Skip to main content

A 3D-printed microfluidic gradient concentration chip for rapid antibiotic-susceptibility testing

Abstract

The rise of antibiotic resistance as one of the most serious global public health threats has necessitated the timely clinical diagnosis and precise treatment of deadly bacterial infections. To identify which types and doses of antibiotics remain effective for fighting against multi-drug-resistant pathogens, the development of rapid and accurate antibiotic-susceptibility testing (AST) is of primary importance. Conventional methods for AST in well-plate formats with disk diffusion or broth dilution are both labor-intensive and operationally tedious. The microfluidic chip provides a versatile tool for evaluating bacterial AST and resistant behaviors. In this paper, we develop an operationally simple, 3D-printed microfluidic chip for AST which automatically deploys antibiotic concentration gradients and fluorescence intensity-based reporting to ideally reduce the report time for AST to within 5 h. By harnessing a commercially available, digital light processing (DLP) 3D printing method that offers a rapid, high-precision microfluidic chip-manufacturing capability, we design and realize the accurate generation of on-chip antibiotic concentration gradients based on flow resistance and diffusion mechanisms. We further demonstrate the employment of the microfluidic chip for the AST of E. coli to representative clinical antibiotics of three classes: ampicillin, chloramphenicol, and kanamycin. The determined minimum inhibitory concentration values are comparable to those reported by conventional well-plate methods. Our proposed method demonstrates a promising approach for realizing robust, convenient, and automatable AST of clinical bacterial pathogens.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Aslam B, Wang W, Arshad MI et al (2018) Antibiotic resistance: a rundown of a global crisis. Infect Drug Resist 11:1645–1658. https://doi.org/10.2147/IDR.S173867

    Article  Google Scholar 

  2. Khan ZA, Siddiqui MF, Park S (2019) Progress in antibiotic susceptibility tests: a comparative review with special emphasis on microfluidic methods. Biotechnol Lett 41(2):221–230. https://doi.org/10.1007/s10529-018-02638-2

    Article  Google Scholar 

  3. Zhang T (2020) Rapid antibiotic susceptibility testing platform for direct clinical samples. Honors Scholar Theses 727.

  4. Performance Standards for Antimicrobial Susceptibility Testing; Twenty-Third Informational Supplement M100-S23. Clinical and Laboratory Standards Institute, 2013.

  5. Matuschek E, Brown DFJ, Kahlmeter G (2014) Development of the EUCAST disk diffusion antimicrobial susceptibility testing method and its implementation in routine microbiology laboratories. Clin Microbiol Infect 20(4):O255–O266. https://doi.org/10.1111/1469-0691.12373

    Article  Google Scholar 

  6. Mulroney KT, Hall JM, Huang X et al (2017) Rapid susceptibility profiling of carbapenem-resistant Klebsiella pneumoniae. Sci Rep 7(1):1903–1915. https://doi.org/10.1038/s41598-017-02009-3

    Article  Google Scholar 

  7. Aroonnual A, Janvilisri T, Ounjai P et al (2017) Microfluidics: innovative approaches for rapid diagnosis of antibiotic-resistant bacteria. Essays Biochem 61(61):91–101. https://doi.org/10.1042/EBC20160059

    Article  Google Scholar 

  8. Churski K, Kaminski TS, Jakiela S et al (2012) Rapid screening of antibiotic toxicity in an automated microdroplet system. Lab Chip 12(9):1629–1637. https://doi.org/10.1039/c2lc21284f

    Article  Google Scholar 

  9. Kara V, Duan C, Gupta K et al (2018) Microfluidic detection of movements of Escherichia coli for rapid antibiotic susceptibility testing. Lab Chip 18(5):743–753. https://doi.org/10.1039/C7LC01019B

    Article  Google Scholar 

  10. Postek W, Gargulinski P, Scheler O et al (2018) Microfluidic screening of antibiotic susceptibility at a single-cell level shows the inoculum effect of cefotaxime on E. coli. Lab Chip 18(23):3668–3677. https://doi.org/10.1039/C8LC00916C

    Article  Google Scholar 

  11. Dai J, Hamon M, Jambovane S (2016) Microfluidics for antibiotic susceptibility and toxicity testing. Bioengineering 3(4):25–37. https://doi.org/10.3390/bioengineering3040025

    Article  Google Scholar 

  12. Cira NJ, Ho JY, Dueck ME et al (2020) Combinatorial antimicrobial susceptibility testing enabled by non-contact printing. Micromachines 11(2):142–155. https://doi.org/10.3390/mi11020142

    Article  Google Scholar 

  13. Wang X, Liu Z, Pang Y (2017) Concentration gradient generation methods based on microfluidic systems. RSC Adv 7(48):29966–29984. https://doi.org/10.1039/C7RA04494A

    Article  Google Scholar 

  14. Zhou B, Gao Y, Tian J et al (2019) Preparation of orthogonal physicochemical gradients on PDMS surface using microfluidic concentration gradient generator. Appl Surface Sci 471:213–221. https://doi.org/10.1016/j.apsusc.2018.11.241

    Article  Google Scholar 

  15. Kim SC, Cestellos-Blanco S, Inoue K et al (2015) Miniaturized antimicrobial susceptibility test by combining concentration gradient generation and rapid cell culturing. Antibiotics 4(4):455–466. https://doi.org/10.3390/antibiotics4040455

    Article  Google Scholar 

  16. Li B, Qiu Y, Glidle A et al (2014) Gradient microfluidics enables rapid bacterial growth inhibition testing. Anal Chem 86(6):3131–3137. https://doi.org/10.1021/ac5001306

    Article  Google Scholar 

  17. Kim S, Lee S, Kim JK et al (2019) Microfluidic-based observation of local bacterial density under antimicrobial concentration gradient for rapid antibiotic susceptibility testing. Biomicrofluidics 13(1):014108. https://doi.org/10.1063/1.5066558

    Article  Google Scholar 

  18. Cai LF, Zhu Y, Du GS et al (2012) Droplet-based microfluidic flow injection system with large-scale concentration gradient by a single nanoliter-scale injection for enzyme inhibition assay. Anal Chem 84(1):446–452. https://doi.org/10.1021/ac2029198

    Article  Google Scholar 

  19. Keays MC, O’Brien M, Hussain A et al (2016) Rapid identification of antibiotic resistance using droplet microfluidics. Bioengineered 7(2):79–87. https://doi.org/10.1080/21655979.2016.1156824

    Article  Google Scholar 

  20. Dewan A, Kim J, McLean RH et al (2012) Growth kinetics of microalgae in microfluidic static droplet arrays. Biotechnol Bioeng 109(12):2987–2996. https://doi.org/10.1002/bit.24568

    Article  Google Scholar 

  21. Avesar J, Rosenfeld D, Truman-Rosentsvit M et al (2017) Rapid phenotypic antimicrobial susceptibility testing using nanoliter arrays. Proc Natl Acad Sci 114(29):5787–5795. https://doi.org/10.1073/pnas.1703736114

    Article  Google Scholar 

  22. Cira NJ, Ho JY, Dueck ME et al (2012) A self-loading microfluidic device for determining the minimum inhibitory concentration of antibiotics. Lab Chip 12(3):1052–1060. https://doi.org/10.1039/c2lc20887c

    Article  Google Scholar 

  23. He Y, Nie J, Xie M et al (2020) Why choose 3D bioprinting? Part III: printing in vitro 3D models for drug screening. Bio-des Manuf 3:160–163. https://doi.org/10.1007/s42242-020-00067-7

    Article  Google Scholar 

  24. Yan Q, Dong H, Su J et al (2018) A review of 3D printing technology for medical applications. Engineering 4(5):729–742. https://doi.org/10.1016/j.eng.2018.07.021

    Article  Google Scholar 

  25. Mu Q, Wang L, Dunn CK et al (2017) Digital light processing 3D printing of conductive complex structures. Addit Manuf 18:74–83. https://doi.org/10.1016/j.addma.2017.08.011

    Article  Google Scholar 

  26. Ali Z, Türeyen EB, Karpat Y et al (2016) Fabrication of polymer micro needles for transdermal drug delivery system using DLP based projection stereo-lithography. Procedia CIRP 42:87–90. https://doi.org/10.1016/j.procir.2016.02.194

    Article  Google Scholar 

  27. Azizi M, Zaferani M, Dogan B et al (2018) Nanoliter-sized microchamber/microarray microfluidic platform for antibiotic susceptibility testing. Anal Chem 90(24):14137–14144. https://doi.org/10.1021/acs.analchem.8b03817

    Article  Google Scholar 

  28. Sun M, Bithi SS, Vanapalli SA (2011) Microfluidic static droplet arrays with tuneable gradients in material composition. Lab Chip 11(23):3949–1428. https://doi.org/10.1039/c1lc20709a

    Article  Google Scholar 

  29. Choi J, Jung YG, Kim J et al (2013) Rapid antibiotic susceptibility testing by tracking single cell growth in a microfluidic agarose channel system. Lab Chip 13(2):280–287. https://doi.org/10.1039/C2LC41055A

    Article  Google Scholar 

  30. Lee WB, Fu CY, Chang WH et al (2017) A microfluidic device for antimicrobial susceptibility testing based on a broth dilution method. Biosens Bioelectron 87:669–678. https://doi.org/10.1016/j.bios.2016.09.008

    Article  Google Scholar 

  31. Wiegand I, Hilpert K, Hancock RE (2008) Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nat Protoc 3(2):163–175. https://doi.org/10.1038/nprot.2007.521

    Article  Google Scholar 

  32. Cushnie TPT, O’Driscoll NH, Lamb AJ (2016) Morphological and ultrastructural changes in bacterial cells as an indicator of antibacterial mechanism of action. Cell Mol Life Sci 73(23):4471–4492. https://doi.org/10.1007/s00018-016-2302-2

    Article  Google Scholar 

  33. Tenover FC (2006) Mechanisms of antimicrobial resistance in bacteria. Am J Med 119(6):S3–S10. https://doi.org/10.1016/j.amjmed.2006.03.011

    Article  Google Scholar 

  34. Sun P, Liu Y, Sha J et al (2011) High-throughput microfluidic system for long-term bacterial colony monitoring and antibiotic testing in zero-flow environments. Biosens Bioelectron 26(5):1993–1999. https://doi.org/10.1016/j.bios.2010.08.062

    Article  Google Scholar 

  35. Rizzo MG, De Plano LM, Franco D (2020) Regulation of filamentation by bacteria and its impact on the productivity of compounds in biotechnological processes. Appl Microbiol Biotechnol 104:4631–4642. https://doi.org/10.1007/s00253-020-10590-3

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Mr. Zhuan Ge at Westlake University for providing the suggestions on simulation of fluidic dynamic. This work was supported by the National Natural Science Foundation of China (No. 51908467) and by institutional funds from the Westlake University.

Author information

Authors and Affiliations

Authors

Contributions

FJ, NZ, and HZ conceived the study; HZ designed the project and analyzed the data; YY and YH contributed to methodology and investigation; LZ contributed to the data analysis; HZ and FJ wrote the manuscript; FJ supervised the project. All authors contributed to the proof reading and commenting on the manuscript.

Corresponding authors

Correspondence to Nanjia Zhou or Feng Ju.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Ethical approval

This study does not contain any studies with human or animal subjects performed by any of the authors.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (MP4 1723 KB)

Supplementary file2 (MP4 4846 KB)

Supplementary file3 (MP4 8296 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Yao, Y., Hui, Y. et al. A 3D-printed microfluidic gradient concentration chip for rapid antibiotic-susceptibility testing. Bio-des. Manuf. 5, 210–219 (2022). https://doi.org/10.1007/s42242-021-00173-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42242-021-00173-0

Keywords

  • Microfluidics
  • Gradient concentration chip
  • Digital light processing
  • Antibiotic-susceptibility test
  • Bacteria