Skip to main content
Log in

Hierarchical platinum–iridium neural electrodes structured by femtosecond laser for superwicking interface and superior charge storage capacity

  • Research Article
  • Published:
Bio-Design and Manufacturing Aims and scope Submit manuscript

Abstract

The interfacial performance of implanted neural electrodes is crucial for stimulation safety and the recording quality of neuronal activity. This paper proposes a novel surface architecture and optimization strategy for the platinum–iridium (Pt–Ir) electrode to optimize electrochemical performance and wettability. A series of surface micro/nano structures were fabricated on Pt–Ir electrodes with different combinations of four adjustable laser-processing parameters. Subsequently, the electrodes were characterized by scanning electron microscopy, energy-dispersive X-ray spectroscopy, cyclic voltammetry, electrochemical impedance spectroscopy, and wetting behavior. The results show that electrode performance strongly depends on the surface morphology. Increasing scanning overlap along with moderate pulse energy and the right number of pulses leads to enriched surface micro/nano structures and improved electrode performance. It raises the maximum charge storage capacity to 128.2 mC/cm2 and the interface capacitance of electrodes to 3.0 × 104 μF/cm2 for the geometric area, compared with 4.6 mC/cm2 and 443.1 μF/cm2, respectively, for the smooth Pt–Ir electrode. The corresponding optimal results for the optically measured area are 111.8 mC/cm2 and 2.6 × 104 μF/cm2, which indicate the contribution of finer structures to the ablation profile. The hierarchical structures formed by the femtosecond laser dramatically enhanced the wettability of the electrode interface, giving it superwicking properties. A wicking speed of approximately 80 mm/s was reached. Our optimization strategy, leading to superior performance of the superwicking Pt–Ir interface, is promising for use in new neural electrodes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Cogan SF (2008) Neural stimulation and recording electrodes. Annu Rev Biomed Eng 10:275–309. https://doi.org/10.1146/annurev.bioeng.10.061807.160518

    Article  Google Scholar 

  2. Merrill DR, Bikson M, Jefferys JGR (2005) Electrical stimulation of excitable tissue: design of efficacious and safe protocols. J Neurosci Meth 141(2):171–198. https://doi.org/10.1016/j.jneumeth.2004.10.020

    Article  Google Scholar 

  3. Cowley A, Woodward B (2011) A healthy future: platinum in medical applications. Platinum Metals Rev 55(2):98–107. https://doi.org/10.1595/147106711X566816

    Article  Google Scholar 

  4. Jiang C, Li L, Hao H (2011) Carbon nanotube yarns for deep brain stimulation electrode. IEEE Trans Neur Syst Rehabil Eng 19(6):612–616. https://doi.org/10.1109/TNSRE.2011.2165733

    Article  Google Scholar 

  5. Deku F, Joshi-Imre A, Mertiri A et al (2018) Electrodeposited iridium oxide on carbon fiber ultramicroelectrodes for neural recording and stimulation. J Electrochem Soc 165(9):D375–D380. https://doi.org/10.1149/2.0401809jes

    Article  Google Scholar 

  6. Luo X, Weaver CL, Zhou DD et al (2011) Highly stable carbon nanotube doped poly(3,4-ethylenedioxythiophene) for chronic neural stimulation. Biomaterials 32(24):5551–5557. https://doi.org/10.1016/j.biomaterials.2011.04.051

    Article  Google Scholar 

  7. Aqrawe Z, Wright B, Patel N et al (2019) The influence of macropores on PEDOT/PSS microelectrode coatings for neuronal recording and stimulation. Sens Actuat B Chem 281:549–560. https://doi.org/10.1016/j.snb.2018.10.099

    Article  Google Scholar 

  8. Wilks S, Richardson-Burns SM, Hendricks JL et al (2009) Poly(3,4-ethylene dioxythiophene) (PEDOT) as a micro-neural interface material for electrostimulation. Front Neuroeng 2:7. https://doi.org/10.3389/neuro.16.007.2009

    Article  Google Scholar 

  9. Aregueta-Robles UA, Woolley AJ, Poole-Warren LA et al (2014) Organic electrode coatings for next-generation neural interfaces. Front Neuroeng 7:1–18. https://doi.org/10.3389/fneng.2014.00015

    Article  Google Scholar 

  10. Chung T, Wang JQ, Wang J et al (2015) Electrode modifications to lower electrode impedance and improve neural signal recording sensitivity. J Neur Eng 12(5):056018. https://doi.org/10.1088/1741-2560/12/5/056018

    Article  Google Scholar 

  11. Ivanovskaya AN, Belle AM, Yorita AM et al (2018) Electrochemical roughening of thin-film platinum for neural probe arrays and biosensing applications. J Electrochem Soc 165(12):G3125–G3132. https://doi.org/10.1149/2.0171812jes

    Article  Google Scholar 

  12. Vorobyev AY, Guo C (2009). Femtosecond laser surface structuring of biocompatible metals. In: Commercial and biomedical applications of ultrafast lasers IX, p 72030O. https://doi.org/10.1117/12.809593

  13. Huo H, Shen M (2012) Platinum nanostructures formed by femtosecond laser irradiation in water. J Appl Phys 112(10):104314. https://doi.org/10.1063/1.4766407

    Article  Google Scholar 

  14. Vorobyev AY, Guo C (2013) Direct femtosecond laser surface nano/microstructuring and its applications. Laser Photonics Rev 7(3):385–407. https://doi.org/10.1002/lpor.201200017

    Article  Google Scholar 

  15. Green RA, Matteucci PB, Dodds CWD et al (2014) Laser patterning of platinum electrodes for safe neurostimulation. J Neur Eng 11(5):056017. https://doi.org/10.1088/1741-2560/11/5/056017

    Article  Google Scholar 

  16. Schuettler M (2007) Electrochemical properties of platinum electrodes in vitro: comparison of six different surface qualities. In: 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp 186–189. https://doi.org/10.1109/IEMBS.2007.4352254

  17. Mueller M, de la Oliva N, Del Valle J et al (2017) Rapid prototyping of flexible intrafascicular electrode arrays by picosecond laser structuring. J Neur Eng 14(6):066016. https://doi.org/10.1088/1741-2552/aa7eea

    Article  Google Scholar 

  18. Sikder KU, Shivdasani MN, Fallon JB et al (2019) Electrically conducting diamond films grown on platinum foil for neural stimulation. J Neur Eng 16(6):066002. https://doi.org/10.1088/1741-2552/ab2e79

    Article  Google Scholar 

  19. Vorobyev AY, Guo C (2015) Superwicking surfaces produced by femtosecond laser. In: Shulika O, Sukhoivanov I (eds) Advanced lasers, pp 101–115. https://doi.org/10.1007/978-94-017-9481-7_7

  20. Vorobyev AY, Guo C (2009) Metal pumps liquid uphill. Appl Phys Lett 94(22):224102. https://doi.org/10.1063/1.3117237

    Article  Google Scholar 

  21. Ahmmed KMT, Ling EJY, Servio P et al (2015) Introducing a new optimization tool for femtosecond laser-induced surface texturing on titanium, stainless steel, aluminum and copper. Opt Laser Eng 66:258–268. https://doi.org/10.1016/j.optlaseng.2014.09.017

    Article  Google Scholar 

  22. Ahmmed KMT, Grambow C, Kietzig AM (2014) Fabrication of micro/nano structures on metals by femtosecond laser micromachining. Micromachines-Basel 5(4):1219–1253. https://doi.org/10.3390/mi5041219

    Article  Google Scholar 

  23. Liu JM (1982) Simple technique for measurements of pulsed Gaussian-beam spot sizes. Opt Lett 7(5):196–198. https://doi.org/10.1364/ol.7.000196

    Article  Google Scholar 

  24. Nolte S, Momma C, Jacobs H et al (1997) Ablation of metals by ultrashort laser pulses. J Opt Soc Am B 14(10):2716–2722. https://doi.org/10.1364/JOSAB.14.002716

    Article  Google Scholar 

  25. Kelly A, Farid N, Krukiewicz K et al (2020) Laser-induced periodic surface structure enhances neuroelectrode charge transfer capabilities and modulates astrocyte function. Acs Biomater Sci Eng 6(3):1449–1461. https://doi.org/10.1021/acsbiomaterials.9b01321

    Article  Google Scholar 

  26. Jee Y, Becker MF, Walser RM (1988) Laser-induced damage on single-crystal metal surfaces. J Opt Soc Am B 5(3):648. https://doi.org/10.1364/JOSAB.5.000648

    Article  Google Scholar 

  27. Di Niso F, Gaudiuso C, Sibillano T et al (2014) Role of heat accumulation on the incubation effect in multi-shot laser ablation of stainless steel at high repetition rates. Opt Express 22(10):12200. https://doi.org/10.1364/OE.22.012200

    Article  Google Scholar 

  28. Sedao X, Lenci M, Rudenko A et al (2019) Influence of pulse repetition rate on morphology and material removal rate of ultrafast laser ablated metallic surfaces. Opt Laser Eng 116:68–74. https://doi.org/10.1016/j.optlaseng.2018.12.009

    Article  Google Scholar 

  29. Zhao X, Shin YC (2013) Femtosecond laser ablation of aluminum in vacuum and air at high laser intensity. Appl Surf Sci 283:94–99. https://doi.org/10.1016/j.apsusc.2013.06.037

    Article  Google Scholar 

  30. Smausz T, Csizmadia T, Tápai C et al (2016) Study on the effect of ambient gas on nanostructure formation on metal surfaces during femtosecond laser ablation for fabrication of low-reflective surfaces. Appl Surf Sci 389:1113–1119. https://doi.org/10.1016/j.apsusc.2016.08.026

    Article  Google Scholar 

  31. Ye S, Cao Q, Wang Q et al (2016) A highly efficient, stable, durable, and recyclable filter fabricated by femtosecond laser drilling of a titanium foil for oil-water separation. Sci Rep 6(1):37591. https://doi.org/10.1038/srep37591

    Article  Google Scholar 

  32. Chiba T, Komura R, Mori A (2000) Formation of micropeak array on a silicon wafer. Jpn J Appl Phys 39(8R):4803–4810. https://doi.org/10.1143/JJAP.39.4803

    Article  Google Scholar 

  33. Singh AK, Shinde D, More MA et al (2015) Enhanced field emission from nanosecond laser based surface micro-structured stainless steel. Appl Surf Sci 357:1313–1318. https://doi.org/10.1016/j.apsusc.2015.09.244

    Article  Google Scholar 

  34. Tani S, Kobayashi Y (2018) Pulse-by-pulse depth profile measurement of femtosecond laser ablation on copper. Appl Phys A 124(3):265. https://doi.org/10.1007/s00339-018-1694-2

    Article  Google Scholar 

  35. Biswas S, Karthikeyan A, Kietzig AM (2016) Effect of repetition rate on femtosecond laser-induced homogenous microstructures. Materials 9(12):1023. https://doi.org/10.3390/ma9121023

    Article  Google Scholar 

  36. Long J, Pan L, Fan P et al (2016) Cassie-state stability of metallic superhydrophobic surfaces with various micro/nanostructures produced by a femtosecond laser. Langmuir 32(4):1065–1072. https://doi.org/10.1021/acs.langmuir.5b04329

    Article  Google Scholar 

  37. Chen T, Wang W, Tao T et al (2020) Broad-band ultra-low-reflectivity multiscale micro–nano structures by the combination of femtosecond laser ablation and in situ deposition. ACS Appl Mater Interf 12(43):49265–49274. https://doi.org/10.1021/acsami.0c16894

    Article  Google Scholar 

  38. Long J, Fan P, Gong D et al (2015) Superhydrophobic surfaces fabricated by femtosecond laser with tunable water adhesion: from lotus leaf to rose petal. ACS Appl Mater Interf 7(18):9858–9865. https://doi.org/10.1021/acsami.5b01870

    Article  Google Scholar 

  39. Cogan SF, Ehrlich J, Plante TD et al (2009) Sputtered iridium oxide films for neural stimulation electrodes. J Biomed Mater Res B Appl Biomater 89(2):353–361. https://doi.org/10.1002/jbm.b.31223

    Article  Google Scholar 

  40. Meyer RD, Nguyen TH, Twardoch UM, et al (1999). Electrodeposition of iridium oxide charge injection electrodes. In: IEEE Engineering in Medicine and Biology 21st Annual Conference and the 1999 Annual Fall Meeting of the Biomedical Engineering Society, pp 381–382. https://doi.org/10.1109/IEMBS.1999.802459

  41. Butson CR, McIntyre CC (2005) Tissue and electrode capacitance reduce neural activation volumes during deep brain stimulation. Clin Neurophysiol 116(10):2490–2500. https://doi.org/10.1016/j.clinph.2005.06.023

    Article  Google Scholar 

  42. Rye RR, Mann JA, Yost FG (1996) The flow of liquids in surface grooves. Langmuir 12:555–565. https://doi.org/10.1021/la9500989

    Article  Google Scholar 

  43. Li X, Yuan G, Yu W et al (2020) A self-driven microfluidic surface-enhanced Raman scattering device for Hg2+ detection fabricated by femtosecond laser. Lab Chip 20(2):414–423. https://doi.org/10.1039/c9lc00883g

    Article  Google Scholar 

  44. Aguilar-Morales AI, Alamri S, Voisiat B et al (2019) The role of the surface nano-roughness on the wettability performance of microstructured metallic surface using direct laser interference patterning. Materials 12(17):2737. https://doi.org/10.3390/ma12172737

    Article  Google Scholar 

  45. Fadeeva E, Schlie-Wolter S, Chichkov BN et al (2016) Structuring of biomaterial surfaces with ultrashort pulsed laser radiation. In: Vilar R (eds) Laser surface modification of biomaterials: techniques and applications, pp 145–172. https://doi.org/10.1016/B978-0-08-100883-6.00005-8

  46. Kim Y, Meade SM, Chen K et al (2018) Nano-architectural approaches for improved intracortical interface technologies. Front Neurosci 12:456. https://doi.org/10.3389/fnins.2018.00456

    Article  Google Scholar 

  47. Buzea C, Pacheco II, Robbie K (2007) Nanomaterials and nanoparticles: sources and toxicity. Biointerphases 2(4):R17–R71. https://doi.org/10.1116/1.2815690

    Article  Google Scholar 

  48. ISO/TR 10993-22 (2017) Biological evaluation of medical devices Part 22: guidance on nanomaterials

  49. Chapman CAR, Chen H, Stamou M et al (2015) Nanoporous gold as a neural interface coating: effects of topography, surface chemistry, and feature size. ACS Appl Mater Interfaces 7(13):7093–7100. https://doi.org/10.1021/acsami.5b00410

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 51777115 and 81527901), the National Key Research and Development Program of China (Nos. 2016YFC0105502 and 2016YFC0105900), Tsinghua University Initiative Scientific Research Program and Major Achievements Transformation Project of Beijing’s College.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, all authors; Methodology, LZL and CQJ; Investigation, LZL; Writing-original draft, LZL; Writing-review & editing, all authors; Funding acquisition, CQJ and LML; Supervision, CQJ and LML.

Corresponding authors

Correspondence to Changqing Jiang or Luming Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This study does not contain any studies with human or animal subjects performed by any of the authors.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (DOCX 92 KB)

Supplementary file 2 (MP4 3624 KB)

Supplementary file 3 (MP4 2780 KB)

Supplementary file 4 (MP4 3636 KB)

Supplementary file 5 (MP4 9096 KB)

Supplementary file 6 (MP4 3813 KB)

Supplementary file 7 (MP4 3018 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, L., Jiang, C. & Li, L. Hierarchical platinum–iridium neural electrodes structured by femtosecond laser for superwicking interface and superior charge storage capacity. Bio-des. Manuf. 5, 163–173 (2022). https://doi.org/10.1007/s42242-021-00160-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42242-021-00160-5

Keywords

Navigation