Abstract
Over millions of years of evolution, nature has created organisms with overwhelming performances due to their unique materials and structures, providing us with valuable inspirations for the development of next-generation biomedical devices. As a promising new technology, 3D printing enables the fabrication of multiscale, multi-material, and multi-functional three-dimensional (3D) biomimetic materials and structures with high precision and great flexibility. The manufacturing challenges of biomedical devices with advanced biomimetic materials and structures for various applications were overcome with the flourishing development of 3D printing technologies. In this paper, the state-of-the-art additive manufacturing of biomimetic materials and structures in the field of biomedical engineering were overviewed. Various kinds of biomedical applications, including implants, lab-on-chip, medicine, microvascular network, and artificial organs and tissues, were respectively discussed. The technical challenges and limitations of biomimetic additive manufacturing in biomedical applications were further investigated, and the potential solutions and intriguing future technological developments of biomimetic 3D printing of biomedical devices were highlighted.
This is a preview of subscription content, log in to check access.












References
- 1.
Poukens J, Laeven P, Beerens M, Nijenhuis G, Sloten JV, Stoelinga P et al (2008) A classification of cranial implants based on the degree of difficulty in computer design and manufacture. Int J Med Rob Comput Assisted Surg 4(1):46–50. https://doi.org/10.1002/rcs.171
- 2.
Yang Y, Song X, Li X, Chen Z, Zhou C, Zhou Q et al (2018) Recent progress in biomimetic additive manufacturing technology: from materials to functional structures. Adv Mater. https://doi.org/10.1002/adma.201706539
- 3.
Leung Y-S, Kwok T-H, Li X, Yang Y, Wang CCL, Chen Y (2019) Challenges and status on design and computation for emerging additive manufacturing technologies. J Comput Inf Sci Eng doi 10(1115/1):4041913
- 4.
Yang Y, Li X, Zheng X, Chen Z, Zhou Q, Chen Y (2018) 3D-printed biomimetic super-hydrophobic structure for microdroplet manipulation and oil/water separation. Adv Mater 30(9):1704912. https://doi.org/10.1002/adma.201704912
- 5.
Li X, Yang Y, Liu L, Chen Y, Chu M, Sun H et al (2020) 3D-printed cactus-inspired spine structures for highly efficient water collection. Adv Mater Interfaces 7(3):1901752. https://doi.org/10.1002/admi.201901752
- 6.
Li X, Yang Y, Xie B, Chu M, Sun H, Hao S et al (2019) 3D printing of flexible liquid sensor based on swelling behavior of hydrogel with carbon nanotubes. Adv Mater Technol 4(2):1800476. https://doi.org/10.1002/admt.201800476
- 7.
Yang Y, Li X, Chu M, Sun H, Jin J, Yu K et al (2019) Electrically assisted 3D printing of nacre-inspired structures with self-sensing capability. Sci Adv 5(4):eaau9490. https://doi.org/10.1126/sciadv.aau9490
- 8.
Ma PX (2008) Biomimetic materials for tissue engineering. Adv Drug Del Rev 60(2):184–198. https://doi.org/10.1016/j.addr.2007.08.041
- 9.
Aizenberg J, Fratzl P (2009) Biological and biomimetic materials. Adv Mater 21(4):387–388. https://doi.org/10.1002/adma.200803699
- 10.
Fisher OZ, Khademhosseini A, Langer R, Peppas NA (2010) Bioinspired materials for controlling stem cell fate. Acc Chem Res 43(3):419–428. https://doi.org/10.1021/ar900226q
- 11.
Kushner AM, Guan Z (2011) Modular design in natural and biomimetic soft materials. Angew Chem Int Ed 50(39):9026–9057. https://doi.org/10.1002/anie.201006496
- 12.
Holzapfel BM, Reichert JC, Schantz J-T, Gbureck U, Rackwitz L, Noeth U et al (2013) How smart do biomaterials need to be? A translational science and clinical point of view. Adv Drug Del Rev 65(4):581–603. https://doi.org/10.1016/j.addr.2012.07.009
- 13.
Li X, Yuan Y, Liu L, Leung Y-S, Chen Y, Guo Y et al (2020) 3D printing of hydroxyapatite/tricalcium phosphate scaffold with hierarchical porous structure for bone regeneration. Bio-Des Manuf 3(1):15–29. https://doi.org/10.1007/s42242-019-00056-5
- 14.
Huang G, Li F, Zhao X, Ma Y, Li Y, Lin M et al (2017) Functional and biomimetic materials for engineering of the three-dimensional cell microenvironment. Chem Rev 117(20):12764–12850. https://doi.org/10.1021/acs.chemrev.7b00094
- 15.
Balakrishnan B, Banerjee R (2011) Biopolymer-based hydrogels for cartilage tissue engineering. Chem Rev 111(8):4453–4474. https://doi.org/10.1021/cr100123h
- 16.
Sands RW, Mooney DJ (2007) Polymers to direct cell fate by controlling the microenvironment. Curr Opin Biotechnol 18(5):448–453. https://doi.org/10.1016/j.copbio.2007.10.004
- 17.
Edalat F, Sheu I, Manoucheri S, Khademhosseini A (2012) Material strategies for creating artificial cell-instructive niches. Curr Opin Biotechnol 23(5):820–825. https://doi.org/10.1016/j.copbio.2012.05.007
- 18.
Yi H-G, Lee H, Cho D-W (2017) 3D printing of organs-on-chips. Bioengineering (Basel) 4(1):10. https://doi.org/10.3390/bioengineering4010010
- 19.
Hoffman AS (2012) Hydrogels for biomedical applications. Adv Drug Del Rev 64:18–23. https://doi.org/10.1016/j.addr.2012.09.010
- 20.
Caliari SR, Burdick JA (2016) A practical guide to hydrogels for cell culture. Nat Methods 13(5):405–414. https://doi.org/10.1038/nmeth.3839
- 21.
DeForest CA, Anseth KS (2012) Advances in bioactive hydrogels to probe and direct cell fate. In: Prausnitz JM (eds) Annual review of chemical and biomolecular engineering, vol 3, pp 421–444
- 22.
Faulk DM, Johnson SA, Zhang L, Badylak SF (2014) Role of the extracellular matrix in whole organ engineering. J Cell Physiol 229(8):984–989. https://doi.org/10.1002/jcp.24532
- 23.
Aamodt JM, Grainger DW (2016) Extracellular matrix-based biomaterial scaffolds and the host response. Biomaterials 86:68–82. https://doi.org/10.1016/j.biomaterials.2016.02.003
- 24.
Hong S, Sycks D, Chan HF, Lin S, Lopez GP, Guilak F et al (2015) 3D printing of highly stretchable and tough hydrogels into complex, cellularized structures. Adv Mater 27(27):4035–4040. https://doi.org/10.1002/adma.201501099
- 25.
Yi H-G, Kang KS, Hong JM, Jang J, Park MN, Jeong YH et al (2016) Effects of electromagnetic field frequencies on chondrocytes in 3D cell-printed composite constructs. J Biomed Mater Res A 104(7):1797–1804. https://doi.org/10.1002/jbm.a.35714
- 26.
Lozano R, Stevens L, Thompson BC, Gilmore KJ, Gorkin R III, Stewart EM et al (2015) 3D printing of layered brain-like structures using peptide modified gellan gum substrates. Biomaterials 67:264–273. https://doi.org/10.1016/j.biomaterials.2015.07.022
- 27.
Zander NE, Dong H, Steele J, Grant JT (2014) Metal cation cross-linked nanocellulose hydrogels as tissue engineering substrates. ACS Appl Mater Interfaces 6(21):18502–18510. https://doi.org/10.1021/am506007z
- 28.
Zhu J, Kaufman LJ (2014) Collagen I self-assembly: revealing the developing structures that generate turbidity. Biophys J 106(8):1822–1831. https://doi.org/10.1016/j.bpj.2014.03.011
- 29.
Miao Z, Lu Z, Wu H, Liu H, Li M, Lei D et al (2018) Collagen, agarose, alginate, and Matrigel hydrogels as cell substrates for culture of chondrocytes in vitro: a comparative study. J Cell Biochem 119(10):7924–7933. https://doi.org/10.1002/jcb.26411
- 30.
Xiong R, Chai W, Huang Y (2019) Laser printing-enabled direct creation of cellular heterogeneity in lab-on-a-chip devices. Lab Chip 19(9):1644–1656. https://doi.org/10.1039/c9lc00117d
- 31.
Martinsen A, Skjakbraek G, Smidsrod O (1989) Alginate as immobilization material. 1. Correlation between chemical and physical-properties of alginate gel beads. Biotechnol Bioeng 33(1):79–89. https://doi.org/10.1002/bit.260330111
- 32.
Augst AD, Kong HJ, Mooney DJ (2006) Alginate hydrogels as biomaterials. Macromol Biosci 6(8):623–633. https://doi.org/10.1002/mabi.200600069
- 33.
Freeman I, Kedem A, Cohen S (2008) The effect of sulfation of alginate hydrogels on the specific binding and controlled release of heparin-binding proteins. Biomaterials 29(22):3260–3268. https://doi.org/10.1016/j.biomaterials.2008.04.025
- 34.
Madl CM, Mehta M, Duda GN, Heilshorn SC, Mooney DJ (2014) Presentation of BMP-2 mimicking peptides in 3D hydrogels directs cell fate commitment in osteoblasts and mesenchymal stem cells. Biomacromolecules 15(2):445–455. https://doi.org/10.1021/bm401726u
- 35.
Boontheekul T, Kong HJ, Mooney DJ (2005) Controlling alginate gel degradation utilizing partial oxidation and bimodal molecular weight distribution. Biomaterials 26(15):2455–2465. https://doi.org/10.1016/j.biomaterials.2004.06.044
- 36.
Rebelo R, Fernandes M, Fangueiro R (2017) Biopolymers in medical implants: a brief review. In: Fangueiro R (eds) 3rd international conference on natural fibers: advanced materials for a greener world. ICNF 2017, pp 236–243
- 37.
Naumenko EA, Guryanov ID, Yendluri R, Lvov YM, Fakhrullin RF (2016) Clay nanotube-biopolymer composite scaffolds for tissue engineering. Nanoscale 8(13):7257–7271. https://doi.org/10.1039/c6nr00641h
- 38.
Stoppel WL, Ghezzi CE, McNamara SL, Black LD III, Kaplan DL (2015) Clinical applications of naturally derived biopolymer-based scaffolds for regenerative medicine. Ann Biomed Eng 43(3):657–680. https://doi.org/10.1007/s10439-014-1206-2
- 39.
Jiang Y, Wang Y, Wang H, Zhou L, Gao J, Zhang Y et al (2015) Facile immobilization of enzyme on three dimensionally ordered macroporous silica via a biomimetic coating. New J Chem 39(2):978–984. https://doi.org/10.1039/c4nj01947d
- 40.
Singh D (2018) Investigations on biomimetic PLA scaffold fabricated by fused deposition modelling [D]
- 41.
Lih E, Park KW, Chun SY, Kim H, Kwon TG, Joung YK et al (2016) Biomimetic porous PLGA scaffolds incorporating decellularized extracellular matrix for kidney tissue regeneration. ACS Appl Mater Interfaces 8(33):21145–21154. https://doi.org/10.1021/acsami.6b03771
- 42.
Zhang K, Fu Q, Yoo J, Chen X, Chandra P, Mo X et al (2017) 3D bioprinting of urethra with PCL/PLCL blend and dual autologous cells in fibrin hydrogel: an in vitro evaluation of biomimetic mechanical property and cell growth environment. Acta Biomater 50:154–164. https://doi.org/10.1016/j.actbio.2016.12.008
- 43.
Li X, Yang Y, Chen Y (2017) Bio-inspired micro-scale texture fabrication based on immersed surface accumulation process. In: World congress on micro and nano manufacturing conference, pp 33–36
- 44.
Li X, Shan W, Yang Y, Joralmon D, Zhu Y, Chen Y, Yuan Y, Xu H, Rong J, Dai R, Nian Q, Chai Y, Chen Y (2020) Limpet teeth inspired painless microneedles fabricated by magnetic field assisted 3D printing. Adv Funct Mater. https://doi.org/10.1002/adfm.202003725
- 45.
Price PM, Mahmoud WE, Al-Ghamdi AA, Bronstein LM (2018) Magnetic drug delivery: where the field is going. Front Chem https://doi.org/10.3389/fchem.2018.00619
- 46.
Ikada Y (2006) Challenges in tissue engineering. J R Soc Interface 3(10):589–601. https://doi.org/10.1098/rsif.2006.0124
- 47.
Ng YC, Berry JM, Butler M (1996) Optimization of physical parameters for cell attachment and growth on macroporous microcarriers. Biotechnol Bioeng 50(6):627–635. https://doi.org/10.1002/(sici)1097-0290(19960620)50:6%3c627:Aid-bit3%3e3.0.Co;2-m
- 48.
D. Anh-Vu, R. Smith, T. M. Acri, S. M. Geary, A. K. Salem, 3D printing technologies for 3D scaffold engineering, in: Y. Deng, J. Kuiper, Functional 3d Tissue Engineering Scaffolds: Materials, Technologies, and Applications, 2018, pp. 203-234
- 49.
Wang X, Jiang M, Zhou ZW, Gou JH, Hui D (2017) 3D printing of polymer matrix composites: a review and prospective. Compos Part B-Eng 110:442–458. https://doi.org/10.1016/j.compositesb.2016.11.034
- 50.
Zhao P, Gu H, Mi H, Rao C, Fu J, Turng L-S (2018) Fabrication of scaffolds in tissue engineering: a review. Front Mech Eng 13(1):107–119. https://doi.org/10.1007/s11465-018-0496-8
- 51.
Deville S, Saiz E, Tomsia AP (2006) Freeze casting of hydroxyapatite scaffolds for bone tissue engineering. Biomaterials 27(32):5480–5489. https://doi.org/10.1016/j.biomaterials.2006.06.028
- 52.
Desimone D, Li W, Roether JA, Schubert DW, Crovace MC, Rodrigues ACM et al (2013) Biosilicate (R)-gelatine bone scaffolds by the foam replica technique: development and characterization. Sci Technol Adv Mater 14(4):045008. https://doi.org/10.1088/1468-6996/14/4/045008
- 53.
Cai Q, Yang JA, Bei JZ, Wang SG (2002) A novel porous cells scaffold made of polylactide-dextran blend by combining phase-separation and particle-leaching techniques. Biomaterials 23(23):4483–4492. https://doi.org/10.1016/s0142-9612(02)00168-0
- 54.
Mi H-Y, Salick MR, Jing X, Jacques BR, Crone WC, Peng X-F et al (2013) Characterization of thermoplastic polyurethane/polylactic acid (TPU/PLA) tissue engineering scaffolds fabricated by microcellular injection molding. Mater Sci Eng C-Mater Biol Appl 33(8):4767–4776. https://doi.org/10.1016/j.msec.2013.07.037
- 55.
Sin D, Miao X, Liu G, Wei F, Chadwick G, Yan C et al (2010) Polyurethane (PU) scaffolds prepared by solvent casting/particulate leaching (SCPL) combined with centrifugation. Mater Sci Eng C Mater Biol Appl 30(1):78–85. https://doi.org/10.1016/j.msec.2009.09.002
- 56.
Lee J, Cuddihy MJ, Kotov NA (2008) Three-dimensional cell culture matrices: state of the art. Tissue Eng Part B-Rev 14(1):61–86. https://doi.org/10.1089/teb.2007.0150
- 57.
Sopyan I, Mel M, Ramesh S, Khalid KA (2007) Porous hydroxyapatite for artificial bone applications. Sci Technol Adv Mater 8(1–2):116–123. https://doi.org/10.1016/j.stam.2006.11.017
- 58.
Baji A, Wong SC, Srivatsan TS, Njus GO, Mathur G (2006) Processing methodologies for polycaprolactone–hydroxyapatite composites: a review. Mater Manuf Processes 21(2):211–218. https://doi.org/10.1081/amp-200068681
- 59.
Hwang YK, Jeong U, Cho EC (2008) Production of uniform-sized polymer core–shell microcapsules by coaxial electrospraying. Langmuir 24(6):2446–2451. https://doi.org/10.1021/la703546f
- 60.
Huang K, Hou J, Gu Z, Wu J (2019) Egg-white-/eggshell-based biomimetic hybrid hydrogels for bone regeneration. ACS Biomater Sci Eng 5(10):5384–5391. https://doi.org/10.1021/acsbiomaterials.9b00990
- 61.
Feng C, Zhang W, Deng C, Li G, Chang J, Zhang Z et al (2017) 3D printing of lotus root-like biomimetic materials for cell delivery and tissue regeneration. Adv Sci 4(12):1700401. https://doi.org/10.1002/advs.201700401
- 62.
Zhang M, Lin RC, Wang X, Xue JM, Deng CJ, Feng C et al (2020) 3D printing of Haversian bone-mimicking scaffolds for multicellular delivery in bone regeneration. Sci Adv 6(12):eaaz6725. https://doi.org/10.1126/sciadv.aaz6725
- 63.
Kim W, Kim M, Kim GH (2018) 3D-printed biomimetic scaffold simulating microfibril muscle structure. Adv Funct Mater 28(26):1800405. https://doi.org/10.1002/adfm.201800405
- 64.
Melchels FPW, Feijen J, Grijpma DW (2010) A review on stereolithography and its applications in biomedical engineering. Biomaterials 31(24):6121–6130. https://doi.org/10.1016/j.biomaterials.2010.04.050
- 65.
Koffler J, Zhu W, Qu X, Platoshyn O, Dulin JN, Brock J et al (2019) Biomimetic 3D-printed scaffolds for spinal cord injury repair. Nat Med 25(2):263. https://doi.org/10.1038/s41591-018-0296-z
- 66.
Li X, Baldacchin T, Song X, Chen Y (2016) Multi-scale additive manufacturing: an investigation on building objects with macro-, micro-and nano-scales features. In: The 11th international conference on micro manufacturing
- 67.
Li X, Chen Y (2017) Micro-scale feature fabrication using immersed surface accumulation. J Manuf Proces 28:531–540. https://doi.org/10.1016/j.jmapro.2017.04.022
- 68.
Li X, Chen Y (2018) Multi-scale 3D printing of bioinspired structures with functional surfaces. In: Proceedings of the international symposium on flexible automation. The Institute of Systems, Control and Information Engineers, pp 13–20
- 69.
Jang J, Yi H-G, Cho D-W (2016) 3D printed tissue models: present and future. ACS Biomater Sci Eng 2(10):1722–1731. https://doi.org/10.1021/acsbiomaterials.6b00129
- 70.
Seok J, Warren HS, Cuenca AG, Mindrinos MN, Baker HV, Xu W et al (2013) Genomic responses in mouse models poorly mimic human inflammatory diseases. Proc Natl Acad Sci USA 110(9):3507–3512. https://doi.org/10.1073/pnas.1222878110
- 71.
Huh D, Torisawa Y-S, Hamilton GA, Kim HJ, Ingber DE (2012) Microengineered physiological biomimicry: organs-on-Chips. Lab Chip 12(12):2156–2164. https://doi.org/10.1039/c2lc40089h
- 72.
Ingber DE, Mow VC, Butler D, Niklason L, Huard J, Mao J et al (2006) Tissue engineering and developmental biology: going biomimetic. Tissue Eng 12(12):3265–3283. https://doi.org/10.1089/ten.2006.12.3265
- 73.
Hussey GS, Dziki JL, Badylak SF (2018) Extracellular matrix-based materials for regenerative medicine. Nat Rev Mater 3(7):159–173. https://doi.org/10.1038/s41578-018-0023-x
- 74.
Moroni L, Burdick JA, Highley C, Lee SJ, Morimoto Y, Takeuchi S et al (2018) Biofabrication strategies for 3D in vitro models and regenerative medicine. Nat Rev Mater 3(5):21–37. https://doi.org/10.1038/s41578-018-0006-y
- 75.
Zhu W, Ma X, Gou M, Mei D, Zhang K, Chen S (2016) 3D printing of functional biomaterials for tissue engineering. Curr Opin Biotechnol 40:103–112. https://doi.org/10.1016/j.copbio.2016.03.014
- 76.
Stone HA, Stroock AD, Ajdari A (2004) Engineering flows in small devices: microfluidics toward a lab-on-a-chip. Annu Rev Fluid Mech 36:381–411. https://doi.org/10.1146/annurev.fluid.36.050802.122124
- 77.
Dittrich PS, Manz A (2006) Lab-on-a-chip: microfluidics in drug discovery. Nat Rev Drug Discovery 5(3):210–218. https://doi.org/10.1038/nrd1985
- 78.
Sosa-Hernandez JE, Villalba-Rodriguez AM, Romero-Castillo KD, Aguilar-Aguila-Isaias MA, Garcia-Reyes IE, Hernandez-Antonio A et al (2018) Organs-on-a-chip module: a review from the development and applications perspective. Micromachines 9(10):536. https://doi.org/10.3390/mi9100536
- 79.
Oliveira NM, Vilabril S, Oliveira MB, Reis RL, Mano JF (2019) Recent advances on open fluidic systems for biomedical applications: a review. Mater Sci Eng C Mater Biol Appl 97:851–863. https://doi.org/10.1016/j.msec.2018.12.040
- 80.
Robinson TF, Cohengould L, Factor SM (1983) Skeletal framework of mammalian heart-muscle: arrangement of inter and pericellular connective-tissue structures. Lab Invest 49(4):482–498
- 81.
Kim D-H, Lipke EA, Kim P, Cheong R, Thompson S, Delannoy M et al (2010) Nanoscale cues regulate the structure and function of macroscopic cardiac tissue constructs. Proc Natl Acad Sci USA 107(2):565–570. https://doi.org/10.1073/pnas.0906504107
- 82.
Feng Z-Q, Chu X, Huang N-P, Wang T, Wang Y, Shi X et al (2009) The effect of nanofibrous galactosylated chitosan scaffolds on the formation of rat primary hepatocyte aggregates and the maintenance of liver function. Biomaterials 30(14):2753–2763. https://doi.org/10.1016/j.biomaterials.2009.01.053
- 83.
De Jaeghere E, De Vlieghere E, Van Hoorick J, Van Vlierberghe S, Wagemans G, Pieters L et al (2018) Heterocellular 3D scaffolds as biomimetic to recapitulate the tumor microenvironment of peritoneal metastases in vitro and in vivo. Biomaterials 158:95–105. https://doi.org/10.1016/j.biomaterials.2017.12.017
- 84.
Ma X, Qu X, Zhu W, Li Y-S, Yuan S, Zhang H et al (2016) Deterministically patterned biomimetic human iPSC-derived hepatic model via rapid 3D bioprinting. Proc Natl Acad Sci USA 113(8):2206–2211. https://doi.org/10.1073/pnas.1524510113
- 85.
Park JY, Ryu H, Lee B, Ha D-H, Ahn M, Kim S et al (2019) Development of a functional airway-on-a-chip by 3D cell printing. Biofabrication 11(1):015002. https://doi.org/10.1088/1758-5090/aae545
- 86.
Kim BS, Lee J-S, Gao G, Cho D-W (2017) Direct 3D cell-printing of human skin with functional transwell system. Biofabrication 9(2):025034. https://doi.org/10.1088/1758-5090/aa71c8
- 87.
Bazaz SR, Rouhi O, Raoufi MA et al (2020) 3D printing of inertial microfluidic devices[J]. Sci Rep 10(1):1–14. https://doi.org/10.1038/s41598-020-62569-9
- 88.
Katseli V, Economou A, Kokkinos C (2020) A novel all-3D-printed cell-on-a-chip device as a useful electroanalytical tool: application to the simultaneous voltammetric determination of caffeine and paracetamol. Talanta 208:120388. https://doi.org/10.1016/j.talanta.2019.120388
- 89.
Magin CM, Alge DL, Anseth KS (2016) Bio-inspired 3D microenvironments: a new dimension in tissue engineering. Biomed Mater 11(2):022001. https://doi.org/10.1088/1748-6041/11/2/022001
- 90.
Sharafeldin M, Jones A, Rusling JF (2018) 3D-printed biosensor arrays for medical diagnostics. Micromachines 9(8):394. https://doi.org/10.3390/mi9080394
- 91.
Sapudom J, Pompe T (2018) Biomimetic tumor microenvironments based on collagen matrices. Biomater Sci 6(8):2009–2024. https://doi.org/10.1039/c8bm00303c
- 92.
Gill EL, Li X, Birch MA, Huang YYS (2018) Multi-length scale bioprinting towards simulating microenvironmental cues. Bio-Des Manuf 1(2):77–88. https://doi.org/10.1007/s42242-018-0014-1
- 93.
Gladman AS, Matsumoto EA, Nuzzo RG, Mahadevan L, Lewis JA (2016) Biomimetic 4D printing. Nat Mater 15(4):413. https://doi.org/10.1038/nmat4544
- 94.
Gao B, Yang Q, Zhao X, Jin G, Ma Y, Xu F (2016) 4D bioprinting for biomedical applications. Trends Biotechnol 34(9):746–756. https://doi.org/10.1016/j.tibtech.2016.03.004
- 95.
Trenfield SJ, Awad A, Goyanes A, Gaisford S, Basit AW (2018) 3D printing pharmaceuticals: drug development to frontline care. Trends Pharmacol Sci 39(5):440–451. https://doi.org/10.1016/j.tips.2018.02.006
- 96.
Awad A, Trenfield SJ, Gaisford S, Basit AW (2018) 3D printed medicines: a new branch of digital healthcare. Int J Pharm 548(1):586–596. https://doi.org/10.1016/j.ijpharm.2018.07.024
- 97.
Collins FS, Varmus H (2015) A new initiative on precision medicine. New Engl J Med 372(9):793–795. https://doi.org/10.1056/NEJMp1500523
- 98.
Bittner SM, Guo JL, Mikos AG (2018) Spatiotemporal control of growth factors in three-dimensional printed scaffolds. Bioprinting (Amsterdam, Netherlands) 12:e00032. https://doi.org/10.1016/j.bprint.2018.e00032
- 99.
Gao G, Cui X (2016) Three-dimensional bioprinting in tissue engineering and regenerative medicine. Biotech Lett 38(2):203–211. https://doi.org/10.1007/s10529-015-1975-1
- 100.
Ozbolat IT, Hospodiuk M (2016) Current advances and future perspectives in extrusion-based bioprinting. Biomaterials 76:321–343. https://doi.org/10.1016/j.biomaterials.2015.10.076
- 101.
Ceylan H, Yasa IC, Yasa O, Tabak AF, Giltinan J, Sitti M (2019) 3D-printed biodegradable microswimmer for theranostic cargo delivery and release. ACS Nano 13(3):3353–3362. https://doi.org/10.1021/acsnano.8b09233
- 102.
Zhu W, Li J, Leong YJ, Rozen I, Qu X, Dong R et al (2015) 3D-printed artificial microfish. Adv Mater 27(30):4411–4417. https://doi.org/10.1002/adma.201501372
- 103.
Wang XP, Chen XZ, Alcantara CCJ, Sevim S, Hoop M, Terzopoulou A et al (2019) MOFBOTS: metal-organic-framework-based biomedical microrobots. Adv Mater. https://doi.org/10.1002/adma.201901592
- 104.
Oblom H, Zhang JX, Pimparade M, Speer I, Preis M, Repka M et al (2019) 3D-printed isoniazid tablets for the treatment and prevention of tuberculosis personalized dosing and drug release. Aaps Pharmscitech 20(2):52. https://doi.org/10.1208/s12249-018-1233-7
- 105.
Khaled SA, Alexander MR, Irvine DJ, Wildman RD, Wallace MJ, Sharpe S et al (2018) Extrusion 3D printing of paracetamol tablets from a single formulation with tunable release profiles through control of tablet geometry. AAPS PharmSciTech 19(8):3403–3413. https://doi.org/10.1208/s12249-018-1107-z
- 106.
Wang YZ, Miao Y, Zhang JL, Wu JP, Kirk TB, Xu JK et al (2018) Three-dimensional printing of shape memory hydrogels with internal structure for drug delivery. Mater Sci Eng C-Mater Biol Appl 84:44–51. https://doi.org/10.1016/j.msec.2017.11.025
- 107.
Clark EA, Alexander MR, Irvine DJ, Roberts CJ, Wallacec MJ, Sharpe S et al (2017) 3D printing of tablets using inkjet with UV photoinitiation. Int J Pharm 529(1–2):523–530. https://doi.org/10.1016/j.ijpharm.2017.06.085
- 108.
Awad A, Fina F, Trenfield SJ, Patel P, Goyanes A, Gaisford S et al (2019) 3D printed pellets (miniprintlets): a novel, multi-drug, controlled release platform technology. Pharmaceutics 11(4):148. https://doi.org/10.3390/pharmaceutics11040148
- 109.
Richbourg NR, Peppas NA, Sikavitsas VI (2019) Tuning the biomimetic behavior of scaffolds for regenerative medicine through surface modifications. J Tissue Eng Regener Med 13(8):1275–1293. https://doi.org/10.1002/term.2859
- 110.
Bloomquist CJ, Mecham MB, Paradzinsky MD, Janusziewicz R, Warner SB, Luft JC et al (2018) Controlling release from 3D printed medical devices using CLIP and drug-loaded liquid resins. J Control Rel 278:9–23. https://doi.org/10.1016/j.jconrel.2018.03.026
- 111.
Lee J, Lee S-H, Lee B-K, Park S-H, Cho Y-S, Park Y (2018) Fabrication of microchannels and evaluation of guided vascularization in biomimetic hydrogels. Tissue Eng Regener Med 15(4):403–413. https://doi.org/10.1007/s13770-018-0130-1
- 112.
Hall H (2007) Modified fibrin hydrogel matrices: both, 3D-scaffolds and local and controlled release systems to stimulate angiogenesis. Curr Pharm Des 13(35):3597–3607. https://doi.org/10.2174/138161207782794158
- 113.
Suzuki M, Sawa T, Takahashi T, Aoyagi S, IEEE (2015) Ultrafine three-dimensional (3D) laser lithographic fabrication of microneedle and its application to painless insertion and blood sampling inspired by mosquito. In: 2015 IEEE/RSJ international conference on intelligent robots and systems, pp 2748–2753
- 114.
Liaw C-Y, Guvendiren M (2017) Current and emerging applications of 3D printing in medicine. Biofabrication 9(2):024102. https://doi.org/10.1088/1758-5090/aa7279
- 115.
Goyanes A, Buanz ABM, Basit AW, Gaisford S (2014) Fused-filament 3D printing (3DP) for fabrication of tablets. Int J Pharm 476(1–2):88–92. https://doi.org/10.1016/j.ijpharm.2014.09.044
- 116.
Skowyra J, Pietrzak K, Alhnan MA (2015) Fabrication of extended-release patient-tailored prednisolone tablets via fused deposition modelling (FDM) 3D printing. Eur J Pharm Sci 68:11–17. https://doi.org/10.1016/j.ejps.2014.11.009
- 117.
Sandler N, Salmela I, Fallarero A, Rosling A, Khajeheian M, Kolakovic R et al (2014) Towards fabrication of 3D printed medical devices to prevent biofilm formation. Int J Pharm 459(1–2):62–64. https://doi.org/10.1016/j.ijpharm.2013.11.001
- 118.
Weisman JA, Nicholson JC, Tappa K, Jammalamadaka U, Wilson CG, Mills DK (2015) Antibiotic and chemotherapeutic enhanced three-dimensional printer filaments and constructs for biomedical applications. Int J Nanomed 10:357–370. https://doi.org/10.2147/ijn.S74811
- 119.
Moulton SE, Wallace GG (2014) 3-dimensional (3D) fabricated polymer based drug delivery systems. J Controll Release 193:27–34. https://doi.org/10.1016/j.jconrel.2014.07.005
- 120.
Postiglione G, Alberini M, Leigh S, Levi M, Turri S (2017) Effect of 3D-printed microvascular network design on the self-healing behavior of cross-linked polymers. ACS Appl Mater Interfaces 9(16):14371–14378. https://doi.org/10.1021/acsami.7b01830
- 121.
Karam GN (2005) Biomechanical model of the xylem vessels in vascular plants. Ann Bot 95(7):1179–1186. https://doi.org/10.1093/aob/mci130
- 122.
Knight C (1981) Pressure component construction… design and materials application. Taylor and Francis, London
- 123.
Bader MG, Smith W, Isham AB, Rolston J (1990) Delaware composites design encyclopedia. vol. 3: processing and fabrication technology. Technomic Publishing Company, Lancaster, PA (1990)
- 124.
Shevchenko YN, Merzlyakov VA, Galishin AZ, Novikov SV, Los AO, Yukhimets PS (1993) Determination of the limiting stress-strain state of helically corrugated pipes. Strength Mater 25(7):507–511. https://doi.org/10.1007/bf00775128
- 125.
Hoballah JJ (2000) Vascular reconstructions: anatomy, exposures and techniques. Springer, Berlin
- 126.
Lei D, Yang Y, Liu Z, Yang B, Gong W, Chen S et al (2019) 3D printing of biomimetic vasculature for tissue regeneration. Mater Horizons 6(6):1197–1206. https://doi.org/10.1039/c9mh00174c
- 127.
Dean LM, Krull BP, Li KR, Fedonina YI, White SR, Sottos NR (2018) Enhanced mixing of microvascular self-healing reagents using segmented gas-liquid flow. ACS Appl Mater Interfaces 10(38):32659–32667. https://doi.org/10.1021/acsami.8b09966
- 128.
Kim S-R, Getachew BA, Kim J-H (2017) Toward microvascular network-embedded self-healing membranes. J Membr Sci 531:94–102. https://doi.org/10.1016/j.memsci.2017.02.038
- 129.
Yu F, Choudhury D (2019) Microfluidic bioprinting for organ-on-a-chip models. Drug Discov Today 24(6):1248–1257. https://doi.org/10.1016/j.drudis.2019.03.025
- 130.
Fedorovich NE, Alblas J, de Wijn JR, Hennink WE, Verbout AJ, Dhert WJA (2007) Hydrogels as extracellular matrices for skeletal tissue engineering: state-of-the-art and novel application in organ printing. Tissue Eng 13(8):1905–1925. https://doi.org/10.1089/ten.2006.0175
- 131.
Norotte C, Marga FS, Niklason LE, Forgacs G (2009) Scaffold-free vascular tissue engineering using bioprinting. Biomaterials 30(30):5910–5917. https://doi.org/10.1016/j.biomaterials.2009.06.034
- 132.
Kinstlinger IS, Miller JS (2016) 3D-printed fluidic networks as vasculature for engineered tissue. Lab Chip 16(11):2025–2043. https://doi.org/10.1039/c6lc00193a
- 133.
Murphy SV, Atala A (2014) 3D bioprinting of tissues and organs. Nat Biotechnol 32(8):773–785. https://doi.org/10.1038/nbt.2958
- 134.
Knowlton S, Onal S, Yu CH, Zhao JJ, Tasoglu S (2015) Bioprinting for cancer research. Trends Biotechnol 33(9):504–513. https://doi.org/10.1016/j.tibtech.2015.06.007
- 135.
Ho CMB, Sum Huan N, Li KHH, Yoon Y-J (2015) 3D printed microfluidics for biological applications. Lab Chip 15(18):3627–3637. https://doi.org/10.1039/c5lc00685f
- 136.
Wu W, DeConinck A, Lewis JA (2011) Omnidirectional printing of 3D microvascular networks. Adv Mater 23(24):H178–H183. https://doi.org/10.1002/adma.201004625
- 137.
Bhattacharjee T, Zehnder SM, Rowe KG, Jain S, Nixon RM, Sawyer WG et al (2015) Writing in the granular gel medium. Sci Adv 1(8):e1500655. https://doi.org/10.1126/sciadv.1500655
- 138.
Bertassoni LE, Cecconi M, Manoharan V, Nikkhah M, Hjortnaes J, Cristino AL et al (2014) Hydrogel bioprinted microchannel networks for vascularization of tissue engineering constructs. Lab Chip 14(13):2202–2211. https://doi.org/10.1039/c4lc00030g
- 139.
Gao G, Kim H, Kim BS, Kong JS, Lee JY, Park BW et al (2019) Tissue-engineering of vascular grafts containing endothelium and smooth-muscle using triple-coaxial cell printing. Appl Phys Rev 6(4):041402. https://doi.org/10.1063/1.5099306
- 140.
Grigoryan B, Paulsen SJ, Corbett DC, Sazer DW, Fortin CL, Zaita AJ et al (2019) BIOMEDICINE Multivascular networks and functional intravascular topologies within biocompatible hydrogels. Science 364(6439):458. https://doi.org/10.1126/science.aav9750
- 141.
Kim SH, Yeon YK, Lee JM, Chao JR, Lee YJ, Seo YB et al (2018) Precisely printable and biocompatible silk fibroin bioink for digital light processing 3D printing. Nat Commun. https://doi.org/10.1038/s41467-018-03759-y
- 142.
Datta P, Ayan B, Ozbolat IT (2017) Bioprinting for vascular and vascularized tissue biofabrication. Acta Biomater 51:1–20. https://doi.org/10.1016/j.actbio.2017.01.035
- 143.
Li X, Mao H, Pan Y, Chen Y (2019) Mask video projection-based stereolithography with continuous resin flow. J Manuf Sci Eng Trans ASME 141(8):081007. https://doi.org/10.1115/1.4043765
- 144.
Chen Y, Mao H, Li X (2016) Mask video projection based stereolithography with continuous resin flow. U.S. Patent 10,308,007[P]. 2019-6-4
- 145.
Chen Y, Li X (2018) Surface projection tool for multi-axis additive manufacturing. U.S. Patent Application 15/868,891[P]. 2018-7-12
- 146.
Chiu YC, Shen YF, Lee AKX, Lin SH, Wu YC, Chen YW (2019) 3D printing of amino resin-based photosensitive materials on multi-parameter optimization design for vascular engineering applications. Polymers 11(9):1394. https://doi.org/10.3390/polym11091394
- 147.
Zhang Z, Wang B, Hui D, Qiu J, Wang S (2017) 3D bioprinting of soft materials-based regenerative vascular structures and tissues. Compos Part B Eng 123:279–291. https://doi.org/10.1016/j.compositesb.2017.05.011
- 148.
Hospodiuk M, Dey M, Sosnoski D, Ozbolat IT (2017) The bioink: a comprehensive review on bioprintable materials. Biotechnol Adv 35(2):217–239. https://doi.org/10.1016/j.biotechadv.2016.12.006
- 149.
Gungor-Ozkerim PS, Inci I, Zhang YS, Khademhosseini A, Dokmeci MR (2018) Bioinks for 3D bioprinting: an overview. Biomater Sci 6(5):915–946. https://doi.org/10.1039/c7bm00765e
- 150.
Burdick JA, Prestwich GD (2011) Hyaluronic acid hydrogels for biomedical applications. Adv Mater 23(12):H41–H56. https://doi.org/10.1002/adma.201003963
- 151.
Choudhury D, Tun HW, Wang T, Naing MW (2018) Organ-derived decellularized extracellular matrix: a game changer for bioink manufacturing? Trends Biotechnol 36(8):787–805. https://doi.org/10.1016/j.tibtech.2018.03.003
- 152.
Yoo S-S (2015) 3D-printed biological organs: medical potential and patenting opportunity. Expert Opin Ther Pat 25(5):507–511. https://doi.org/10.1517/13543776.2015.1019466
- 153.
Colla G, Porto LM (2014) Development of artificial blood vessels through tissue engineering. In: BMC proceedings. 8. BioMed Central, P45
- 154.
Kapalczynska M, Kolenda T, Przybyla W, Zajaczkowska M, Teresiak A, Filas V et al (2018) 2D and 3D cell cultures: a comparison of different types of cancer cell cultures. Arch Med Sci 14(4):910–919. https://doi.org/10.5114/aoms.2016.63743
- 155.
Park JY, Jang J, Kang H-W (2018) 3D Bioprinting and its application to organ-on-a-chip. Microelectron Eng 200:1–11. https://doi.org/10.1016/j.mee.2018.08.004
- 156.
Mironov V, Kasyanov V, Drake C, Markwald RR (2008) Organ printing: promises and challenges. Regener Med 3(1):93–103. https://doi.org/10.2217/17460751.3.1.93
- 157.
Schubert C, van Langeveld MC, Donoso LA (2014) Innovations in 3D printing: a 3D overview from optics to organs. Br J Ophthalmol 98(2):159–161. https://doi.org/10.1136/bjophthalmol-2013-304446
- 158.
Zhao H, Chen Y, Shao L, Xie M, Nie J, Qiu J et al (2018) Airflow-assisted 3D bioprinting of human heterogeneous microspheroidal organoids with microfluidic nozzle. Small 14(39):1802630. https://doi.org/10.1002/smll.201802630
- 159.
Zhu L, Li Y, Zhang Q, Wang H, Zhu M (2010) Fabrication of monodisperse, large-sized, functional biopolymeric microspheres using a low-cost and facile microfluidic device. Biomed Microdev 12(1):169–177. https://doi.org/10.1007/s10544-009-9373-x
- 160.
Cai B, Guo F, Zhao L, He R, Chen B, He Z et al (2014) Disk-like hydrogel bead-based immunofluorescence staining toward identification and observation of circulating tumor cells. Microfluid Nanofluid 16(1–2):29–37. https://doi.org/10.1007/s10404-013-1198-5
- 161.
Kim BS, Gao G, Kim JY, Cho D-W (2019) 3D cell printing of perfusable vascularized human skin equivalent composed of epidermis, dermis, and hypodermis for better structural recapitulation of native skin. Adv Healthc Mater 8(7):1801019. https://doi.org/10.1002/adhm.201801019
- 162.
Binder KW, Zhao W, Aboushwareb T, Dice D, Atala A, Yoo JJ (2010) In situ bioprinting of the skin for burns. J Am Coll Surg 211(3):S76. https://doi.org/10.1016/j.jamcollsurg.2010.06.198
- 163.
Lee V, Singh G, Trasatti JP, Bjornsson C, Xu X, Thanh Nga T et al (2014) Design and fabrication of human skin by three-dimensional bioprinting. Tissue Eng Part C-Methods 20(6):473–484. https://doi.org/10.1089/ten.tec.2013.0335
- 164.
Skardal A, Mack D, Kapetanovic E, Atala A, Jackson JD, Yoo J et al (2012) Bioprinted amniotic fluid-derived stem cells accelerate healing of large skin wounds. Stem Cells Transl Med 1(11):792–802. https://doi.org/10.5966/sctm.2012-0088
- 165.
Cubo N, Garcia M, del Canizo JF, Velasco D, Jorcano JL (2017) 3D bioprinting of functional human skin: production and in vivo analysis. Biofabrication 9(1):015006. https://doi.org/10.1088/1758-5090/9/1/015006
- 166.
Miriyev A, Stack K, Lipson H (2017) Soft material for soft actuators. Nat Commun 8(1):1–8. https://doi.org/10.1038/s41467-017-00685-3
- 167.
Isaacson A, Swioklo S, Connon CJ (2018) 3D bioprinting of a corneal stroma equivalent. Exp Eye Res 173:188–193. https://doi.org/10.1016/j.exer.2018.05.010
- 168.
Adams F, Qiu T, Mark A, Fritz B, Kramer L, Schlager D et al (2017) Soft 3D-printed phantom of the human kidney with collecting system. Ann Biomed Eng 45(4):963–972. https://doi.org/10.1007/s10439-016-1757-5
- 169.
Noor N, Shapira A, Edri R, Gal I, Wertheim L, Dvir T (2019) 3D printing of personalized thick and perfusable cardiac patches and hearts. Adv Sci 6(11):1900344. https://doi.org/10.1002/advs.201900344
- 170.
Edri R, Gal I, Noor N, Harel T, Fleischer S, Adadi N et al (2019) Personalized hydrogels for engineering diverse fully autologous tissue implants. Adv Mater 31(1):1803895. https://doi.org/10.1002/adma.201803895
- 171.
Yang Y, Chen ZY, Song X, Zhang ZF, Zhang J, Shung KK et al (2017) Biomimetic anisotropic reinforcement architectures by electrically assisted nanocomposite 3D printing. Adv Mater 29(11):1605750. https://doi.org/10.1002/adma.201605750
- 172.
Chen YW, Zhang JM, Liu X, Wang S, Tao J, Huang YL et al (2020) Noninvasive in vivo 3D bioprinting. Sci Adv 6(23):eaba7406. https://doi.org/10.1126/sciadv.aba7406
- 173.
Seol Y-J, Kang H-W, Lee SJ, Atala A, Yoo JJ (2014) Bioprinting technology and its applications. Eur J Cardiothorac Surg 46(3):342–348. https://doi.org/10.1093/ejcts/ezu148
- 174.
Zell K, Sperl JI, Vogel MW, Niessner R, Haisch C (2007) Acoustical properties of selected tissue phantom materials for ultrasound imaging. Phys Med Biol 52(20):N475–N484. https://doi.org/10.1088/0031-9155/52/20/n02
- 175.
Elias H, Bengelsdorf H (1952) The structure of the liver of vertebrates. Cells Tissues Organs 14(4):297–337
- 176.
Abdel-Misih SRZ, Bloomston M (2010) Liver anatomy. Surg Clin N Am 90(4):643. https://doi.org/10.1016/j.suc.2010.04.017
- 177.
Yun W, Zhi Yuan L, Wenger AC, Tam KC, Xiaowu T (2018) 3D bioprinting of liver-mimetic construct with alginate/cellulose nanocrystal hybrid bioink. Bioprinting 9:1–6. https://doi.org/10.1016/j.bprint.2017.12.001
- 178.
Xu F, Kang T, Deng J, Liu J, Chen X, Wang Y et al (2016) Functional nanoparticles activate a decellularized liver scaffold for blood detoxification. Small 12(15):2067–2076. https://doi.org/10.1002/smll.201503320
- 179.
Villar G, Graham AD, Bayley H (2013) A tissue-like printed material. Science 340(6128):48–52. https://doi.org/10.1126/science.1229495
- 180.
Gurkan UA, El Assal R, Yildiz SE, Sung Y, Trachtenberg AJ, Kuo WP et al (2014) Engineering anisotropic biomimetic fibrocartilage microenvironment by bioprinting mesenchymal stem cells in nanoliter gel droplets. Mol Pharm 11(7):2151–2159. https://doi.org/10.1021/mp400573g
- 181.
Moon S, Hasan SK, Song YS, Xu F, Keles HO, Manzur F et al (2010) Layer by layer three-dimensional tissue epitaxy by cell-laden hydrogel droplets. Tissue Eng Part C-Methods 16(1):157–166. https://doi.org/10.1089/ten.tec.2009.0179
- 182.
Guillotin B, Guillemot F (2011) Cell patterning technologies for organotypic tissue fabrication. Trends Biotechnol 29(4):183–190. https://doi.org/10.1016/j.tibtech.2010.12.008
- 183.
Ferris CJ, Gilmore KG, Wallace GG, Panhuis MIH (2013) Biofabrication: an overview of the approaches used for printing of living cells. Appl Microbiol Biotechnol 97(10):4243–4258. https://doi.org/10.1007/s00253-013-4853-6
- 184.
Skardal A, Atala A (2015) Biomaterials for Integration with 3-D bioprinting. Ann Biomed Eng 43(3):730–746. https://doi.org/10.1007/s10439-014-1207-1
- 185.
Arslan-Yildiz A, El Assal R, Chen P, Guven S, Inci F, Demirci U (2016) Towards artificial tissue models: past, present, and future of 3D bioprinting. Biofabrication 8(1):014103. https://doi.org/10.1088/1758-5090/8/1/014103
- 186.
Hribar KC, Soman P, Warner J, Chung P, Chen S (2014) Light-assisted direct-write of 3D functional biomaterials. Lab Chip 14(2):268–275. https://doi.org/10.1039/c3lc50634g
- 187.
Gruene M, Deiwick A, Koch L, Schlie S, Unger C, Hofmann N et al (2011) Laser printing of stem cells for biofabrication of scaffold-free autologous grafts. Tissue Eng Part C-Methods 17(1):79–87. https://doi.org/10.1089/ten.tec.2010.0359
- 188.
Koch L, Kuhn S, Sorg H, Gruene M, Schlie S, Gaebel R et al (2010) Laser printing of skin cells and human stem cells. Tissue Eng Part C-Methods 16(5):847–854. https://doi.org/10.1089/ten.tec.2009.0397
- 189.
Malda J, Visser J, Melchels FP, Juengst T, Hennink WE, Dhert WJA et al (2013) 25th anniversary article: engineering hydrogels for biofabrication. Adv Mater 25(36):5011–5028. https://doi.org/10.1002/adma.201302042
- 190.
Ozbolat IT, Yu Y (2013) Bioprinting toward organ fabrication: challenges and future trends. IEEE Trans Biomed Eng 60(3):691–699. https://doi.org/10.1109/tbme.2013.2243912
- 191.
Shim J-H, Lee J-S, Kim JY, Cho D-W (2012) Bioprinting of a mechanically enhanced three-dimensional dual cell-laden construct for osteochondral tissue engineering using a multi-head tissue/organ building system. J Micromech Microeng 22(8):085014. https://doi.org/10.1088/0960-1317/22/8/085014
- 192.
Ringeisen BR, Kim H, Barron JA, Krizman DB, Chrisey DB, Jackman S et al (2004) Laser printing of pluripotent embryonal carcinoma cells. Tissue Eng 10(3–4):483–491. https://doi.org/10.1089/107632704323061843
- 193.
Derakhshanfar S, Mbeleck R, Xu K, Zhang X, Zhong W, Xing M (2018) 3D bioprinting for biomedical devices and tissue engineering: a review of recent trends and advances. Bioactive Mater 3(2):144–156. https://doi.org/10.1016/j.bioactmat.2017.11.008
- 194.
Chen Z, Wu Y, Yang Y, Li J, Xie B, Li X et al (2018) Multilayered carbon nanotube yarn based optoacoustic transducer with high energy conversion efficiency for ultrasound application. Nano Energy 46:314–321. https://doi.org/10.1016/j.nanoen.2018.02.006
- 195.
Zhang J, Yang Y, Zhu B, Li X, Jin J, Chen Z et al (2018) Multifocal point beam forming by a single ultrasonic transducer with 3D printed holograms. Appl Phys Lett 113(24):243502. https://doi.org/10.1063/1.5058079
- 196.
Xiangjia L, Benshuai X, Jie J, Yang C, Yong C (2018) 3D printing temporary crown and bridge by temperature controlled mask image projection stereolithography. Proc Manuf 26:1023–1033. https://doi.org/10.1016/j.promfg.2018.07.134
- 197.
Sears NA, Seshadri DR, Dhavalikar PS, Cosgriff-Hernandez E (2016) A review of three-dimensional printing in tissue engineering. Tissue Eng Part B-Rev 22(4):298–310. https://doi.org/10.1089/ten.teb.2015.0464
- 198.
Shusteff M, Browar AE, Kelly BE, Henriksson J, Weisgraber TH, Panas RM, Fang N, Spadaccini CM (2017) One-step volumetric additive manufacturing of complex polymer structures. Sci Adv 3(12):eaao5496. https://doi.org/10.1126/sciadv.aao5496
- 199.
Kelly BE, Bhattacharya I, Heidari H, Shusteff M, Spadaccini CM, Taylor HK (2019) Volumetric additive manufacturing via tomographic reconstruction. Science 363(6431):1075–1079. https://doi.org/10.1126/science.aau7114
- 200.
Castro NJ, O’Brien J, Zhang LG (2015) Integrating biologically inspired nanomaterials and table-top stereolithography for 3D printed biomimetic osteochondral scaffolds. Nanoscale 7(33):14010–14022. https://doi.org/10.1039/c5nr03425f
- 201.
Cheng CH, Chen YW, Lee AKX, Yao CH, Shie MY (2019) Development of mussel-inspired 3D-printed poly(lactic acid) scaffold grafted with bone morphogenetic protein-2 for stimulating osteogenesis. J Mater Sci Mater Med 30(7):78. https://doi.org/10.1007/s10856-019-6279-x
- 202.
Ni J, Ling H, Zhang S, Wang Z, Peng Z, Benyshek C et al (2019) Three-dimensional printing of metals for biomedical applications. Mater Today Biol 3:100024. https://doi.org/10.1016/j.mtbio.2019.100024
- 203.
Pati F, Jang J, Ha DH, Kim SW, Rhie JW, Shim JH et al (2014) Printing three-dimensional tissue analogues with decellularized extracellular matrix bioink. Nat Commun 5(1):1–11. https://doi.org/10.1038/ncomms4935
- 204.
Grolman JM, Zhang D, Smith AM, Moore JS, Kilian KA (2015) Rapid 3D extrusion of synthetic tumor microenvironments. Adv Mater 27(37):5512–5517. https://doi.org/10.1002/adma.201501729
- 205.
Zema L, Melocchi A, Maroni A, Gazzaniga A (2017) Three-dimensional printing of medicinal products and the challenge of personalized therapy. J Pharm Sci 106(7):1697–1705. https://doi.org/10.1016/j.xphs.2017.03.021
- 206.
Han D, Morde RS, Mariani S, La Mattina AA, Vignali E, Yang C et al (2020) 4D printing of a bioinspired microneedle array with backward-facing barbs for enhanced tissue adhesion. Adv Funct Mater 30(11):1909197. https://doi.org/10.1002/adfm.201909197
- 207.
Christensen K, Xu C, Chai W, Zhang Z, Fu J, Huang Y (2015) Freeform inkjet printing of cellular structures with bifurcations. Biotechnol Bioeng 112(5):1047–1055. https://doi.org/10.1002/bit.25501
- 208.
Mannoor MS, Jiang Z, James T, Kong YL, Malatesta KA, Soboyejo WO et al (2013) 3D printed bionic ears. Nano Lett 13(6):2634–2639. https://doi.org/10.1021/nl4007744
- 209.
Perera AS, Coppens M-O (2019) Re-designing materials for biomedical applications: from biomimicry to nature-inspired chemical engineering. Philos Trans R Soc A Math Phys Eng Sci 377(2138):20180268. https://doi.org/10.1098/rsta.2018.0268
- 210.
Karbalaei A, Cho HJ (2018) Microfluidic devices developed for and inspired by thermotaxis and chemotaxis. Micromachines 9(4):149. https://doi.org/10.3390/mi9040149
Acknowledgements
The authors acknowledge Arizona State University for the start-up funding support.
Author information
Affiliations
Contributions
YZ, DJ, XL wrote the sections of introduction, summary, and outlook. WS wrote 3D printing of biomimetic lab-on-chip. YC wrote 3D printing of biomimetic medicine. JR wrote 3D printing of biomimetic microvascular network. HZ wrote 3D printing of biomimetic scaffold-based implants. SX wore 3D printing of artificial organs. All authors discussed and commented on the manuscript.
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Ethical approval
This review does not contain any studies with human or animal subjects performed by any of the authors.
Rights and permissions
About this article
Cite this article
Zhu, Y., Joralmon, D., Shan, W. et al. 3D printing biomimetic materials and structures for biomedical applications. Bio-des. Manuf. (2021). https://doi.org/10.1007/s42242-020-00117-0
Received:
Accepted:
Published:
Keywords
- 3D printing
- Bioprinting
- Biomimetic material
- Functional structures
- Biomedical applications