Skip to main content
Log in

In vitro 3D malignant melanoma model for the evaluation of hypericin-loaded oil-in-water microemulsion in photodynamic therapy

  • Research Article
  • Published:
Bio-Design and Manufacturing Aims and scope Submit manuscript

Abstract

Advances in biomimetic three-dimensional (3D) melanoma models have brought new prospects of drug screening and disease modeling, since their physiological relevancy for recapitulating in vivo tumor architectures is more accurate than traditional two-dimensional (2D) cell culture. Gelatin methacryloyl (GelMA) is widely used as a tissue-engineered scaffold hydrogel for 3D cell culture. In the present study, an in vitro 3D malignant melanoma model based on GelMA was fabricated to evaluate the efficiency of hypericin (Hy)-loaded microemulsion (ME) in photodynamic therapy against melanoma. The ME was produced by the spontaneous emulsification method to enhance the bioavailability of Hy at tumor sites. Hy-loaded MEs were applied to a 3D malignant melanoma model made using 6% GelMA and the co-culture of B16F10 and Balb/c 3T3 cells, followed by crosslinking using violet light (403 nm). The observation revealed excellent cell viability and the presence of F-actin cytoskeleton network. Hy-loaded MEs exhibited higher phototoxicity and cell accumulation (about threefold) than free Hy, and the cells cultured in the 3D system displayed lower susceptibility (about 2.5-fold) than those in 2D culture. These findings indicate that the developed MEs are potential delivery carriers for Hy; furthermore, GelMA hydrogel-based modeling in polydimethylsiloxane (PDMS) molds is a user-friendly and cost-effective in vitro platform to investigate drug penetration and provide a basis for evaluating nanocarrier efficiency for skin cancer and other skin-related diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Schadendorf D, van Akkooi AC, Berking C et al (2018) Melanoma. Lancet 392:971–984. https://doi.org/10.1016/S0140-6736(18)31559-9

    Article  Google Scholar 

  2. Gordon R (2013) Skin cancer: an overview of epidemiology and risk factors. Semin Oncol Nurs 29(3):160–169. https://doi.org/10.1016/j.soncn.2013.06.002

    Article  Google Scholar 

  3. Cummins DL, Cummins JM, Pantle H et al (2006) Cutaneous malignant melanoma. Mayo Clin Proc 81(4):500–507. https://doi.org/10.4065/81.4.500

    Article  Google Scholar 

  4. Atallah E, Flaherty L (2005) Treatment of metastatic malignant melanoma. Curr Treat Options Oncol 6:185–193. https://doi.org/10.1007/s11864-005-0002-5

    Article  Google Scholar 

  5. Domingues B, Lopes JM, Soares P et al (2018) Melanoma treatment in review. ImmunoTargets Ther 7:35. https://doi.org/10.2147/ITT.S134842

    Article  Google Scholar 

  6. Dolmans DE, Fukumura D, Jain RK (2003) Photodynamic therapy for cancer. Nat Rev Cancer 3(5):380. https://doi.org/10.1038/nrc1071

    Article  Google Scholar 

  7. Zhang L, Ji Z, Zhang J et al (2019) Photodynamic therapy enhances skin cancer chemotherapy effects through autophagy regulation. Photodiagnosis Photodyn Ther 28:159–165. https://doi.org/10.1016/j.pdpdt.2019.08.023

    Article  Google Scholar 

  8. Driehuis E, Spelier S, Beltrán Hernández I et al (2019) Patient-derived head and neck cancer organoids recapitulate EGFR expression levels of respective tissues and are responsive to EGFR-targeted photodynamic therapy. J Clin Med 8:1880. https://doi.org/10.3390/jcm8111880

    Article  Google Scholar 

  9. Banerjee SM, MacRobert AJ, Mosse CA et al (2017) Photodynamic therapy: inception to application in breast cancer. Breast 31:105–113. https://doi.org/10.1016/j.breast.2016.09.016

    Article  Google Scholar 

  10. de Albuquerque IO, Nunes J, Figueiró Longo JP et al (2019) Photodynamic therapy in superficial basal cell carcinoma treatment. Photodiagnosis Photodyn Ther 27:428–432. https://doi.org/10.1016/j.pdpdt.2019.07.017

    Article  Google Scholar 

  11. Austin E, Mamalis A, Ho D et al (2017) Laser and light-based therapy for cutaneous and soft-tissue metastases of malignant melanoma: a systematic review. Arch Dermatol Res 309:229–242. https://doi.org/10.1007/s00403-017-1720-9

    Article  Google Scholar 

  12. Agostinis P, Vantieghem A, Merlevede W et al (2002) Hypericin in cancer treatment: more light on the way. Int J Biochem Cell Biol 34:221–241. https://doi.org/10.1016/S1357-2725(01)00126-1

    Article  Google Scholar 

  13. Jürgenliemk G, Nahrstedt A (2003) Dissolution, solubility and cooperativity of phenolic compounds from hypericum perforatum L. in aqueous systems. Pharmazie 58:200–203

    Google Scholar 

  14. Callender SP, Mathews JA, Kobernyk K et al (2017) Microemulsion utility in pharmaceuticals: implications for multi-drug delivery. Int J Pharmaceut 526:425–442. https://doi.org/10.1016/j.ijpharm.2017.05.005

    Article  Google Scholar 

  15. Jadhav KR, Shaikh IM, Ambade KW et al (2006) Applications of microemulsion based drug delivery system. Curr Drug Deliv 3:267–273. https://doi.org/10.2174/156720106777731118

    Article  Google Scholar 

  16. Hu L, Yang J, Liu W et al (2011) Preparation and evaluation of ibuprofen-loaded microemulsion for improvement of oral bioavailability. Drug Deliv 18:90–95. https://doi.org/10.3109/10717544.2010.522613

    Article  Google Scholar 

  17. Aboumanei MH, Abdelbary AA, Ibrahim IT et al (2018) Design and development of microemulsion systems of a new antineoplaston A10 analog for enhanced intravenous antitumor activity: in vitro characterization, molecular docking, 125I-radiolabeling and in vivo biodistribution studies. Int J Pharm 545:240–253. https://doi.org/10.1016/j.ijpharm.2018.05.010

    Article  Google Scholar 

  18. Ryu KA, Park PJ, Kim SB et al (2020) Topical delivery of coenzyme q10-loaded microemulsion for skin regeneration. Pharmaceutics 12:332. https://doi.org/10.3390/pharmaceutics12040332

    Article  Google Scholar 

  19. Benbow T, Campbell J (2019) Microemulsions as transdermal drug delivery systems for nonsteroidal anti-inflammatory drugs (NSAIDs): a literature review. Drug Dev Indl Pharm 45:1849–1855. https://doi.org/10.1080/03639045.2019.1680996

    Article  Google Scholar 

  20. Beaumont KA, Mohana-Kumaran N, Haass NK (2014) Modeling melanoma in vitro and in vivo. Healthcare 2:27–46. https://doi.org/10.3390/healthcare2010027

    Article  Google Scholar 

  21. Fennema E, Rivron N, Rouwkema J et al (2013) Spheroid culture as a tool for creating 3D complex tissues. Trends Biotechnol 31:108–115. https://doi.org/10.1016/j.tibtech.2012.12.003

    Article  Google Scholar 

  22. Hill DS, Robinson ND, Caley MP et al (2015) A novel fully humanized 3D skin equivalent to model early melanoma invasion. Mol Cancer Ther 14:2665–2673. https://doi.org/10.1158/1535-7163.MCT-05-0313

    Article  Google Scholar 

  23. Yue K, Li X, Schrobback K et al (2017) Structural analysis of photocrosslinkable methacryloyl-modified protein derivatives. Biomaterials 139:163–171. https://doi.org/10.1016/j.biomaterials.2017.04.050

    Article  Google Scholar 

  24. Gungor-Ozkerim PS, Inci I, Zhang YS et al (2018) Bioinks for 3D bioprinting: an overview. Biomater Sci 6:915–946. https://doi.org/10.1039/C7BM00765E

    Article  Google Scholar 

  25. Ying G, Jiang N, Yu C et al (2018) Three-dimensional bioprinting of gelatin methacryloyl (GelMA). Bio-Des Manuf 1:215–224. https://doi.org/10.1007/s42242-018-0028-8

    Article  Google Scholar 

  26. Murekatete B, Shokoohmand A, McGovern J et al (2018) Targeting insulin-like growth factor-I and extracellular matrix interactions in melanoma progression. Sci Rep 8:583. https://doi.org/10.1038/s41598-017-19073-4

    Article  Google Scholar 

  27. Morales D, Lombart F, Truchot A et al (2019) 3D coculture models underline metastatic melanoma cell sensitivity to vemurafenib. Tissue Eng Part A 25:1116–1126. https://doi.org/10.1089/ten.tea.2018.0210

    Article  Google Scholar 

  28. Huang LF, Wang ZH, Chen SL (2014) Hypericin: chemical synthesis and biosynthesis. Chin J Nat Med 12:81–88. https://doi.org/10.1016/S1875-5364(14)60014-5

    Article  Google Scholar 

  29. Gong J, Schuurmans CCL, Genderen AMV et al (2020) Complexation-induced resolution enhancement of 3D-printed hydrogel constructs. Nat Commun 11:1267. https://doi.org/10.1038/s41467-020-14997-4

    Article  Google Scholar 

  30. Huang D, Liu T, Liao J et al (2021) Reversed-engineered human alveolar lung-on-a-chip model. Proc Nat Acad Sci 118:e2016146118. https://doi.org/10.1073/pnas.2016146118

    Article  Google Scholar 

  31. Rydhag L, Wilton I (1981) The function of phospholipids of soybean lecithin in emulsions. J Am Oil Chem Soc 58:830–837. https://doi.org/10.1007/bf02665591

    Article  Google Scholar 

  32. Boelsma E, Tanojo H, Boddé HE et al (1996) Assessment of the potential irritancy of oleic acid on human skin: evaluation in vitro and in vivo. Toxicol Vitro 10:729–742. https://doi.org/10.1016/S0887-2333(96)00053-7

    Article  Google Scholar 

  33. Schmidts T, Dobler D, Nissing C et al (2018) Effects of HLB value on oil-in-water emulsions: droplet size, rheological behavior, zeta-potential, and creaming index. J Ind Eng Chem 67:123–131. https://doi.org/10.1016/j.jiec.2018.06.022

    Article  Google Scholar 

  34. Courtney DL Sr (2017) Emulsifier selection/HLB. Surfactants in Cosmetics, Routledge, UK

    Google Scholar 

  35. Roohinejad S, Oey I, Wen J et al (2015) Formulation of oil-in-water β-carotene microemulsions: effect of oil type and fatty acid chain length. Food Chem 174:270–278. https://doi.org/10.1016/j.foodchem.2014.11.056

    Article  Google Scholar 

  36. Schwuger MJ, Stickdorn K, Schomaecker R (1995) Microemulsions in technical processes. Chem Rev 95:849–864. https://doi.org/10.1021/cr00036a003

    Article  Google Scholar 

  37. McClements DJ (2012) Nanoemulsions versus microemulsions: terminology, differences, and similarities. Soft Matter 8:1719–1729. https://doi.org/10.1039/C2SM06903B

    Article  Google Scholar 

  38. Warisnoicharoen W, Lansley AB, Lawrence MJ (2000) Nonionic oil-in-water microemulsions: the effect of oil type on phase behaviour. Int J Pharm 198:7–27. https://doi.org/10.1016/s0378-5173(99)00406-8

    Article  Google Scholar 

  39. Egito EST, Amaral-Machado L, Alencar EN et al (2020) Microemulsion systems: from the design and architecture to the building of a new delivery system for multiple-route drug delivery. Drug Deliv Transl Res 11:1–26. https://doi.org/10.1007/s13346-020-00872-8

    Article  Google Scholar 

  40. Bánó G, Staničová J, Jancura D et al (2011) On the diffusion of hypericin in dimethylsulfoxide/water mixtures—the effect of aggregation. J Phys Chem B 115:2417–2423. https://doi.org/10.1021/jp109661c

    Article  Google Scholar 

  41. dos Santos AIF, de Almeida DRQ, Terra LF et al (2019) Photodynamic therapy in cancer treatment-an update review. J Cancer Metastasis Treat 5:25. https://doi.org/10.20517/2394-4722.2018.83

    Article  Google Scholar 

  42. Nichol JW, Koshy ST, Bae H et al (2010) Cell-laden microengineered gelatin methacrylate hydrogels. Biomaterials 31:5536–5544. https://doi.org/10.1016/j.biomaterials.2010.03.064

    Article  Google Scholar 

  43. Pepelanova I, Kruppa K, Scheper T et al (2018) Gelatin-methacryloyl (GelMA) hydrogels with defined degree of functionalization as a versatile toolkit for 3D cell culture and extrusion bioprinting. Bioengineering 5:55. https://doi.org/10.3390/bioengineering5030055

    Article  Google Scholar 

  44. Sun M, Sun X, Wang Z et al (2018) Synthesis and properties of gelatin methacryloyl (GelMA) hydrogels and their recent applications in load-bearing tissue. Polymers 10:1290. https://doi.org/10.3390/polym10111290

    Article  Google Scholar 

  45. Aisenbrey EA, Murphy WL (2020) Synthetic alternatives to Matrigel. Nat Rev Mater 5:539–551. https://doi.org/10.1038/s41578-020-0199-8

    Article  Google Scholar 

  46. Pailler-Mattei C, Bec S, Zahouani H (2008) In vivo measurements of the elastic mechanical properties of human skin by indentation tests. Med Eng Phys 30:599–606. https://doi.org/10.1016/j.medengphy.2007.06.011

    Article  Google Scholar 

  47. Sarna M, Krzykawska-Serda M, Jakubowska M et al (2019) Melanin presence inhibits melanoma cell spread in mice in a unique mechanical fashion. Sci Rep 9:1–9. https://doi.org/10.1038/s41598-019-45643-9

    Article  Google Scholar 

  48. Schmid R, Schmidt SK, Hazur J et al (2020) Comparison of hydrogels for the development of well-defined 3D cancer models of breast cancer and melanoma. Cancers 12:2320. https://doi.org/10.3390/cancers12082320

    Article  Google Scholar 

  49. Cuvellier M, Ezan F, Oliveira H et al (2021) 3D culture of HepaRG cells in GelMa and its application to bioprinting of a multicellular hepatic model. Biomaterials 269:120611. https://doi.org/10.1016/j.biomaterials.2020.120611

    Article  Google Scholar 

  50. Stricker J, Falzone T, Gardel ML (2010) Mechanics of the F-actin cytoskeleton. J Biomech 43:9–14. https://doi.org/10.1016/j.jbiomech.2009.09.003

    Article  Google Scholar 

  51. Hakkinen KM, Harunaga JS, Doyle AD et al (2011) Direct comparisons of the morphology, migration, cell adhesions, and actin cytoskeleton of fibroblasts in four different three-dimensional extracellular matrices. Tissue Eng Part A 17:713–724. https://doi.org/10.1089/ten.TEA.2010.0273

    Article  Google Scholar 

  52. Škalamera D, Stevenson AJ, Ehmann A et al (2019) Melanoma mutations modify melanocyte dynamics in co-culture with keratinocytes or fibroblasts. J Cell Sci 132(24):jcs234716. https://doi.org/10.1242/jcs.234716

    Article  Google Scholar 

  53. Papaccio F, Kovacs D, Bellei B et al (2021) Profiling cancer-associated fibroblasts in melanoma. Int J Mol Sci 22:7255. https://doi.org/10.1242/jcs.23471610.3390/ijms22147255

    Article  Google Scholar 

  54. Flach EH, Rebecca VW, Herlyn M et al (2011) Fibroblasts contribute to melanoma tumor growth and drug resistance. Mol Pharm 8:2039–2049. https://doi.org/10.1021/mp200421k

    Article  Google Scholar 

  55. Steer A, Cordes N, Jendrossek V et al (2019) Impact of cancer-associated fibroblast on the radiation-response of solid xenograft tumors. Front Mol Biosci 6:70. https://doi.org/10.3389/fmolb.2019.00070

    Article  Google Scholar 

  56. Smalley KS, Lioni M, Herlyn M (2005) Targeting the stromal fibroblasts: a novel approach to melanoma therapy. Exp Rev Anticancer Ther 5:1069–1078. https://doi.org/10.1586/14737140.5.6.1069

    Article  Google Scholar 

  57. Slominski A, Kim TK, Brożyna AA et al (2014) The role of melanogenesis in regulation of melanoma behavior: melanogenesis leads to stimulation of HIF-1α expression and HIF-dependent attendant pathways. Arch Biochem Biophys 563:79–93. https://doi.org/10.1016/j.abb.2014.06.030

    Article  Google Scholar 

  58. Fang Y, Eglen RM (2017) Three-dimensional cell cultures in drug discovery and development. Slas Discov Adv Life Sci R&D 22:456–472. https://doi.org/10.1177/1087057117696795

    Article  Google Scholar 

  59. Ravi M, Paramesh V, Kaviya SR et al (2015) 3D cell culture systems: advantages and applications. J Cell Physiol 230:16–26. https://doi.org/10.1002/jcp.24683

    Article  Google Scholar 

  60. Ghosh S, Spagnoli GC, Martin I et al (2005) Three-dimensional culture of melanoma cells profoundly affects gene expression profile: a high density oligonucleotide array study. J Cell Physiol 204:522–531. https://doi.org/10.1002/jcp.20320

    Article  Google Scholar 

  61. Lawrence MJ, Rees GD (2012) Microemulsion-based media as novel drug delivery systems. Adv Drug Deliv Rev 64:175–193. https://doi.org/10.1016/S0169-409X(00)00103-4

    Article  Google Scholar 

  62. Lopes LB (2014) Overcoming the cutaneous barrier with microemulsions. Pharmaceutics 6:52–77. https://doi.org/10.3390/pharmaceutics6010052

    Article  Google Scholar 

  63. Versluis AJ, van Geel PJ, Oppelaar H et al (1996) Receptor-mediated uptake of low-density lipoprotein by B16 melanoma cells in vitro and in vivo in mice. Br J Cancer 74(1996):525–532. https://doi.org/10.1038/bjc.1996.396

    Article  Google Scholar 

  64. Favero GM, Paz JL, Otake AH et al (2018) Cell internalization of 7-ketocholesterol-containing nanoemulsion through LDL receptor reduces melanoma growth in vitro and in vivo: a preliminary report. Oncotarget 9:14160. https://doi.org/10.18632/oncotarget.24389

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the FAPESP-INCTBio (Process 2014/50867-3) and FAPESP-CEPOF (2013/07276-1). The authors gratefully acknowledge Dr. A.O. Ribeiro from Universidade Federal do ABC, Santo André-SP, Brazil, for kindly providing the Hypericin and CAPES fellowship—Finance Code 001 to HLM; YSZ acknowledges support by the Brigham Research Institute; LCV thanks FAPESP for financial support (Process 2013/01284-2).

Author information

Authors and Affiliations

Authors

Contributions

HLM: conceptualization, methodology, visualization, investigation, writing—original draft preparation. WL: conceptualization, methodology. MW: methodology. LCV: methodology, writing—review & editing. JRP: resources. YSZ: conceptualization, methodology, writing—review & editing, supervision. EC: conceptualization, writing—review & editing, project administration, resources, supervision.

Corresponding authors

Correspondence to Y. Shrike Zhang or Emanuel Carrilho.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Ethical approval

This article does not contain any studies with human or animal subjects performed by any of the authors.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2197 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, H.L., Li, W., Wang, M. et al. In vitro 3D malignant melanoma model for the evaluation of hypericin-loaded oil-in-water microemulsion in photodynamic therapy. Bio-des. Manuf. 5, 660–673 (2022). https://doi.org/10.1007/s42242-022-00202-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42242-022-00202-6

Keywords

Navigation