Skip to main content
Log in

Generation of microfluidic gradients and their effects on cells behaviours

  • Personal View
  • Published:
Bio-Design and Manufacturing Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

References

  1. Weber M, Hauschild R, Schwarz J, Moussion C, de Vries I, Legler DF, Luther SA, Bollenbach T, Sixt M (2013) Interstitial dendritic cell guidance by haptotactic chemokine gradients. Science 339:328–332. https://doi.org/10.1126/science.1228456

    Article  Google Scholar 

  2. Shi XT, Ostrovidov S, Shu YW, Liang XB, Nakajima K, Wu HK, Khademhosseini A (2014) Microfluidic generation of polydopamine gradients on hydrophobic surfaces. Langmuir 30:832–838. https://doi.org/10.1021/la4041216

    Article  Google Scholar 

  3. Keenan TM, Folch A (2008) Biomolecular gradients in cell culture systems. Lab Chip 8:34–57. https://doi.org/10.1039/b711887b

    Article  Google Scholar 

  4. Sackmann EK, Fulton AL, Beebe DJ (2014) The present and future role of microfluidics in biomedical research. Nature 507:181–189. https://doi.org/10.1038/nature13118

    Article  Google Scholar 

  5. Hu CF, Liu JJ, Chen HM, Nie FQ (2017) Microfluidic platforms for gradient generation and its applications. Biochem Anal Biochem 6:1000320. https://doi.org/10.4172/2161-1009.1000320

    Article  Google Scholar 

  6. Wang WZ, Huang YY, Jin YL, Liu GQ, Chen Y, Ma HM, Zhao R (2013) A tetra-layer microfluidic system for peptide affinity screening through integrated sample injection. Analyst 138:2890–2896. https://doi.org/10.1039/c3an00463e

    Article  Google Scholar 

  7. Suh S, Traore MA, Behkam B (2016) Bacterial chemotaxis-enabled autonomous sorting of nanoparticles of comparable sizes. Lab Chip 16:1254–1260. https://doi.org/10.1039/c6lc00059b

    Article  Google Scholar 

  8. Cosson S, Kobel SA, Lutolf MP (2009) Capturing complex protein gradients on biomimetic hydrogels for cell-based assays. Adv Funct Mater 19:3411–3419. https://doi.org/10.1002/adfm.200900968

    Article  Google Scholar 

  9. Zaari N, Rajagopalan P, Kim SK, Engler AJ, Wong JY (2004) Photopolymerization in microfluidic gradient generators: microscale control of substrate compliance to manipulate cell response. Adv Mater 16:2133–2137. https://doi.org/10.1002/adma.200400883

    Article  Google Scholar 

  10. Jeon NL, Dertinger SKW, Chiu DT, Choi IS, Stroock AD, Whitesides GM (2000) Generation of solution and surface gradients using microfluidic systems. Langmuir 16:8311–8316. https://doi.org/10.1021/la000600b

    Article  Google Scholar 

  11. Holden MA, Kumar S, Castellana ET, Beskok A, Cremer PS (2003) Generating fixed concentration arrays in a microfluidic device. Sens Actuators B Chem 92:199–207. https://doi.org/10.1016/S0925-4005(03)00129-1

    Article  Google Scholar 

  12. Abhyankar VV, Lokuta MA, Huttenlocher A, Beebe DJ (2006) Characterization of a membrane-based gradient generator for use in cell-signaling studies. Lab Chip 6:389–393. https://doi.org/10.1039/b514133h

    Article  Google Scholar 

  13. Yamada M, Hirano T, Yasuda M, Seki M (2006) A microfluidic flow distributor generating stepwise concentrations for high-throughput biochemical processing. Lab Chip 6:179–184. https://doi.org/10.1039/b514054d

    Article  Google Scholar 

  14. Domachuk P, Tsioris K, Omenetto FG, Kaplan DL (2010) Bio-microfluidics: biomaterials and biomimetic designs. Adv Mater 22:249–260. https://doi.org/10.1002/adma.200900821

    Article  Google Scholar 

  15. Jeon O, Alt DS, Linderman SW, Alsberg E (2013) Biochemical and physical signal gradients in hydrogels to control stem cell behavior. Adv Mater 25:6366–6372. https://doi.org/10.1002/adma.201302364

    Article  Google Scholar 

  16. Slaughter BV, Khurshid SS, Fisher OZ, Khademhosseini A, Peppas NA (2009) Hydrogels in regenerative medicine. Adv Mater 21:3307–3329. https://doi.org/10.1002/adma.200802106

    Article  Google Scholar 

  17. Movilla N, Borau C, Valero C, Garcia-Aznar JM (2018) Degradation of extracellular matrix regulates osteoblast migration: a microfluidic-based study. Bone 107:10–17. https://doi.org/10.1016/j.bone.2017.10.025

    Article  Google Scholar 

  18. Shi XT, Zhou JH, Zhao YH, Li L, Wu HK (2013) Gradient-Regulated hydrogel for interface tissue engineering: steering simultaneous Osteo/Chondrogenesis of stem cells on a chip. Adv Healthc Mater 2:846–853. https://doi.org/10.1002/adhm.201200333

    Article  Google Scholar 

  19. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674. https://doi.org/10.1016/j.cell.2011.02.013

    Article  Google Scholar 

  20. Chaw KC, Manimaran M, Tay FEH, Swaminathan S (2007) Matrigel coated polydimethylsiloxane based microfluidic devices for studying metastatic and non-metastatic cancer cell invasion and migration. Biomed Microdevices 9:597–602. https://doi.org/10.1007/s10544-007-9071-5

    Article  Google Scholar 

  21. Zou H, Yue WQ, Yu WK, Liu DD, Fong CC, Zhao JL, Yang MS (2015) Microfluidic platform for studying chemotaxis of adhesive cells revealed a gradient-dependent migration and acceleration of cancer stem cells. Anal Chem 87:7098–7108. https://doi.org/10.1021/acs.analchem.5b00873

    Article  Google Scholar 

  22. Sun W, Chen YQ, Wang YR, Luo P, Zhang M, Zhang HY, Hu P (2018) Interaction study of cancer cells and fibroblasts on a spatially confined oxygen gradient microfluidic chip to investigate the tumor microenvironment. Analyst 143:5431–5437. https://doi.org/10.1039/c8an01216d

    Article  Google Scholar 

  23. Lin FY, Lin JY, Lo KY, Sun YS (2019) Use microfluidic chips to study the phototaxis of lung cancer cells. Int J Mol Sci 20:4515. https://doi.org/10.3390/ijms20184515

    Article  Google Scholar 

  24. Wu JD, Wu X, Lin F (2013) Recent developments in microfluidics-based chemotaxis studies. Lab Chip 13:2484–2499. https://doi.org/10.1039/c3lc50415h

    Article  Google Scholar 

  25. DiLuzio WR, Turner L, Mayer M, Garstecki P, Weibel DB, Berg HC, Whitesides GM (2005) Escherichia coli swim on the right-hand side. Nature 435:1271. https://doi.org/10.1038/nature03660

    Article  Google Scholar 

  26. Seidi A, Kaji H, Annabi N, Ostrovidov S, Ramalingam M, Khademhosseini A (2011) A microfluidic-based neurotoxin concentration gradient for the generation of an in vitro model of Parkinson’s disease. Biomicrofluidics 5:022214. https://doi.org/10.1063/1.3580756

    Article  Google Scholar 

  27. Wong JY, Velasco A, Rajagopalan P, Pham Q (2003) Directed movement of vascular smooth muscle cells on gradient-compliant hydrogels. Langmuir 19:1908–1913. https://doi.org/10.1021/la026403p

    Article  Google Scholar 

  28. Salek MM, Carrara F, Fernandez V, Guasto JS, Stocker R (2019) Bacterial chemotaxis in a microfluidic T-maze reveals strong phenotypic heterogeneity in chemotactic sensitivity. Nat Commun 10:1–11. https://doi.org/10.1038/s41467-019-09521-2

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank the Shenzhen Science and Technology Program (JCYJ20170815153105076, GJHZ20180411143347603), the Guangdong Natural Science Funds for Distinguished Young Scholars (2016A030306018), the Science and Technology Program of Guangdong Province (2019B010941002, 2017B090911008), Outstanding Scholar Program of Guangzhou Regenerative Medicine and Health Guangdong Laboratory (2018GZR110102001) and the Science and Technology Program of Guangzhou (201704020168, 201903010032, 201804020060, 202007020002).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, Xuetao Shi and Qiangqiang Tang; Writing – Original Draft, Xiran Yang; Writing – Review & Editing, Qiangqiang Tang, Chengkai Xuan, Kai Wu and Chen Lai.

Corresponding author

Correspondence to Xuetao Shi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Qiangqiang Tang and Xiran Yang are contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, Q., Yang, X., Xuan, C. et al. Generation of microfluidic gradients and their effects on cells behaviours. Bio-des. Manuf. 3, 427–431 (2020). https://doi.org/10.1007/s42242-020-00093-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42242-020-00093-5

Navigation