-doped hydroxyapatite (BHT)-loaded alginate/gelatin-based (A/G) hydrogel coating on Ti was fabricated to support bone integration through triggering osteoinduction, vascularization and immunomodulation. Initially, highly reproducible, cheap and time-effective BHT was produced, which significantly promoted higher osteogenic and angiogenic maturation, while a mild innate immune response was observed. The immense potential of BHT was evidenced by the production of a gap-filling A/G/BHT interphase on Ti implants to mimic the osseous extracellular matrix to achieve functional bridging and exert control over the course of innate immune response. We initially aminosilanized the implant surface using 3-aminopropyl triethoxysilane, and then coated it with 0.25% w/v alginate with 20 mM 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide and N-hydroxysuccinimide to allow the A/G/BHT pre-gel to disperse evenly and covalently attach on the surface. The pre-gel was added with 0.2 M NaCl to homogeneously blend BHT in the structure without inducing ionic crosslinking. Then, the coated implants were freeze-dried and stored. The coated layer demonstrated high cohesive and adhesive strength, and 8-month-long shelf-life at room temperature and normal humidity. The A/G/BHT was able to coat an irregularly shaped Ti implant. Osteoblasts and endothelial cells thrived on the A/G/BHT, and it demonstrated greatly improved osteogenic and angiogenic capacity. Moreover, A/G/BHT maintained macrophage viability and generated an acute increase in immune response that could be resolved rapidly. Finally, A/G/BHT was shown to induce the robust integration of implant in a rabbit femur osteochondral model within 2 months. Therefore, we concluded that A/G/BHT coatings could serve as a multifunctional reservoir, promoting the strong and rapid osseointegration of metallic implants.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Rony L, Aguado E, Verlee B et al (2021) Microarchitecture of titanium cylinders obtained by additive manufacturing does not influence osseointegration in the sheep. Regen Biomater 8(4):rbab021. https://doi.org/10.1093/rb/rbab021

  2. Prestat M, Thierry D (2021) Corrosion of titanium under simulated inflammation conditions: clinical context and in vitro investigations. Acta Biomater 136:72–87. https://doi.org/10.1016/j.actbio.2021.10.002

    Article  Google Scholar 

  3. Lee H, Lee MK, Han G et al (2022) Customizable design of multiple-biomolecule delivery platform for enhanced osteogenic responses via ‘tailored assembly system.’ Bio-Des Manuf 5(3):451–464. https://doi.org/10.1007/s42242-022-00190-7

    Article  Google Scholar 

  4. Koons GL, Diba M, Mikos AG (2020) Materials design for bone-tissue engineering. Nat Rev Mater 5(8):584–603. https://doi.org/10.1038/s41578-020-0204-2

    Article  Google Scholar 

  5. Zhang XX, Lv Y, Lei Y et al (2021) Enhancement of corrosion resistance and biological performances of Cu-incorporated hydroxyapatite/TiO2 coating by adjusting Cu chemical configuration and hydroxyapatite contents. ACS Appl Bio Mater 4(1):903–917. https://doi.org/10.1021/acsabm.0c01390

    Article  Google Scholar 

  6. Švagrová K, Horkavcová D, Jablonská E et al (2022) Titania-based sol-gel coatings with Ag, Ca-P applied on titanium substrate developed for implantation. J Biomed Mater Res B Appl Biomater 110(1):115–124. https://doi.org/10.1002/jbm.b.34895

    Article  Google Scholar 

  7. Querido W, Rossi AL, Farina M (2016) The effects of strontium on bone mineral: a review on current knowledge and microanalytical approaches. Micron 80:122–134. https://doi.org/10.1016/j.micron.2015.10.006

    Article  Google Scholar 

  8. Davis R, Singh A, Jackson MJ et al (2022) A comprehensive review on metallic implant biomaterials and their subtractive manufacturing. Int J Adv Manuf Technol 120(3–4):1473–1530. https://doi.org/10.1007/s00170-022-08770-8

    Article  Google Scholar 

  9. Guo CY, Matinlinna JP, Tang AT (2012) Effects of surface charges on dental implants: past, present, and future. Int J Biomater 2012:381535. https://doi.org/10.1155/2012/381535

    Article  Google Scholar 

  10. Silva-Bermudez P, Rodil S (2013) An overview of protein adsorption on metal oxide coatings for biomedical implants. Surf Coat Technol 233:147–158. https://doi.org/10.1016/j.surfcoat.2013.04.028

    Article  Google Scholar 

  11. Pazarçeviren AE, Tezcaner A, Evis Z (2021) Multifunctional natural polymer-based metallic implant surface modifications. Biointerphases 16(2):020803. https://doi.org/10.1116/6.0000876

    Article  Google Scholar 

  12. Kuo YJ, Chen CH, Dash P et al (2022) Angiogenesis, osseointegration, and antibacterial applications of polyelectrolyte multilayer coatings incorporated with silver/strontium containing mesoporous bioactive glass on 316L stainless steel. Front Bioeng Biotechnol 10:818137. https://doi.org/10.3389/fbioe.2022.818137

    Article  Google Scholar 

  13. Jariya SAI, Babu AA, Narayanan TSN et al (2022) Development of a novel smart carrier for drug delivery: ciprofloxacin loaded vaterite/reduced graphene oxide/PCL composite coating on TiO2 nanotube coated titanium. Ceramics Int 48(7):9579–9594. https://doi.org/10.1016/j.ceramint.2021.12.156

    Article  Google Scholar 

  14. Moskalewicz T, Warcaba M, Łukaszczyk A et al (2022) Electrophoretic deposition, microstructure and properties of multicomponent sodium alginate-based coatings incorporated with graphite oxide and hydroxyapatite on titanium biomaterial substrates. Appl Surf Sci 575:151688. https://doi.org/10.1016/j.apsusc.2021.151688

    Article  Google Scholar 

  15. Jing W, Feng L, Wang B et al (2021) Polymer-ceramic fiber nanocomposite coatings on titanium metal implant devices for diseased bone tissue regeneration. J Sci Adv Mater Dev 6(3):399–406. https://doi.org/10.1016/j.jsamd.2021.04.001

    Article  MathSciNet  Google Scholar 

  16. Mariani E, Lisignoli G, Borzì RM et al (2019) Biomaterials: foreign bodies or tuners for the immune response? Int J Mol Sci 20(3):636. https://doi.org/10.3390/ijms20030636

    Article  Google Scholar 

  17. Szekalska M, Puciłowska A, Szymańska E et al (2016) Alginate: current use and future perspectives in pharmaceutical and biomedical applications. Int J Polym Sci 2016:17. https://doi.org/10.1155/2016/7697031

    Article  Google Scholar 

  18. Tsou YH, Khoneisser J, Huang PC et al (2016) Hydrogel as a bioactive material to regulate stem cell fate. Bioact Mater 1(1):39–55. https://doi.org/10.1016/j.bioactmat.2016.05.001

    Article  Google Scholar 

  19. Wang D, Zhu Y, Huang Y et al (2021) Pancreatic extracellular matrix/alginate hydrogels provide a supportive microenvironment for insulin-producing cells. ACS Biomater Sci Eng 7(8):3793–3805. https://doi.org/10.1021/acsbiomaterials.1c00269

    Article  Google Scholar 

  20. Chan AW, Neufeld RJ (2009) Modeling the controllable pH-responsive swelling and pore size of networked alginate based biomaterials. Biomaterials 30(30):6119–6129. https://doi.org/10.1016/j.biomaterials.2009.07.034

    Article  Google Scholar 

  21. Andersen T, Auk-Emblem P, Dornish M (2015) 3D cell culture in alginate hydrogels. Microarrays 4(2):133–161. https://doi.org/10.3390/microarrays4020133

    Article  Google Scholar 

  22. Zhang X, Morits M, Jonkergouw C et al (2020) Three-dimensional printed cell culture model based on spherical colloidal lignin particles and cellulose nanofibril-alginate hydrogel. Biomacromolecules 21(5):1875–1885. https://doi.org/10.1021/acs.biomac.9b01745

    Article  Google Scholar 

  23. Cavo M, Caria M, Pulsoni I et al (2018) A new cell-laden 3D Alginate-Matrigel hydrogel resembles human breast cancer cell malignant morphology, spread and invasion capability observed “in vivo.” Sci Rep 8(1):5333. https://doi.org/10.1038/s41598-018-23250-4

    Article  Google Scholar 

  24. Wang B, Díaz-Payno PJ, Browe DC et al (2021) Affinity-bound growth factor within sulfated interpenetrating network bioinks for bioprinting cartilaginous tissues. Acta Biomater 128:130–142. https://doi.org/10.1016/j.actbio.2021.04.016

    Article  Google Scholar 

  25. Oh GW, Kim SC, Kim TH et al (2021) Characterization of an oxidized alginate-gelatin hydrogel incorporating a COS-salicylic acid conjugate for wound healing. Carbohydr Polym 252:117145. https://doi.org/10.1016/j.carbpol.2020.117145

    Article  Google Scholar 

  26. Dodero A, Alberti S, Gaggero G et al (2021) An up-to-date review on alginate nanoparticles and nanofibers for biomedical and pharmaceutical applications. Adv Mater Interf 8(22):2100809. https://doi.org/10.1002/admi.202100809

    Article  Google Scholar 

  27. Sarker B, Rompf J, Silva R et al (2015) Alginate-based hydrogels with improved adhesive properties for cell encapsulation. Int J Biol Macromol 78:72–78. https://doi.org/10.1016/j.ijbiomac.2015.03.061

    Article  Google Scholar 

  28. Hasturk O, Jordan KE, Choi J et al (2020) Enzymatically crosslinked silk and silk-gelatin hydrogels with tunable gelation kinetics, mechanical properties and bioactivity for cell culture and encapsulation. Biomaterials 232:119720. https://doi.org/10.1016/j.biomaterials.2019.119720

    Article  Google Scholar 

  29. Heltmann-Meyer S, Steiner D, Müller C et al (2021) Gelatin methacryloyl is a slow degrading material allowing vascularization and long-term use in vivo. Biomed Mater 16(6):065004. https://doi.org/10.1088/1748-605X/ac1e9d

    Article  Google Scholar 

  30. Wang X, Ao Q, Tian X et al (2017) Gelatin-based hydrogels for organ 3D bioprinting. Polymers 9(9):401. https://doi.org/10.3390/polym9090401

    Article  Google Scholar 

  31. Erkoc P, Uvak I, Nazeer MA et al (2020) 3D printing of cytocompatible gelatin-cellulose-alginate blend hydrogels. Macromol Biosci 20(10):e2000106. https://doi.org/10.1002/mabi.202000106

    Article  Google Scholar 

  32. Ghanbari M, Salavati-Niasari M, Mohandes F (2021) Injectable hydrogels based on oxidized alginate-gelatin reinforced by carbon nitride quantum dots for tissue engineering. Int J Pharm 602:120660. https://doi.org/10.1016/j.ijpharm.2021.120660

    Article  Google Scholar 

  33. Flores-Torres S, Peza-Chavez O, Kuasne H et al (2021) Alginate-gelatin-Matrigel hydrogels enable the development and multigenerational passaging of patient-derived 3D bioprinted cancer spheroid models. Biofabrication 13(2):025001. https://doi.org/10.1088/1758-5090/abdb87

    Article  Google Scholar 

  34. Sun CK, Ke CJ, Lin YW et al (2021) Transglutaminase cross-linked gelatin-alginate-antibacterial hydrogel as the drug delivery-coatings for implant-related infections. Polymers 13(3):414. https://doi.org/10.3390/polym13030414

    Article  Google Scholar 

  35. Chalitangkoon J, Wongkittisin M, Monvisade P (2020) Silver loaded hydroxyethylacryl chitosan/sodium alginate hydrogel films for controlled drug release wound dressings. Int J Biol Macromol 159:194–203. https://doi.org/10.1016/j.ijbiomac.2020.05.061

    Article  Google Scholar 

  36. Xue W, Liu B, Zhang H et al (2022) Controllable fabrication of alginate/poly-L-ornithine polyelectrolyte complex hydrogel networks as therapeutic drug and cell carriers. Acta Biomater 138:182–192. https://doi.org/10.1016/j.actbio.2021.11.004

    Article  Google Scholar 

  37. Liu Y, Hu Q, Dong W et al (2022) Alginate/gelatin-based hydrogel with soy protein/peptide powder for 3D printing tissue-engineering scaffolds to promote angiogenesis. Macromol Biosci 22(4):e2100413. https://doi.org/10.1002/mabi.202100413

    Article  Google Scholar 

  38. Pazarçeviren AE, Akbaba S, Tezcaner A et al (2022) Seamless and robust alginate/gelatin coating on Ti-6Al-4V as a gap filling interphase. Appl Surf Sci 581:152393. https://doi.org/10.1016/j.apsusc.2021.152393

    Article  Google Scholar 

  39. Pazarçeviren AE, Tezcaner A, Keskin D et al (2021) Boron-doped biphasic hydroxyapatite/β-tricalcium phosphate for bone tissue engineering. Biol Trace Elem Res 199(3):968–980. https://doi.org/10.1007/s12011-020-02230-8

    Article  Google Scholar 

  40. Çiftci Dede E, Korkusuz P, Bilgiç E et al (2022) Boron nano-hydroxyapatite composite increases the bone regeneration of ovariectomized rabbit femurs. Biol Trace Elem Res 200(1):183–196. https://doi.org/10.1007/s12011-021-02626-0

    Article  Google Scholar 

  41. Chen S, Michálek M, Galusková D et al (2020) Multi-targeted B and Co co-doped 45S5 bioactive glasses with angiogenic potential for bone regeneration. Mater Sci Eng C Mater Biol Appl 112:110909. https://doi.org/10.1016/j.msec.2020.110909

    Article  Google Scholar 

  42. Fu SY, Feng XQ, Lauke B et al (2008) Effects of particle size, particle/matrix interface adhesion and particle loading on mechanical properties of particulate–polymer composites. Composites Part B Eng 39(6):933–961. https://doi.org/10.1016/j.compositesb.2008.01.002

    Article  Google Scholar 

  43. Maji K, Dasgupta S, Bhaskar R et al (2020) Photo-crosslinked alginate nano-hydroxyapatite paste for bone tissue engineering. Biomed Mater 15(5):055019. https://doi.org/10.1088/1748-605X/ab9551

    Article  Google Scholar 

  44. Carpentier G, Berndt S, Ferratge S et al (2020) Angiogenesis analyzer for ImageJ—a comparative morphometric analysis of “Endothelial Tube Formation Assay” and “Fibrin Bead Assay.” Sci Rep 10(1):11568. https://doi.org/10.1038/s41598-020-67289-8

    Article  Google Scholar 

  45. Otsuki B, Takemoto M, Fujibayashi S et al (2006) Pore throat size and connectivity determine bone and tissue ingrowth into porous implants: three-dimensional micro-CT based structural analyses of porous bioactive titanium implants. Biomaterials 27(35):5892–5900. https://doi.org/10.1016/j.biomaterials.2006.08.013

    Article  Google Scholar 

  46. Brokesh AM, Gaharwar AK (2020) Inorganic biomaterials for regenerative medicine. ACS Appl Mater Interf 12(5):5319–5344. https://doi.org/10.1021/acsami.9b17801

    Article  Google Scholar 

  47. Gizer M, Köse S, Karaosmanoglu B et al (2020) The effect of boron-containing nano-hydroxyapatite on bone cells. Biol Trace Elem Res 193(2):364–376. https://doi.org/10.1007/s12011-019-01710-w

    Article  Google Scholar 

  48. Balasubramanian P, Hupa L, Jokic B et al (2017) Angiogenic potential of boron-containing bioactive glasses: in vitro study. J Mater Sci 52:8785–8792. https://doi.org/10.1007/s10853-016-0563-7

    Article  Google Scholar 

  49. Li K, Lu X, Razanau I et al (2019) The enhanced angiogenic responses to ionic dissolution products from a boron-incorporated calcium silicate coating. Mater Sci Eng C Mater Biol Appl 101:513–520. https://doi.org/10.1016/j.msec.2019.04.009

    Article  Google Scholar 

  50. Baniwal SK, Shah PK, Shi Y et al (2012) Runx2 promotes both osteoblastogenesis and novel osteoclastogenic signals in ST2 mesenchymal progenitor cells. Osteoporos Int 23(4):1399–1413. https://doi.org/10.1007/s00198-011-1728-5

    Article  Google Scholar 

  51. Yahiro Y, Maeda S, Morikawa M et al (2020) BMP-induced Atoh8 attenuates osteoclastogenesis by suppressing Runx2 transcriptional activity and reducing the Rankl/Opg expression ratio in osteoblasts. Bone Res 8(1):32. https://doi.org/10.1038/s41413-020-00106-0

    Article  Google Scholar 

  52. Chen D, Gong Y, Xu L et al (2019) Bidirectional regulation of osteogenic differentiation by the FOXO subfamily of Forkhead transcription factors in mammalian MSCs. Cell Prolif 52(2):e12540. https://doi.org/10.1111/cpr.12540

    Article  Google Scholar 

  53. Duman E, Şahin Kehribar E, Ahan RE et al (2019) Biomineralization of calcium phosphate crystals controlled by protein-protein interactions. ACS Biomater Sci Eng 5(9):4750–4763. https://doi.org/10.1021/acsbiomaterials.9b00649

    Article  Google Scholar 

  54. Shekaran A, Shoemaker JT, Kavanaugh TE et al (2014) The effect of conditional inactivation of beta 1 integrins using twist 2 Cre, Osterix Cre and osteocalcin Cre lines on skeletal phenotype. Bone 68:131–141. https://doi.org/10.1016/j.bone.2014.08.008

    Article  Google Scholar 

  55. Kargozar S, Baino F, Hamzehlou S et al (2018) Bioactive glasses: sprouting angiogenesis in tissue engineering. Trends biotechnol 36(4):430–444. https://doi.org/10.1016/j.tibtech.2017.12.003

    Article  Google Scholar 

  56. Westhauser F, Widholz B, Nawaz Q et al (2019) Favorable angiogenic properties of the borosilicate bioactive glass 0106-B1 result in enhanced in vivo osteoid formation compared to 45S5 Bioglass. Biomater Sci 7(12):5161–5176. https://doi.org/10.1039/c9bm01220f

    Article  Google Scholar 

  57. Şen Ö, Emanet M, Çulha M (2019) Stimulatory effect of hexagonal boron nitrides in wound healing. ACS Appl Bio Mater 2(12):5582–5596. https://doi.org/10.1021/acsabm.9b00669

    Article  Google Scholar 

  58. Raines AL, Berger MB, Patel N et al (2019) VEGF-A regulates angiogenesis during osseointegration of Ti implants via paracrine/autocrine regulation of osteoblast response to hierarchical microstructure of the surface. J Biomed Mater Res A 107(2):423–433. https://doi.org/10.1002/jbm.a.36559

    Article  Google Scholar 

  59. Hu K, Olsen BR (2016) The roles of vascular endothelial growth factor in bone repair and regeneration. Bone 91:30–38. https://doi.org/10.1016/j.bone.2016.06.013

    Article  Google Scholar 

  60. Yu P, Zhang X, Liu N et al (2021) Pyroptosis: mechanisms and diseases. Signal Transduct Target Ther 6(1):128. https://doi.org/10.1038/s41392-021-00507-5

    Article  Google Scholar 

  61. Zhang R, Liu X, Xiong Z et al (2018) The immunomodulatory effects of Zn-incorporated micro/nanostructured coating in inducing osteogenesis. Artif Cells Nanomed Biotechnol 46(sup1):1123–1130. https://doi.org/10.1080/21691401.2018.1446442

    Article  Google Scholar 

  62. Dollinger C, Ndreu-Halili A, Uka A et al (2017) Controlling incoming macrophages to implants: responsiveness of macrophages to gelatin micropatterns under M1/M2 phenotype defining biochemical stimulations. Adv Biosyst 1(6):1700041. https://doi.org/10.1002/adbi.201700041

    Article  Google Scholar 

  63. Floquet CF, Sieben VJ, MacKay BA et al (2016) Determination of boron in produced water using the carminic acid assay. Talanta 150:240–252. https://doi.org/10.1016/j.talanta.2015.12.010

    Article  Google Scholar 

  64. Su Y, Huang C, Lu F et al (2018) Alginate affects agglomeration state and uptake of 14C-labeled few-layer graphene by freshwater snails: implications for the environmental fate of graphene in aquatic systems. Environ Pollut 234:513–522. https://doi.org/10.1016/j.envpol.2017.11.087

    Article  Google Scholar 

  65. Narayanan A, Kaur S, Peng C et al (2019) Viscosity attunes the adhesion of bioinspired low modulus polyester adhesive sealants to wet tissues. Biomacromolecules 20(7):2577–2586. https://doi.org/10.1021/acs.biomac.9b00383

    Article  Google Scholar 

  66. Tiu BDB, Delparastan P, Ney MR et al (2019) Enhanced adhesion and cohesion of bioinspired dry/wet pressure-sensitive adhesives. ACS Appl Mater Interf 11(31):28296–28306. https://doi.org/10.1021/acsami.9b08429

    Article  Google Scholar 

  67. Ratanavaraporn J, Chuma N, Kanokpanont S et al (2019) Beads fabricated from alginate, hyaluronic acid, and gelatin using ionic crosslinking and layer-by-layer coating techniques for controlled release of gentamicin. J Appl Polym Sci 136(1):46893. https://doi.org/10.1002/app.46893

    Article  Google Scholar 

  68. Jing X, Sun Y, Liu Y et al (2021) Alginate/chitosan-based hydrogel loaded with gene vectors to deliver polydeoxyribonucleotide for effective wound healing. Biomater Sci 9(16):5533–5541. https://doi.org/10.1039/d1bm00911g

    Article  Google Scholar 

  69. Reddy MSB, Ponnamma D, Choudhary R et al (2021) A comparative review of natural and synthetic biopolymer composite scaffolds. Polymers 13(7):1105. https://doi.org/10.3390/polym13071105

    Article  Google Scholar 

  70. Zhang X, Wang K, Hu JY et al (2020) Role of a high calcium ion content in extending the properties of alginate dual-crosslinked hydrogels. J Mater Chem A 8(47):25390–25401. https://doi.org/10.1039/D0TA09315G

    Article  Google Scholar 

  71. Davidenko N, Schuster CF, Bax DV et al (2016) Evaluation of cell binding to collagen and gelatin: a study of the effect of 2D and 3D architecture and surface chemistry. J Mater Sci Mater Med 27(10):148. https://doi.org/10.1007/s10856-016-5763-9

    Article  Google Scholar 

  72. Stubbe B, Mignon A, Declercq H et al (2019) Development of gelatin-alginate hydrogels for burn wound treatment. Macromol Biosci 19(8):e1900123. https://doi.org/10.1002/mabi.201900123

    Article  Google Scholar 

  73. Hosseini S, Naderi-Manesh H, Vali H et al (2019) Contribution of osteocalcin-mimetic peptide enhances osteogenic activity and extracellular matrix mineralization of human osteoblast-like cells. Colloids Surf B Biointerf 173:662–671. https://doi.org/10.1016/j.colsurfb.2018.10.035

    Article  Google Scholar 

  74. Moon YJ, Yun CY, Choi H et al (2016) Smad4 controls bone homeostasis through regulation of osteoblast/osteocyte viability. Exp Mol Med 48(9):e256. https://doi.org/10.1038/emm.2016.75

    Article  Google Scholar 

  75. Tenkumo T, Vanegas Sáenz JR, Nakamura K et al (2018) Prolonged release of bone morphogenetic protein-2 in vivo by gene transfection with DNA-functionalized calcium phosphate nanoparticle-loaded collagen scaffolds. Mater Sci Eng C Mater Biol Appl 92:172–183. https://doi.org/10.1016/j.msec.2018.06.047

    Article  Google Scholar 

  76. Yan J, Li J, Hu J et al (2018) Smad4 deficiency impairs chondrocyte hypertrophy via the Runx2 transcription factor in mouse skeletal development. J Biol Chem 293(24):9162–9175. https://doi.org/10.1074/jbc.RA118.001825

    Article  Google Scholar 

  77. Liu YS, Liu YA, Huang CJ et al (2015) Mechanosensitive TRPM7 mediates shear stress and modulates osteogenic differentiation of mesenchymal stromal cells through Osterix pathway. Sci Rep 5:16522. https://doi.org/10.1038/srep16522

    Article  Google Scholar 

  78. Moon YJ, Yun CY, Choi H et al (2018) Osterix regulates corticalization for longitudinal bone growth via integrin β3 expression. Exp Mol Med 50(7):1–11. https://doi.org/10.1038/s12276-018-0119-9

    Article  Google Scholar 

  79. Stich T, Alagboso F, Křenek T et al (2021) Implant-bone-interface: reviewing the impact of titanium surface modifications on osteogenic processes in vitro and in vivo. Bioeng Transl Med 7(1):e10239. https://doi.org/10.1002/btm2.10239

    Article  Google Scholar 

  80. Su T, Zheng A, Cao L et al (2022) Adhesion-enhancing coating embedded with osteogenesis-promoting PDA/HA nanoparticles for peri-implant soft tissue sealing and osseointegration. Bio-Des Manuf 5(2):233–248. https://doi.org/10.1007/s42242-022-00184-5

    Article  Google Scholar 

  81. Farzin A, Hassan S, Teixeira LSM et al (2021) Self-oxygenation of tissues orchestrates full-thickness vascularization of living implants. Adv Funct Mater 31(42):2100850. https://doi.org/10.1002/adfm.202100850

    Article  Google Scholar 

  82. Kocherova I, Bryja A, Mozdziak P et al (2019) Human umbilical vein endothelial cells (HUVECs) co-culture with osteogenic cells: from molecular communication to engineering prevascularised bone grafts. J Clin Med 8(10):1602. https://doi.org/10.3390/jcm8101602

    Article  Google Scholar 

  83. Dashnyam K, Buitrago JO, Bold T et al (2019) Angiogenesis-promoted bone repair with silicate-shelled hydrogel fiber scaffolds. Biomater Sci 7(12):5221–5231. https://doi.org/10.1039/c9bm01103j

    Article  Google Scholar 

  84. Trujillo S, Gonzalez-Garcia C, Rico P et al (2020) Engineered 3D hydrogels with full-length fibronectin that sequester and present growth factors. Biomaterials 252:120104. https://doi.org/10.1016/j.biomaterials

    Article  Google Scholar 

  85. Li J, Liu X, Crook JM et al (2020) 3D printing of cytocompatible graphene/alginate scaffolds for mimetic tissue constructs. Front Bioeng Biotechnol 8:824. https://doi.org/10.3389/fbioe.2020.00824

    Article  Google Scholar 

  86. Vande Walle L, Lamkanfi M (2011) Inflammasomes: caspase-1-activating platforms with critical roles in host defense. Front Microbiol 2:3. https://doi.org/10.3389/fmicb.2011.00003

    Article  Google Scholar 

  87. Tan F, Al-Rubeai M (2021) A multifunctional dexamethasone-delivery implant fabricated using atmospheric plasma and its effects on apoptosis, osteogenesis and inflammation. Drug Deliv Transl Res 11(1):86–102. https://doi.org/10.1007/s13346-019-00700-8

    Article  Google Scholar 

  88. Lin TH, Pajarinen J, Lu L et al (2017) NF-κB as a therapeutic target in inflammatory-associated bone diseases. Adv Protein Chem Struct Biol 107:117–154. https://doi.org/10.1016/bs.apcsb.2016.11.002

    Article  Google Scholar 

  89. Yu C, Zhang C, Kuang Z et al (2021) The role of NLRP3 inflammasome activities in bone diseases and vascular calcification. Inflammation 44(2):434–449. https://doi.org/10.1007/s10753-020-01357-z

    Article  Google Scholar 

  90. Rocha FRG, Delitto AE, de Souza JAC et al (2020) Relevance of Caspase-1 and NLRP3 inflammasome on inflammatory bone resorption in a murine model of periodontitis. Sci Rep 10(1):7823. https://doi.org/10.1038/s41598-020-64685-y

    Article  Google Scholar 

  91. Ma XY, Cui D, Wang Z et al (2022) Silk fibroin/hydroxyapatite coating improved osseointegration of porous titanium implants under diabetic conditions via activation of the PI3K/Akt signaling pathway. ACS Biomater Sci Eng 8(7):2908–2919. https://doi.org/10.1021/acsbiomaterials.2c00023

    Article  Google Scholar 

  92. Zhao C, Qiu P, Li M et al (2021) The spatial form periosteal-bone complex promotes bone regeneration by coordinating macrophage polarization and osteogenic-angiogenic events. Mater Today Bio 12:100142. https://doi.org/10.1016/j.mtbio.2021.100142

    Article  Google Scholar 

  93. Tan L, Fu J, Feng F et al (2020) Engineered probiotics biofilm enhances osseointegration via immunoregulation and anti-infection. Sci Adv 6(46):eaba5723. https://doi.org/10.1126/sciadv.aba5723

    Article  Google Scholar 

  94. He M, Gao X, Fan Y et al (2021) Tannic acid/Mg2+-based versatile coating to manipulate the osteoimmunomodulation of implants. J Mater Chem B 9(4):1096–1106. https://doi.org/10.1039/d0tb01577f

    Article  Google Scholar 

  95. Peng F, Qiu L, Yao M et al (2021) A lithium-doped surface inspires immunomodulatory functions for enhanced osteointegration through PI3K/AKT signaling axis regulation. Biomater Sci 9(24):8202–8220. https://doi.org/10.1039/d1bm01075a

    Article  Google Scholar 

  96. Chen M, Hu J, Zhang E et al (2021) The osteoimmunomodulatory effect of nanostructured TiFx/TiOx coating on osteogenesis induction. Biomed Mater 16(4):045041. https://doi.org/10.1088/1748-605X/ac0863

    Article  Google Scholar 

  97. Ding T, Kang W, Li J et al (2021) An in situ tissue engineering scaffold with growth factors combining angiogenesis and osteoimmunomodulatory functions for advanced periodontal bone regeneration. J Nanobiotechnol 19(1):247. https://doi.org/10.1186/s12951-021-00992-4

    Article  Google Scholar 

  98. Ma Z, He HT, Deng CX et al (2022) 3D bioprinting of proangiogenic constructs with induced immunomodulatory microenvironments through a dual cross-linking procedure using laponite incorporated bioink. Composites Part B Eng 229:109399. https://doi.org/10.1016/j.compositesb.2021.109399

    Article  Google Scholar 

  99. Shi J, Sun J, Zhang W et al (2016) Demineralized bone matrix scaffolds modified by CBD-SDF-1α promote bone regeneration via recruiting endogenous stem cells. ACS Appl Mater Interf 8(41):27511–27522. https://doi.org/10.1021/acsami.6b08685

    Article  Google Scholar 

  100. Steen EH, Wang X, Balaji S et al (2020) The role of the anti-inflammatory cytokine Interleukin-10 in tissue fibrosis. Adv Wound Care 9(4):184–198. https://doi.org/10.1089/wound.2019.1032

    Article  Google Scholar 

  101. Li K, Lu X, Liu S et al (2021) Boron-incorporated micro/nano-topographical calcium silicate coating dictates osteo/angio-genesis and inflammatory response toward enhanced osseointegration. Biol Trace Elem Res 199(10):3801–3816. https://doi.org/10.1007/s12011-020-02517-w

    Article  Google Scholar 

  102. Wang L, Luo Q, Zhang X et al (2020) Co-implantation of magnesium and zinc ions into titanium regulates the behaviors of human gingival fibroblasts. Bioact Mater 6(1):64–74. https://doi.org/10.1016/j.bioactmat.2020.07.012

    Article  Google Scholar 

  103. Palkowitz AL, Tuna T, Bishti S et al (2021) Biofunctionalization of dental abutment surfaces by crosslinked ECM proteins strongly enhances adhesion and proliferation of gingival fibroblasts. Adv Healthc Mater 10(10):e2100132. https://doi.org/10.1002/adhm.202100132

    Article  Google Scholar 

  104. Chen W, Xu K, Tao B et al (2018) Multilayered coating of titanium implants promotes coupled osteogenesis and angiogenesis in vitro and in vivo. Acta Biomater 74:489–504. https://doi.org/10.1016/j.actbio.2018.04.043

    Article  Google Scholar 

  105. Zheng W, Chen C, Zhang X et al (2021) Layer-by-layer coating of carboxymethyl chitosan gelatin-alginate on cotton gauze for hemostasis and wound healing. Surf Coat Technol 406:126644. https://doi.org/10.1016/j.surfcoat.2020.126644

  106. Fisher LE, Kämmerling L, Alexander MR et al (2022) Immune-instructive materials as new tools for immunotherapy. Curr Opin Biotechnol 74:194–203. https://doi.org/10.1016/j.copbio.2021.11.005

    Article  Google Scholar 

  107. Rondanelli M, Faliva MA, Peroni G et al (2020) Pivotal role of boron supplementation on bone health: a narrative review. J Trace Elem Med Biol 62:126577. https://doi.org/10.1016/j.jtemb.2020.126577

    Article  Google Scholar 

Download references

Acknowledgements

Authors would like to thank Center of Excellence in Biomaterials and Tissue Engineering (BIOMATEN) for the support provided. Authors also acknowledge financial support provided by National Boron Institute (BOREN, Grant No: 2018-31-07-25-001).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: AEP, KA, ZE and AT; methodology: AEP, TD and MVY; data analysis: AEP and TD; writing—original draft preparation: AEP; writing—review and editing: DK, ZE and AT; ZE provided sources; KA, ZE and AT performed supervision. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Ayşen Tezcaner.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All animal procedures in our study were approved by the Institutional Animal Care and Use Committee of Afyon Kocatepe University (Date: 18.09.2018, Decision No.: 49533702/147).

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 8237 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pazarçeviren, A.E., Evis, Z., Dikmen, T. et al. Alginate/gelatin/boron-doped hydroxyapatite-coated Ti implants: in vitro and in vivo evaluation of osseointegration. Bio-des. Manuf. 6, 217–242 (2023). https://doi.org/10.1007/s42242-022-00218-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42242-022-00218-y

Keywords

Navigation