Skip to main content
Log in

Photosynthetic biomaterials: applications of photosynthesis in algae as oxygenerator in biomedical therapies

  • Review
  • Published:
Bio-Design and Manufacturing Aims and scope Submit manuscript

Abstract

For most organisms, molecular oxygen is indispensable for normal physiological metabolism; in humans, prolonged hypoxia in tissues can induce many diseases, exemplified by cardiovascular disease, chronic wounds, and tissue necrosis. Therefore, the oxygen in our environment is vital for life. As a main source of oxygen in the natural world that transforms light energy into chemical energy and oxygen, photosynthesis has been widely studied in scientific research and used in production of food, fuel, and medicine. In recent years, photosynthesis has become more closely involved in biomedicine and has been widely used in photodynamic therapy, tissue regeneration, transplantation, and in treatment of specific diseases. This review summarizes innovative applications of photosynthesis in biomedical research and highlights the theory and implications of clinical treatment for specific diseases.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

reproduced with permission from Ref. [73], and c, d reproduced with permission from Ref. [74]

Fig. 2

Reproduced with permission from Ref. [87]

Fig. 3

Reproduced with permission from Ref. [88]

Fig. 4

Reproduced with permission from Ref. [89]

Fig. 5

Reproduced with permission from Ref. [91]

Fig. 6
Fig. 7

Reproduced with permission from Ref. [94], b Reproduced with permission from Ref. [95], and c Reproduced with permission from Ref. [96]

Fig. 8

reproduced with permission from Ref. [97], c reproduced with permission from Ref. [100], and d reproduced with permission from Ref. [102]

Similar content being viewed by others

References

  1. Lyons TW, Reinhard CT, Planavsky NJ (2014) The rise of oxygen in Earth’s early ocean and atmosphere. Nature 506(7488):307–315. https://doi.org/10.1038/nature13068

    Article  Google Scholar 

  2. Ślesak I, Kula M, Ślesak H, Miszalski Z, Strzałka K (2019) How to define obligatory anaerobiosis? An evolutionary view on the antioxidant response system and the early stages of the evolution of life on Earth. Free Radic Biol Med 140:61–73. https://doi.org/10.1016/j.freeradbiomed.2019.03.004

    Article  Google Scholar 

  3. Schad M, Konhauser KO, Sánchez-Baracaldo P, Kappler A, Bryce C (2019) How did the evolution of oxygenic photosynthesis influence the temporal and spatial development of the microbial iron cycle on ancient Earth? Free Radic Biol Med 140:154–166. https://doi.org/10.1016/j.freeradbiomed.2019.07.014

    Article  Google Scholar 

  4. Johnson MP (2016) Photosynthesis. Essays Biochem 60(3):255–273. https://doi.org/10.1042/ebc20160016

    Article  Google Scholar 

  5. Sukhov V (2016) Electrical signals as mechanism of photosynthesis regulation in plants. Photosynth Res 130(1–3):373–387. https://doi.org/10.1007/s11120-016-0270-x

    Article  Google Scholar 

  6. Ueno Y, Aikawa S, Kondo A, Akimoto S (2019) Adaptation of light-harvesting functions of unicellular green algae to different light qualities. Photosynth Res 139(1–3):145–154. https://doi.org/10.1007/s11120-018-0523-y

    Article  Google Scholar 

  7. Tomimatsu H, Tang Y (2016) Effects of high CO2 levels on dynamic photosynthesis: carbon gain, mechanisms, and environmental interactions. J Plant Res 129(3):365–377. https://doi.org/10.1007/s10265-016-0817-0

    Article  Google Scholar 

  8. Kaiser E, Correa Galvis V, Armbruster U (2019) Efficient photosynthesis in dynamic light environments: a chloroplast’s perspective. Biochem J 476(19):2725–2741. https://doi.org/10.1042/bcj20190134

    Article  Google Scholar 

  9. Rodriguez PG, Felix FN, Woodley DT, Shim EK (2008) The role of oxygen in wound healing: a review of the literature. Dermatol Surg 34(9):1159–1169. https://doi.org/10.1111/j.1524-4725.2008.34254.x

    Article  Google Scholar 

  10. Yip WL (2015) Influence of oxygen on wound healing. Int Wound J 12(6):620–624. https://doi.org/10.1111/iwj.12324

    Article  MathSciNet  Google Scholar 

  11. Tejada S, Batle JM, Ferrer MD, Busquets-Cortés C, Monserrat-Mesquida M, Nabavi SM, Del Mar BM, Pons A, Sureda A (2019) Therapeutic effects of hyperbaric oxygen in the process of wound healing. Curr Pharm Des 25(15):1682–1693. https://doi.org/10.2174/1381612825666190703162648

    Article  Google Scholar 

  12. Chaillou T, Lanner JT (2016) Regulation of myogenesis and skeletal muscle regeneration: effects of oxygen levels on satellite cell activity. Faseb J 30(12):3929–3941. https://doi.org/10.1096/fj.201600757R

    Article  Google Scholar 

  13. Sammarco MC, Simkin J, Fassler D, Cammack AJ, Wilson A, Van Meter K, Muneoka K (2014) Endogenous bone regeneration is dependent upon a dynamic oxygen event. J Bone Miner Res 29(11):2336–2345. https://doi.org/10.1002/jbmr.2261

    Article  Google Scholar 

  14. Harrison BS, Eberli D, Lee SJ, Atala A, Yoo JJ (2007) Oxygen producing biomaterials for tissue regeneration. Biomaterials 28(31):4628–4634. https://doi.org/10.1016/j.biomaterials.2007.07.003

    Article  Google Scholar 

  15. Lu L, Liu M, Sun R, Zheng Y, Zhang P (2015) Myocardial infarction: symptoms and treatments. Cell Biochem Biophys 72(3):865–867. https://doi.org/10.1007/s12013-015-0553-4

    Article  Google Scholar 

  16. Boateng S, Sanborn T (2013) Acute myocardial infarction. Dis Mon 59(3):83–96. https://doi.org/10.1016/j.disamonth.2012.12.004

    Article  Google Scholar 

  17. Sepantafar M, Maheronnaghsh R, Mohammadi H, Rajabi-Zeleti S, Annabi N, Aghdami N, Baharvand H (2016) Stem cells and injectable hydrogels: synergistic therapeutics in myocardial repair. Biotechnol Adv 34(4):362–379. https://doi.org/10.1016/j.biotechadv.2016.03.003

    Article  Google Scholar 

  18. Shafei AE, Ali MA, Ghanem HG, Shehata AI, Abdelgawad AA, Handal HR, Talaat KA, Ashaal AE, El-Shal AS (2017) Mesenchymal stem cell therapy: a promising cell-based therapy for treatment of myocardial infarction. J Gene Med 19(12):e2995. https://doi.org/10.1002/jgm.2995

    Article  Google Scholar 

  19. Yu H, Lu K, Zhu J, Wang J (2017) Stem cell therapy for ischemic heart diseases. Br Med Bull 121(1):135–154. https://doi.org/10.1093/bmb/ldw059

    Article  Google Scholar 

  20. Li SN, Li P, Liu WH, Shang JJ, Qiu SL, Zhou MX, Liu HX (2019) Danhong injection enhances angiogenesis after myocardial infarction by activating MiR-126/ERK/VEGF pathway. Biomed Pharmacother 120:109538. https://doi.org/10.1016/j.biopha.2019.109538

    Article  Google Scholar 

  21. Heusch G (2019) Myocardial ischemia: lack of coronary blood flow, myocardial oxygen supply-demand imbalance, or what? Am J Physiol Heart Circ Physiol 316(6):H1439–H1446. https://doi.org/10.1152/ajpheart.00139.2019

    Article  Google Scholar 

  22. Nyström T, James SK, Lindahl B, Östlund O, Erlinge D, Herlitz J, Omerovic E, Mellbin L, Alfredsson J, Fröbert O, Jernberg T, Hofmann R (2019) Oxygen therapy in myocardial infarction patients with or without diabetes: a predefined subgroup analysis from the DETO2X-AMI trial. Diabetes Care 42(11):2032–2041. https://doi.org/10.2337/dc19-0590

    Article  Google Scholar 

  23. Darby IA, Hewitson TD (2016) Hypoxia in tissue repair and fibrosis. Cell Tissue Res 365(3):553–562. https://doi.org/10.1007/s00441-016-2461-3

    Article  Google Scholar 

  24. Guo Y, Tan J, Miao Y, Sun Z, Zhang Q (2019) Effects of microvesicles on cell apoptosis under hypoxia. Oxid Med Cell Longev 2019:5972152. https://doi.org/10.1155/2019/5972152

    Article  Google Scholar 

  25. Dilley RJ, Morrison WA (2014) Vascularisation to improve translational potential of tissue engineering systems for cardiac repair. Int J Biochem Cell Biol 56:38–46. https://doi.org/10.1016/j.biocel.2014.10.020

    Article  Google Scholar 

  26. Takahashi Y, Sekine K, Kin T, Takebe T, Taniguchi H (2018) Self-condensation culture enables vascularization of tissue fragments for efficient therapeutic transplantation. Cell Rep 23(6):1620–1629. https://doi.org/10.1016/j.celrep.2018.03.123

    Article  Google Scholar 

  27. Schmidt A, von Woedtke T, Vollmar B, Hasse S, Bekeschus S (2019) Nrf2 signaling and inflammation are key events in physical plasma-spurred wound healing. Theranostics 9(4):1066–1084. https://doi.org/10.7150/thno.29754

    Article  Google Scholar 

  28. Tandara AA, Mustoe TA (2004) Oxygen in wound healing–more than a nutrient. World J Surg 28(3):294–300. https://doi.org/10.1007/s00268-003-7400-2

    Article  Google Scholar 

  29. D’Alessandro S, Magnavacca A, Perego F, Fumagalli M, Sangiovanni E, Prato M, Dell’Agli M, Basilico N (2019) Effect of hypoxia on gene expression in cell populations involved in wound healing. Biomed Res Int 2019:2626374. https://doi.org/10.1155/2019/2626374

    Article  Google Scholar 

  30. Thangarajah H, Vial IN, Grogan RH, Yao D, Shi Y, Januszyk M, Galiano RD, Chang EI, Galvez MG, Glotzbach JP, Wong VW, Brownlee M, Gurtner GC (2010) HIF-1alpha dysfunction in diabetes. Cell Cycle 9(1):75–79. https://doi.org/10.4161/cc.9.1.10371

    Article  Google Scholar 

  31. Zhang D, Lv FL, Wang GH (2018) Effects of HIF-1α on diabetic retinopathy angiogenesis and VEGF expression. Eur Rev Med Pharmacol Sci 22(16):5071–5076. https://doi.org/10.26355/eurrev_201808_15699

    Article  Google Scholar 

  32. Lin CJ, Lan YM, Ou MQ, Ji LQ, Lin SD (2019) Expression of miR-217 and HIF-1α/VEGF pathway in patients with diabetic foot ulcer and its effect on angiogenesis of diabetic foot ulcer rats. J Endocrinol Invest 42(11):1307–1317. https://doi.org/10.1007/s40618-019-01053-2

    Article  Google Scholar 

  33. Lou D, Luo Y, Pang Q, Tan WQ, Ma L (2020) Gene-activated dermal equivalents to accelerate healing of diabetic chronic wounds by regulating inflammation and promoting angiogenesis. Bioact Mater 5(3):667–679. https://doi.org/10.1016/j.bioactmat.2020.04.018

    Article  Google Scholar 

  34. Thangarajah H, Yao D, Chang EI, Shi Y, Jazayeri L, Vial IN, Galiano RD, Du XL, Grogan R, Galvez MG, Januszyk M, Brownlee M, Gurtner GC (2009) The molecular basis for impaired hypoxia-induced VEGF expression in diabetic tissues. Proc Natl Acad Sci U S A 106(32):13505–13510. https://doi.org/10.1073/pnas.0906670106

    Article  Google Scholar 

  35. Melincovici CS, Boşca AB, Şuşman S, Mărginean M, Mihu C, Istrate M, Moldovan IM, Roman AL, Mihu CM (2018) Vascular endothelial growth factor (VEGF)—key factor in normal and pathological angiogenesis. Rom J Morphol Embryol 59(2):455–467

    Google Scholar 

  36. Matsumoto K, Ema M (2014) Roles of VEGF-A signalling in development, regeneration, and tumours. J Biochem 156(1):1–10. https://doi.org/10.1093/jb/mvu031

    Article  Google Scholar 

  37. Heyboer M 3rd, Sharma D, Santiago W, McCulloch N (2017) Hyperbaric oxygen therapy: side effects defined and quantified. Adv Wound Care (New Rochelle) 6(6):210–224. https://doi.org/10.1089/wound.2016.0718

    Article  Google Scholar 

  38. Kranke P, Bennett MH, Martyn-St James M, Schnabel A, Debus SE, Weibel S (2015) Hyperbaric oxygen therapy for chronic wounds. Cochrane Database Syst Rev 2015(6):Cd004123. https://doi.org/10.1002/14651858.CD004123.pub4

    Article  Google Scholar 

  39. Dissemond J, Kröger K, Storck M, Risse A, Engels P (2015) Topical oxygen wound therapies for chronic wounds: a review. J Wound Care 24(2):53–54, 56–60, 62–53. https://doi.org/10.12968/jowc.2015.24.2.53

  40. Mutluoglu M, Cakkalkurt A, Uzun G, Aktas S (2014) Topical oxygen for chronic wounds: a PRO/CON debate. J Am Coll Clin Wound Spec 5(3):61–65. https://doi.org/10.1016/j.jccw.2014.12.003

    Article  Google Scholar 

  41. Roe DF, Gibbins BL, Ladizinsky DA (2010) Topical dissolved oxygen penetrates skin: model and method. J Surg Res 159(1):e29-36. https://doi.org/10.1016/j.jss.2009.10.039

    Article  Google Scholar 

  42. Graham K, Unger E (2018) Overcoming tumor hypoxia as a barrier to radiotherapy, chemotherapy and immunotherapy in cancer treatment. Int J Nanomedicine 13:6049–6058. https://doi.org/10.2147/ijn.S140462

    Article  Google Scholar 

  43. Adrian G, Konradsson E, Lempart M, Bäck S, Ceberg C, Petersson K (2020) The FLASH effect depends on oxygen concentration. Br J Radiol 93(1106):20190702. https://doi.org/10.1259/bjr.20190702

    Article  Google Scholar 

  44. Pryor L, Gordon CR, Swanson EW, Reish RG, Horton-Beeman K, Cohen SR (2011) Dermaplaning, topical oxygen, and photodynamic therapy: a systematic review of the literature. Aesthetic Plast Surg 35(6):1151–1159. https://doi.org/10.1007/s00266-011-9730-z

    Article  Google Scholar 

  45. Grossweiner LI (1995) Photodynamic therapy. J Laser Appl 7(1):51–57. https://doi.org/10.2351/1.4745372

    Article  Google Scholar 

  46. Song R, Hu D, Chung HY, Sheng Z, Yao S (2018) Lipid-polymer bilaminar oxygen nanobubbles for enhanced photodynamic therapy of cancer. ACS Appl Mater Interfaces 10(43):36805–36813. https://doi.org/10.1021/acsami.8b15293

    Article  Google Scholar 

  47. Agostinis P, Berg K, Cengel KA, Foster TH, Girotti AW, Gollnick SO, Hahn SM, Hamblin MR, Juzeniene A, Kessel D, Korbelik M, Moan J, Mroz P, Nowis D, Piette J, Wilson BC, Golab J (2011) Photodynamic therapy of cancer: an update. CA Cancer J Clin 61(4):250–281. https://doi.org/10.3322/caac.20114

    Article  Google Scholar 

  48. Chen Q, Feng L, Liu J, Zhu W, Dong Z, Wu Y, Liu Z (2016) Intelligent albumin–MnO2 nanoparticles as pH-/H2O2-responsive dissociable nanocarriers to modulate tumor hypoxia for effective combination therapy. Adv Mater 28(33):7129–7136

    Article  Google Scholar 

  49. Kim J, Cho HR, Jeon H, Kim D, Song C, Lee N, Choi SH, Hyeon T (2017) Continuous O2-evolving MnFe2O4 nanoparticle-anchored mesoporous silica nanoparticles for efficient photodynamic therapy in hypoxic cancer. J Am Chem Soc 139(32):10992–10995

    Article  Google Scholar 

  50. Cheng H, Zhu J, Li S, Zeng J, Lei Q, Chen K, Zhang C, Zhang X (2016) An O2 self-sufficient biomimetic nanoplatform for highly specific and efficient photodynamic therapy. Adv Func Mater 26(43):7847–7860

    Article  Google Scholar 

  51. Zheng DW, Li B, Li CX, Fan JX, Lei Q, Li C, Xu Z, Zhang XZ (2016) Carbon-dot-decorated carbon nitride nanoparticles for enhanced photodynamic therapy against hypoxic tumor via water splitting. ACS Nano 10(9):8715–8722. https://doi.org/10.1021/acsnano.6b04156

    Article  Google Scholar 

  52. Yang D, Yang G, Sun Q, Gai S, He F, Dai Y, Zhong C, Yang P (2018) Carbon-dot-decorated TiO2 nanotubes toward photodynamic therapy based on water-splitting mechanism. Adv Healthc Mater 7(10):e1800042. https://doi.org/10.1002/adhm.201800042

    Article  Google Scholar 

  53. Li RQ, Zhang C, Xie BR, Yu WY, Qiu WX, Cheng H, Zhang XZ (2019) A two-photon excited O2-evolving nanocomposite for efficient photodynamic therapy against hypoxic tumor. Biomaterials 194:84–93. https://doi.org/10.1016/j.biomaterials.2018.12.017

    Article  Google Scholar 

  54. Liu W, Liu T, Zou M, Yu W, Li C, He Z, Zhang M, Liu M, Li Z, Feng J (2018) Aggressive man-made red blood cells for hypoxia-resistant photodynamic therapy. Adv Mater 30(35):1802006

    Article  Google Scholar 

  55. Lee CJ, Gardiner BS, Evans RG, Smith DW (2018) A model of oxygen transport in the rat renal medulla. Am J Physiol Renal Physiol 315(6):F1787–F1811. https://doi.org/10.1152/ajprenal.00363.2018

    Article  Google Scholar 

  56. Fan Y, Zhou T, Cui P, He Y, Chang X, Xing L, Jiang H (2019) Modulation of intracellular oxygen pressure by dual-drug nanoparticles to enhance photodynamic therapy. Adv Funct Mater 29(10):1806708

    Article  Google Scholar 

  57. Wilhelm S, Tavares AJ, Dai Q, Ohta S, Audet J, Dvorak HF, Chan WCW (2016) Analysis of nanoparticle delivery to tumours. Nat Rev Mater 1(5):16014

    Article  Google Scholar 

  58. Szatrowski TP, Nathan C (1991) Production of large amounts of hydrogen peroxide by human tumor cells. Cancer Res 51(3):794–798

    Google Scholar 

  59. Panahi Y, Darvishi B, Jowzi N, Beiraghdar F, Sahebkar A (2016) Chlorella vulgaris: a multifunctional dietary supplement with diverse medicinal properties. Curr Pharm Des 22(2):164–173. https://doi.org/10.2174/1381612822666151112145226

    Article  Google Scholar 

  60. Kraft K, Alum A, Abbaszadegan M (2020) Environmental algal phage isolates and their impact on production potential for food and biofuel applications. J Appl Microbiol 128(1):182–190. https://doi.org/10.1111/jam.14487

    Article  Google Scholar 

  61. Jeffryes C, Agathos SN, Rorrer G (2015) Biogenic nanomaterials from photosynthetic microorganisms. Curr Opin Biotechnol 33:23–31. https://doi.org/10.1016/j.copbio.2014.10.005

    Article  Google Scholar 

  62. Soo RM, Hemp J, Hugenholtz P (2019) Evolution of photosynthesis and aerobic respiration in the cyanobacteria. Free Radic Biol Med 140:200–205. https://doi.org/10.1016/j.freeradbiomed.2019.03.029

    Article  Google Scholar 

  63. Nickelsen K (2017) The organism strikes back: Chlorella algae and their impact on photosynthesis research, 1920s–1960s. Hist Philos Life Sci 39(2):9. https://doi.org/10.1007/s40656-017-0137-2

    Article  Google Scholar 

  64. Kones R (2011) Oxygen therapy for acute myocardial infarction-then and now. A century of uncertainty. Am J Med 124(11):1000–1005. https://doi.org/10.1016/j.amjmed.2011.04.034

    Article  Google Scholar 

  65. Zgheib C, Hodges MM, Allukian MW, Xu J, Spiller KL, Gorman JH 3rd, Gorman RC, Liechty KW (2017) Cardiac progenitor cell recruitment drives fetal cardiac regeneration by enhanced angiogenesis. Ann Thorac Surg 104(6):1968–1975. https://doi.org/10.1016/j.athoracsur.2017.05.040

    Article  Google Scholar 

  66. Chung HJ, Kim JT, Kim HJ, Kyung HW, Katila P, Lee JH, Yang TH, Yang YI, Lee SJ (2015) Epicardial delivery of VEGF and cardiac stem cells guided by 3-dimensional PLLA mat enhancing cardiac regeneration and angiogenesis in acute myocardial infarction. J Contr Release 205:218–230. https://doi.org/10.1016/j.jconrel.2015.02.013

    Article  Google Scholar 

  67. Shi H, Xue T, Yang Y, Jiang C, Huang S, Yang Q, Lei D, You Z, Jin T, Wu F, Zhao Q, Ye X (2020) Microneedle-mediated gene delivery for the treatment of ischemic myocardial disease. Sci Adv 6(25):eaaz621. https://doi.org/10.1126/sciadv.aaz3621

    Article  Google Scholar 

  68. Ishida O, Hagino I, Nagaya N, Shimizu T, Okano T, Sawa Y, Mori H, Yagihara T (2015) Adipose-derived stem cell sheet transplantation therapy in a porcine model of chronic heart failure. Transl Res 165(5):631–639. https://doi.org/10.1016/j.trsl.2014.12.005

    Article  Google Scholar 

  69. Haraguchi Y, Shimizu T, Matsuura K, Sekine H, Tanaka N, Tadakuma K, Yamato M, Kaneko M, Okano T (2014) Cell sheet technology for cardiac tissue engineering. Methods Mol Biol 1181:139–155. https://doi.org/10.1007/978-1-4939-1047-2_13

    Article  Google Scholar 

  70. Chang D, Shimizu T, Haraguchi Y, Gao S, Sakaguchi K, Umezu M, Yamato M, Liu Z, Okano T (2015) Time course of cell sheet adhesion to porcine heart tissue after transplantation. PLoS ONE 10(10):e0137494. https://doi.org/10.1371/journal.pone.0137494

    Article  Google Scholar 

  71. Ahmed N, Gan L, Nagy A, Zheng J, Wang C, Kandel RA (2009) Cartilage tissue formation using redifferentiated passaged chondrocytes in vitro. Tissue Eng Part A 15(3):665–673. https://doi.org/10.1089/ten.tea.2008.0004

    Article  Google Scholar 

  72. Shimizu T, Sekine H, Yang J, Isoi Y, Yamato M, Kikuchi A, Kobayashi E, Okano T (2006) Polysurgery of cell sheet grafts overcomes diffusion limits to produce thick, vascularized myocardial tissues. Faseb J 20(6):708–710. https://doi.org/10.1096/fj.05-4715fje

    Article  Google Scholar 

  73. Haraguchi Y, Kagawa Y, Sakaguchi K, Matsuura K, Shimizu T, Okano T (2017) Thicker three-dimensional tissue from a “symbiotic recycling system” combining mammalian cells and algae. Sci Rep 7:41594. https://doi.org/10.1038/srep41594

    Article  Google Scholar 

  74. Cohen JE, Goldstone AB, Paulsen MJ, Shudo Y, Steele AN, Edwards BB, Patel J, Macarthur JW, Hopkins MS, Burnett C (2017) An innovative biologic system for photon-powered myocardium in the ischemic heart. Sci Adv 3(6):e1603078. https://doi.org/10.1126/sciadv.1603078

    Article  Google Scholar 

  75. Brodin NP, Guha C, Tomé WA (2015) Photodynamic therapy and its role in combined modality anticancer treatment. Technol Cancer Res Treat 14(4):355–368. https://doi.org/10.1177/1533034614556192

    Article  Google Scholar 

  76. Kwiatkowski S, Knap B, Przystupski D, Saczko J, Kędzierska E, Knap-Czop K, Kotlińska J, Michel O, Kotowski K, Kulbacka J (2018) Photodynamic therapy—mechanisms, photosensitizers and combinations. Biomed Pharmacother 106:1098–1107. https://doi.org/10.1016/j.biopha.2018.07.049

    Article  Google Scholar 

  77. Deni E, Zamarrón A, Bonaccorsi P, Carmen Carreño M, Juarranz Á, Puntoriero F, Sciortino MT, Ribagorda M, Barattucci A (2016) Glucose-functionalized amino-OPEs as biocompatible photosensitizers in PDT. Eur J Med Chem 111:58–71. https://doi.org/10.1016/j.ejmech.2016.01.041

    Article  Google Scholar 

  78. Gomes A, Neves M, Cavaleiro JAS (2018) Cancer, photodynamic therapy and porphyrin-type derivatives. An Acad Bras Cienc 90(1 Suppl 2):993–1026. https://doi.org/10.1590/0001-3765201820170811

    Article  Google Scholar 

  79. Jin CS, Lovell JF, Chen J, Zheng G (2013) Ablation of hypoxic tumors with dose-equivalent photothermal, but not photodynamic, therapy using a nanostructured porphyrin assembly. ACS Nano 7(3):2541–2550. https://doi.org/10.1021/nn3058642

    Article  Google Scholar 

  80. Rieffel J, Chen F, Kim J, Chen G, Shao W, Shao S, Chitgupi U, Hernandez R, Graves SA, Nickles RJ, Prasad PN, Kim C, Cai W, Lovell JF (2015) Hexamodal imaging with porphyrin-phospholipid-coated upconversion nanoparticles. Adv Mater 27(10):1785–1790. https://doi.org/10.1002/adma.201404739

    Article  Google Scholar 

  81. Xue X, Lindstrom A, Li Y (2019) Porphyrin-based nanomedicines for cancer treatment. Bioconjug Chem 30(6):1585–1603. https://doi.org/10.1021/acs.bioconjchem.9b00231

    Article  Google Scholar 

  82. Song G, Cheng L, Chao Y, Yang K, Liu Z (2017) Emerging nanotechnology and advanced materials for cancer radiation therapy. Adv Mater. https://doi.org/10.1002/adma.201700996

    Article  Google Scholar 

  83. Yang G, Xu L, Chao Y, Xu J, Sun X, Wu Y, Peng R, Liu Z (2017) Hollow MnO2 as a tumor-microenvironment-responsive biodegradable nano-platform for combination therapy favoring antitumor immune responses. Nat Commun 8(1):902. https://doi.org/10.1038/s41467-017-01050-0

    Article  Google Scholar 

  84. Liu Y, Zhen W, Jin L, Zhang S, Sun G, Zhang T, Xu X, Song S, Wang Y, Liu J, Zhang H (2018) All-in-one theranostic nanoagent with enhanced reactive oxygen species generation and modulating tumor microenvironment ability for effective tumor eradication. ACS Nano 12(5):4886–4893. https://doi.org/10.1021/acsnano.8b01893

    Article  Google Scholar 

  85. Dhani N, Fyles A, Hedley D, Milosevic M (2015) The clinical significance of hypoxia in human cancers. Semin Nucl Med 45(2):110–121. https://doi.org/10.1053/j.semnuclmed.2014.11.002

    Article  Google Scholar 

  86. Jia Q, Ge J, Liu W, Zheng X, Chen S, Wen Y, Zhang H, Wang P (2018) A magnetofluorescent carbon dot assembly as an acidic H2O2 -driven oxygenerator to regulate tumor hypoxia for simultaneous bimodal imaging and enhanced photodynamic therapy. Adv Mater 30(13):e1706090. https://doi.org/10.1002/adma.201706090

    Article  Google Scholar 

  87. Zhou TJ, Xing L, Fan YT, Cui PF, Jiang HL (2019) Light triggered oxygen-affording engines for repeated hypoxia-resistant photodynamic therapy. J Contr Release 307:44–54. https://doi.org/10.1016/j.jconrel.2019.06.016

    Article  Google Scholar 

  88. Lee C, Lim K, Kim SS, Thien LX, Lee ES, Oh KT, Choi H, Youn YS (2019) Chlorella-gold nanorods hydrogels generating photosynthesis-derived oxygen and mild heat for the treatment of hypoxic breast cancer. J Contr Release 294:77–90

    Article  Google Scholar 

  89. Zhong D, Li W, Qi Y, He J, Zhou M (2020) Photosynthetic biohybrid nanoswimmers system to alleviate tumor hypoxia for FL/PA/MR imaging‐guided enhanced radio‐photodynamic synergetic therapy. Adv Funct Mater:1910395

  90. Zhong D, Zhang D, Xie T, Zhou M (2020) Biodegradable microalgae-based carriers for targeted delivery and imaging-guided therapy toward lung metastasis of breast cancer. Small 16(20):e2000819. https://doi.org/10.1002/smll.202000819

    Article  Google Scholar 

  91. Qiao Y, Yang F, Xie T, Du Z, Zhong D, Qi Y, Li Y, Li W, Lu Z, Rao J, Sun Y, Zhou M (2020) Engineered algae: a novel oxygen-generating system for effective treatment of hypoxic cancer. Sci Adv 6(21):eaba5996. https://doi.org/10.1126/sciadv.aba5996

    Article  Google Scholar 

  92. Liu L, He H, Luo Z, Zhou H, Cai L (2020) In situ photocatalyzed oxygen generation with photosynthetic bacteria to enable robust immunogenic photodynamic therapy in triple-negative breast cancer. Adv Funct Mater 30(10):1910176. https://doi.org/10.1002/adfm.201910176

    Article  Google Scholar 

  93. Zheng D, Li B, Xu L, Zhang Q, Fan J, Li C, Zhang X (2018) Normalizing tumor microenvironment based on photosynthetic abiotic/biotic nanoparticles. ACS Nano 12(6):6218–6227

    Article  Google Scholar 

  94. Hopfner U, Schenck TL, Chávez MN, Machens HG, Bohne AV, Nickelsen J, Giunta RE, Egaña JT (2014) Development of photosynthetic biomaterials for in vitro tissue engineering. Acta Biomater 10(6):2712–2717. https://doi.org/10.1016/j.actbio.2013.12.055

    Article  Google Scholar 

  95. Schenck TL, Hopfner U, Chávez MN, Machens HG, Somlai-Schweiger I, Giunta RE, Bohne AV, Nickelsen J, Allende ML, Egaña JT (2015) Photosynthetic biomaterials: a pathway towards autotrophic tissue engineering. Acta Biomater 15:39–47. https://doi.org/10.1016/j.actbio.2014.12.012

    Article  Google Scholar 

  96. Chávez MN, Schenck TL, Hopfner U, Centeno-Cerdas C, Somlai-Schweiger I, Schwarz C, Machens HG, Heikenwalder M, Bono MR, Allende ML, Nickelsen J, Egaña JT (2016) Towards autotrophic tissue engineering: photosynthetic gene therapy for regeneration. Biomaterials 75:25–36. https://doi.org/10.1016/j.biomaterials.2015.10.014

    Article  Google Scholar 

  97. Chen H, Cheng Y, Tian J, Yang P, Zhang X, Chen Y, Hu Y, Wu J (2020) Dissolved oxygen from microalgae-gel patch promotes chronic wound healing in diabetes. Sci Adv 6(20):eaba4311. https://doi.org/10.1126/sciadv.aba4311

    Article  Google Scholar 

  98. Ekser B, Cooper DKC, Tector AJ (2015) The need for xenotransplantation as a source of organs and cells for clinical transplantation. Int J Surg 23(Pt B):199–204. https://doi.org/10.1016/j.ijsu.2015.06.066

    Article  Google Scholar 

  99. Bissolati M, Pindozzi F, Guarneri G, Adamenko O, Giannone F, Mazza M, Maggi G, Rosati R, Secchi A, Socci C (2019) Hypothermic machine perfusion as an alternative to biopsy assessment in transplantation of kidneys donated after cardiocirculatory death: a pilot study. Transplant Proc 51(9):2890–2898. https://doi.org/10.1016/j.transproceed.2019.02.069

    Article  Google Scholar 

  100. Evron Y, Zimermann B, Ludwig B, Barkai U, Colton CK, Weir GC, Arieli B, Maimon S, Shalev N, Yavriyants K, Goldman T, Gendler Z, Eizen L, Vardi P, Bloch K, Barthel A, Bornstein SR, Rotem A (2015) Oxygen supply by photosynthesis to an implantable islet cell device. Horm Metab Res 47(1):24–30. https://doi.org/10.1055/s-0034-1394375

    Article  Google Scholar 

  101. Bloch K, Papismedov E, Yavriyants K, Vorobeychik M, Beer S, Vardi P (2006) Photosynthetic oxygen generator for bioartificial pancreas. Tissue Eng 12(2):337–344. https://doi.org/10.1089/ten.2006.12.337

    Article  Google Scholar 

  102. Yamaoka I, Kikuchi T, Arata T, Kobayashi E (2012) Organ preservation using a photosynthetic solution. Transplant Res 1(1):2. https://doi.org/10.1186/2047-1440-1-2

    Article  Google Scholar 

  103. Williams KM, Wang H, Paulsen MJ, Thakore AD, Rieck M, Lucian HJ, Grady F, Hironaka CE, Chien AJ, Farry JM, Shin HS, Jaatinen KJ, Eskandari A, Stapleton LM, Steele AN, Cohen JE, Woo YJ (2020) Safety of photosynthetic synechococcus elongatus for in vivo cyanobacteria-mammalian symbiotic therapeutics. Microb Biotechnol 13(6):1780–1792. https://doi.org/10.1111/1751-7915.13596

    Article  Google Scholar 

  104. Alvarez M, Reynaert N, Chávez MN, Aedo G, Araya F, Hopfner U, Fernández J, Allende ML, Egaña JT (2015) Generation of viable plant-vertebrate chimeras. PLoS ONE 10(6):e0130295. https://doi.org/10.1371/journal.pone.0130295

    Article  Google Scholar 

  105. Agapakis CM, Niederholtmeyer H, Noche RR, Lieberman TD, Megason SG, Way JC, Silver PA (2011) Towards a synthetic chloroplast. PLoS ONE 6(4):e18877. https://doi.org/10.1371/journal.pone.0018877

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Grants from the National Natural Science Foundation of China (Nos. 81671918 and 81372072), the Zhejiang Provincial Medical and Healthy Science Foundation of China (Nos. 2021452516, 2019ZD028, and 2018KY874), and the National Key Research Program of China (No. 2016YFC1101004).

Author information

Authors and Affiliations

Authors

Contributions

YW investigated and summarized the literature, and wrote the original draft. YNX, TZ, QQF, MYJ, and XFW conducted deep review and editing. ZCW, YYH, and WYZ helped revise the paper and gave some advice. DL and WQT supervised and applied for funds. All authors have read and approved this manuscript for publication.

Corresponding authors

Correspondence to Dong Lou or Wei-Qiang Tan.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Ethical approval

This study does not contain any studies with human or animal subjects performed by any of the authors.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3374 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Xue, Y., Zhang, T. et al. Photosynthetic biomaterials: applications of photosynthesis in algae as oxygenerator in biomedical therapies. Bio-des. Manuf. 4, 596–611 (2021). https://doi.org/10.1007/s42242-021-00129-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42242-021-00129-4

Keywords

Navigation