Aslam B, Wang W, Arshad MI et al (2018) Antibiotic resistance: a rundown of a global crisis. Infect Drug Resist 11:1645–1658. https://doi.org/10.2147/IDR.S173867
Article
Google Scholar
Khan ZA, Siddiqui MF, Park S (2019) Progress in antibiotic susceptibility tests: a comparative review with special emphasis on microfluidic methods. Biotechnol Lett 41(2):221–230. https://doi.org/10.1007/s10529-018-02638-2
Article
Google Scholar
Zhang T (2020) Rapid antibiotic susceptibility testing platform for direct clinical samples. Honors Scholar Theses 727.
Performance Standards for Antimicrobial Susceptibility Testing; Twenty-Third Informational Supplement M100-S23. Clinical and Laboratory Standards Institute, 2013.
Matuschek E, Brown DFJ, Kahlmeter G (2014) Development of the EUCAST disk diffusion antimicrobial susceptibility testing method and its implementation in routine microbiology laboratories. Clin Microbiol Infect 20(4):O255–O266. https://doi.org/10.1111/1469-0691.12373
Article
Google Scholar
Mulroney KT, Hall JM, Huang X et al (2017) Rapid susceptibility profiling of carbapenem-resistant Klebsiella pneumoniae. Sci Rep 7(1):1903–1915. https://doi.org/10.1038/s41598-017-02009-3
Article
Google Scholar
Aroonnual A, Janvilisri T, Ounjai P et al (2017) Microfluidics: innovative approaches for rapid diagnosis of antibiotic-resistant bacteria. Essays Biochem 61(61):91–101. https://doi.org/10.1042/EBC20160059
Article
Google Scholar
Churski K, Kaminski TS, Jakiela S et al (2012) Rapid screening of antibiotic toxicity in an automated microdroplet system. Lab Chip 12(9):1629–1637. https://doi.org/10.1039/c2lc21284f
Article
Google Scholar
Kara V, Duan C, Gupta K et al (2018) Microfluidic detection of movements of Escherichia coli for rapid antibiotic susceptibility testing. Lab Chip 18(5):743–753. https://doi.org/10.1039/C7LC01019B
Article
Google Scholar
Postek W, Gargulinski P, Scheler O et al (2018) Microfluidic screening of antibiotic susceptibility at a single-cell level shows the inoculum effect of cefotaxime on E. coli. Lab Chip 18(23):3668–3677. https://doi.org/10.1039/C8LC00916C
Article
Google Scholar
Dai J, Hamon M, Jambovane S (2016) Microfluidics for antibiotic susceptibility and toxicity testing. Bioengineering 3(4):25–37. https://doi.org/10.3390/bioengineering3040025
Article
Google Scholar
Cira NJ, Ho JY, Dueck ME et al (2020) Combinatorial antimicrobial susceptibility testing enabled by non-contact printing. Micromachines 11(2):142–155. https://doi.org/10.3390/mi11020142
Article
Google Scholar
Wang X, Liu Z, Pang Y (2017) Concentration gradient generation methods based on microfluidic systems. RSC Adv 7(48):29966–29984. https://doi.org/10.1039/C7RA04494A
Article
Google Scholar
Zhou B, Gao Y, Tian J et al (2019) Preparation of orthogonal physicochemical gradients on PDMS surface using microfluidic concentration gradient generator. Appl Surface Sci 471:213–221. https://doi.org/10.1016/j.apsusc.2018.11.241
Article
Google Scholar
Kim SC, Cestellos-Blanco S, Inoue K et al (2015) Miniaturized antimicrobial susceptibility test by combining concentration gradient generation and rapid cell culturing. Antibiotics 4(4):455–466. https://doi.org/10.3390/antibiotics4040455
Article
Google Scholar
Li B, Qiu Y, Glidle A et al (2014) Gradient microfluidics enables rapid bacterial growth inhibition testing. Anal Chem 86(6):3131–3137. https://doi.org/10.1021/ac5001306
Article
Google Scholar
Kim S, Lee S, Kim JK et al (2019) Microfluidic-based observation of local bacterial density under antimicrobial concentration gradient for rapid antibiotic susceptibility testing. Biomicrofluidics 13(1):014108. https://doi.org/10.1063/1.5066558
Article
Google Scholar
Cai LF, Zhu Y, Du GS et al (2012) Droplet-based microfluidic flow injection system with large-scale concentration gradient by a single nanoliter-scale injection for enzyme inhibition assay. Anal Chem 84(1):446–452. https://doi.org/10.1021/ac2029198
Article
Google Scholar
Keays MC, O’Brien M, Hussain A et al (2016) Rapid identification of antibiotic resistance using droplet microfluidics. Bioengineered 7(2):79–87. https://doi.org/10.1080/21655979.2016.1156824
Article
Google Scholar
Dewan A, Kim J, McLean RH et al (2012) Growth kinetics of microalgae in microfluidic static droplet arrays. Biotechnol Bioeng 109(12):2987–2996. https://doi.org/10.1002/bit.24568
Article
Google Scholar
Avesar J, Rosenfeld D, Truman-Rosentsvit M et al (2017) Rapid phenotypic antimicrobial susceptibility testing using nanoliter arrays. Proc Natl Acad Sci 114(29):5787–5795. https://doi.org/10.1073/pnas.1703736114
Article
Google Scholar
Cira NJ, Ho JY, Dueck ME et al (2012) A self-loading microfluidic device for determining the minimum inhibitory concentration of antibiotics. Lab Chip 12(3):1052–1060. https://doi.org/10.1039/c2lc20887c
Article
Google Scholar
He Y, Nie J, Xie M et al (2020) Why choose 3D bioprinting? Part III: printing in vitro 3D models for drug screening. Bio-des Manuf 3:160–163. https://doi.org/10.1007/s42242-020-00067-7
Article
Google Scholar
Yan Q, Dong H, Su J et al (2018) A review of 3D printing technology for medical applications. Engineering 4(5):729–742. https://doi.org/10.1016/j.eng.2018.07.021
Article
Google Scholar
Mu Q, Wang L, Dunn CK et al (2017) Digital light processing 3D printing of conductive complex structures. Addit Manuf 18:74–83. https://doi.org/10.1016/j.addma.2017.08.011
Article
Google Scholar
Ali Z, Türeyen EB, Karpat Y et al (2016) Fabrication of polymer micro needles for transdermal drug delivery system using DLP based projection stereo-lithography. Procedia CIRP 42:87–90. https://doi.org/10.1016/j.procir.2016.02.194
Article
Google Scholar
Azizi M, Zaferani M, Dogan B et al (2018) Nanoliter-sized microchamber/microarray microfluidic platform for antibiotic susceptibility testing. Anal Chem 90(24):14137–14144. https://doi.org/10.1021/acs.analchem.8b03817
Article
Google Scholar
Sun M, Bithi SS, Vanapalli SA (2011) Microfluidic static droplet arrays with tuneable gradients in material composition. Lab Chip 11(23):3949–1428. https://doi.org/10.1039/c1lc20709a
Article
Google Scholar
Choi J, Jung YG, Kim J et al (2013) Rapid antibiotic susceptibility testing by tracking single cell growth in a microfluidic agarose channel system. Lab Chip 13(2):280–287. https://doi.org/10.1039/C2LC41055A
Article
Google Scholar
Lee WB, Fu CY, Chang WH et al (2017) A microfluidic device for antimicrobial susceptibility testing based on a broth dilution method. Biosens Bioelectron 87:669–678. https://doi.org/10.1016/j.bios.2016.09.008
Article
Google Scholar
Wiegand I, Hilpert K, Hancock RE (2008) Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nat Protoc 3(2):163–175. https://doi.org/10.1038/nprot.2007.521
Article
Google Scholar
Cushnie TPT, O’Driscoll NH, Lamb AJ (2016) Morphological and ultrastructural changes in bacterial cells as an indicator of antibacterial mechanism of action. Cell Mol Life Sci 73(23):4471–4492. https://doi.org/10.1007/s00018-016-2302-2
Article
Google Scholar
Tenover FC (2006) Mechanisms of antimicrobial resistance in bacteria. Am J Med 119(6):S3–S10. https://doi.org/10.1016/j.amjmed.2006.03.011
Article
Google Scholar
Sun P, Liu Y, Sha J et al (2011) High-throughput microfluidic system for long-term bacterial colony monitoring and antibiotic testing in zero-flow environments. Biosens Bioelectron 26(5):1993–1999. https://doi.org/10.1016/j.bios.2010.08.062
Article
Google Scholar
Rizzo MG, De Plano LM, Franco D (2020) Regulation of filamentation by bacteria and its impact on the productivity of compounds in biotechnological processes. Appl Microbiol Biotechnol 104:4631–4642. https://doi.org/10.1007/s00253-020-10590-3
Article
Google Scholar