Skip to main content
Log in

A review of biomimetic research for erosion wear resistance

  • Review
  • Published:
Bio-Design and Manufacturing Aims and scope Submit manuscript

Abstract

One of the reasons behind failed engineering surfaces and mechanical components is particle erosion wear; thus, to mitigate its happening, biomimetic engineering is the current state-of-the-art being applied. Hence, this paper reviews the literature and the development trends on erosive wear resistance that employ biomimetic methods as well as analyze the bio-inspired surface, the bio-inspired structure, the bio-based materials, the associated challenges, and the future trends. Furthermore, the feasibility of the multi-biological and perspective on the coupling biomimetic method for anti-erosion wear are studied. It is concluded that the design of anti-erosion materials or structures by the bio-inspired methods is of great significance in the development of engineering applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Patnaik A, Satapathy A, Chand N, Barkoula N, Biswas S (2010) Solid particle erosion wear characteristics of fiber and particulate filled polymer composites: a review. Wear 268(1–2):249. https://doi.org/10.1016/j.wear.2009.07.021

    Article  Google Scholar 

  2. Gohil PP, Saini R (2014) Coalesced effect of cavitation and silt erosion in hydro turbines—a review. Renew Sustain Energy Rev 33:280. https://doi.org/10.1016/j.rser.2014.01.075

    Article  Google Scholar 

  3. Gribok A, Patnaik S, Williams C, Pattanaik M, Kanakala R, Framework for structural online health monitoring of aging and degradation of secondary systems due to some aspects of erosion. Technical report, Idaho National Lab.(INL), Idaho Falls, ID (United States) (2016). https://doi.org/10.2172/1369370

  4. More SR, Bhatt DV, Menghani JV (2017) Recent research status on erosion wear-an overview. Mater Today Proc 4(2):257. https://doi.org/10.1016/j.matpr.2017.01.020

    Article  Google Scholar 

  5. Verma R, Agarwal V, Pandey R, Gupta P (2018) Erosive wear reduction for safe and reliable pneumatic conveying systems: review and future directions. Life Cycle Reliab Saf Eng 7(3):193. https://doi.org/10.1007/s41872-018-0055-7

    Article  Google Scholar 

  6. Javaheri V, Porter D, Kuokkala VT (2018) Slurry erosion of steel-review of tests, mechanisms and materials. Wear 408–409:248. https://doi.org/10.1016/j.wear.2018.05.010

    Article  Google Scholar 

  7. Ahmad M, Schatz M, Casey M (2013) Experimental investigation of droplet size influence on low pressure steam turbine blade erosion. Wear 303(1–2):83. https://doi.org/10.1016/j.wear.2013.03.013

    Article  Google Scholar 

  8. Anaraki AP, Kadkhodapour J, Taherkhani B (2014) Simulation of erosion by particle impact on a rough surface. J Fail Anal Prev 14(6):784. https://doi.org/10.1007/s11668-014-9886-3

    Article  Google Scholar 

  9. Balu P, Kong F, Hamid S, Kovacevic R (2013) Finite element modeling of solid particle erosion in AISI 4140 steel and nickel–tungsten carbide composite material produced by the laser-based powder deposition process. Tribol Int 62:18. https://doi.org/10.1016/j.triboint.2013.01.021

    Article  Google Scholar 

  10. Hassani S, Bielawski M, Beres W, Martinu L, Balazinski M, Klemberg-Sapieha J (2008) Predictive tools for the design of erosion resistant coatings. Surf Coat Technol 203(3–4):204. https://doi.org/10.1016/j.surfcoat.2008.08.050

    Article  Google Scholar 

  11. Kadkhodapour J, Anaraki AP, Taherkhani B (2015) Mechanism of foreign object damage and investigating effect of particle parameters on erosion rate of a rough surface using experimental and numerical methods. J Fail Anal Prev 15(2):272. https://doi.org/10.1007/s11668-015-9926-7

    Article  Google Scholar 

  12. Sherif HA, Almufadi FA (2018) Analysis of elastic and plastic impact models. Wear 412–413:127. https://doi.org/10.1016/j.wear.2018.07.013

    Article  Google Scholar 

  13. Thapa BS, Thapa B, Dahlhaug OG (2012) Empirical modelling of sediment erosion in Francis turbines. Energy 41(1):386. https://doi.org/10.1016/j.energy.2012.02.066

    Article  Google Scholar 

  14. Yıldırım B, Müftü S (2012) Simulation and analysis of the impact of micron-scale particles onto a rough surface. Int J Solids Struct 49(11–12):1375. https://doi.org/10.1016/j.ijsolstr.2012.02.018

    Article  Google Scholar 

  15. Zhang N, Yang F, Li L, Shen C, Castro J, Lee LJ (2013) Thickness effect on particle erosion resistance of thermoplastic polyurethane coating on steel substrate. Wear 303(1–2):49. https://doi.org/10.1016/j.wear.2013.02.022

    Article  Google Scholar 

  16. Cuppari MDV, de Souza RM, Sinatora A (2005) Effect of hard second phase on cavitation erosion of Fe–Cr–Ni–C alloys. Wear 258(1–4):596. https://doi.org/10.1016/j.wear.2004.09.019

    Article  Google Scholar 

  17. Hassani S, Bielawski M, Beres W, Balazinski M, Martinu L, Klemberg-Sapieha J (2010) Impact stress absorption and load spreading in multi-layered erosion-resistant coatings. Wear 268(5–6):770. https://doi.org/10.1016/j.wear.2009.11.012

    Article  Google Scholar 

  18. Hassani S, Klemberg-Sapieha J, Bielawski M, Beres W, Martinu L, Balazinski M (2008) Design of hard coating architecture for the optimization of erosion resistance. Wear 265(5–6):879. https://doi.org/10.1016/j.wear.2008.01.021

    Article  Google Scholar 

  19. Padhy MK, Saini R (2008) A review on silt erosion in hydro turbines. Renew Sustain Energy Rev 12(7):1974. https://doi.org/10.1016/j.rser.2007.01.025

    Article  Google Scholar 

  20. Zhou S, Shen Y, Zhang H, Chen D (2015) Heat treatment effect on microstructure, hardness and wear resistance of Cr26 white cast iron. Chin J Mech Eng 28(1):140. https://doi.org/10.3901/cjme.2014.0620.116

    Article  Google Scholar 

  21. Jones L (2011) Low angle scouring erosion behaviour of elastomeric materials. Wear 271(9–10):1411. https://doi.org/10.1016/j.wear.2010.12.057

    Article  Google Scholar 

  22. Rong H, Peng Z, Hu Y, Wang C, Yue W, Fu Z, Lin X (2011) Dependence of wear behaviors of hardmetal YG8B on coarse abrasive types and their slurry concentrations. Wear 271(7–8):1156. https://doi.org/10.1016/j.wear.2011.05.027

    Article  Google Scholar 

  23. Wu SB, Cai ZB, Lin Y, Li ZY, Zhu MH (2018) Effect of abrasive particle hardness on interface response and impact wear behavior of TC17 titanium alloy. Mater Res Express 6(1):016521. https://doi.org/10.1088/2053-1591/aae461

    Article  Google Scholar 

  24. Taherkhani B, Anaraki AP, Kadkhodapour J, Farahani NK, Tu H (2019) Erosion due to solid particle impact on the turbine blade: experiment and simulation. J Fail Anal Prev 19(6):1739. https://doi.org/10.1007/s11668-019-00775-y

    Article  Google Scholar 

  25. Guo Y, Zhang Z, Zhang S (2019) Advances in the application of biomimetic surface engineering in the oil and gas industry. Friction 7(4):289. https://doi.org/10.1007/s40544-019-0292-4

    Article  Google Scholar 

  26. Zhang J, Chen W, Yang M, Chen S, Zhu B, Niu S, Han Z, Wang H (2017) The ingenious structure of scorpion armor inspires sand-resistant surfaces. Tribol Lett. https://doi.org/10.1007/s11249-017-0895-8

    Article  Google Scholar 

  27. Bhasin D, McAdams D (2018) The characterization of biological organization, abstraction, and novelty in biomimetic design. Designs. https://doi.org/10.3390/designs2040054

    Article  Google Scholar 

  28. Singh A, Tuli A, Jindal V (2010) Biomimetics—a review. Indian J Dent Sci 223(8):919. https://doi.org/10.1243/09544119JEIM561

    Article  Google Scholar 

  29. Gu Y, Liu N, Mou J, Zhou P, Qian H, Dai D (2019) Study on solid–liquid two-phase flow characteristics of centrifugal pump impeller with non-smooth surface. Adv Mech Eng 11(5):168781401984826. https://doi.org/10.1177/1687814019848269

    Article  Google Scholar 

  30. Dai Z, Sun J (2008) Research progress in gecko locomotion and biomimetic gecko-robots. Prog Nat Sci 17(7):1. https://doi.org/10.1080/10020070612331343216

    Article  Google Scholar 

  31. Yang X, Xia R, Zhou H, Guo L, Zhang L (2015) Bionic surface design of cemented carbide drill bit. Sci China Technol Sci 59(1):175. https://doi.org/10.1007/s11431-015-5942-9

    Article  Google Scholar 

  32. Qian Z, Dong J, Guo Z, Wang Z, Wang F (2016) Study of a bionic anti-erosion blade in a double suction centrifugal pump, vol 1A. DOIurl10.1115/FEDSM2016-7627

  33. Zhao X, Tang G, Liu Z, Zhang YW (2019) Finite element analysis of anti-erosion characteristics of material with patterned surface impacted by particles. Powder Technol 342:193. https://doi.org/10.1016/j.powtec.2018.09.083

    Article  Google Scholar 

  34. Chen G, Schott DL, Lodewijks G (2016) Bionic design methodology for wear reduction of bulk solids handling equipment. Part Sci Technol 35(5):525. https://doi.org/10.1080/02726351.2016.1144666

    Article  Google Scholar 

  35. Sınmazçelik T, Fidan S, Ürgün S (2020) Effects of 3D printed surface texture on erosive wear. Tribol Int 144:106110. https://doi.org/10.1016/j.triboint.2019.106110

    Article  Google Scholar 

  36. Abdel-Aal HA (2016) Functional surfaces for tribological applications: inspiration and design. Surf Topogr Metrol Prop 4(4):043001. https://doi.org/10.1088/2051-672x/4/4/043001

    Article  Google Scholar 

  37. Hao Z, Zhendong D, Songxiang Y (2008) Structure and friction characteristics of snake abdomen. J Nanjing Univ Aeronaut Astronaut 40(3):360. https://doi.org/10.1038/cgt.2008.5

    Article  Google Scholar 

  38. Hu DL, Nirody J, Scott T, Shelley MJ (2009) The mechanics of slithering locomotion. Proc Natl Acad Sci 106(25):10081. https://doi.org/10.1073/pnas.0812533106

    Article  Google Scholar 

  39. Marvi H, Hu DL (2012) Friction enhancement in concertina locomotion of snakes. J R Soc Interface 9:3067. https://doi.org/10.1098/rsif.2012.0132

    Article  Google Scholar 

  40. Mühlberger M, Rohn M, Danzberger J, Sonntag E, Rank A, Schumm L, Kirchner R, Forsich C, Gorb S, Einwögerer B et al (2015) UV-NIL fabricated bio-inspired inlays for injection molding to influence the friction behavior of ceramic surfaces. Microelectron Eng 141:140. https://doi.org/10.1016/j.mee.2015.02.051

    Article  Google Scholar 

  41. Tong J, Zhang Z, Ma Y, Chen D, Jia B, Menon C (2012) Abrasive wear of embossed surfaces with convex domes. Wear 274–275:196. https://doi.org/10.1016/j.wear.2011.08.027

    Article  Google Scholar 

  42. Han Z, Zhu B, Yang M, Niu S, Song H, Zhang J (2017) The effect of the micro-structures on the scorpion surface for improving the anti-erosion performance. Surf Coat Technol 313:143. https://doi.org/10.1016/j.surfcoat.2017.01.061

    Article  Google Scholar 

  43. Jung S, Yang E, Jung W, Kim HY (2018) Anti-erosive mechanism of a grooved surface against impact of particle-laden flow. Wear 406–407:166. https://doi.org/10.1016/j.wear.2018.04.008

    Article  Google Scholar 

  44. Yin W, Han Z, Feng H, Zhang J, Cao H, Tian Y (2016) Gas–solid erosive wear of biomimetic pattern surface inspired from plant. Tribol Trans 60(1):159. https://doi.org/10.1080/10402004.2016.1154234

    Article  Google Scholar 

  45. Zhou T, Cai ZB, Li ZY, Yue W, Li W, Zheng J (2020) Effect of hydration on mechanical characteristics of pangolin scales. J Mater Sci 55(10):4420. https://doi.org/10.1007/s10853-019-04322-w

    Article  Google Scholar 

  46. Uzi A, Levy A (2018) Energy absorption by the particle and the surface during impact. Wear 404–405:92. https://doi.org/10.1016/j.wear.2018.03.007

    Article  Google Scholar 

  47. Uzi A, Levy A (2019) On the relationship between erosion, energy dissipation and particle size. Wear 428–429:404. https://doi.org/10.1016/j.wear.2019.04.006

    Article  Google Scholar 

  48. Bitter JGA (2020) A study of erosion phenomena part I. Wear 6(1):5. https://doi.org/10.1016/0043-1648(63)90003-6

    Article  Google Scholar 

  49. Han Z, Zhang J, Ge C, Lü Y, Jiang J, Liu Q, Ren L (2010) Anti-erosion function in animals and its biomimetic application. J Bionic Eng 7:S50. https://doi.org/10.1016/s1672-6529(09)60217-1

    Article  Google Scholar 

  50. San Ha N, Lu G (2020) A review of recent research on bio-inspired structures and materials for energy absorption applications. Compos Part B Eng 181:107496. https://doi.org/10.1016/j.compositesb.2019.107496

    Article  Google Scholar 

  51. Yadav S, Gangwar S (2018) A critical evaluation of tribological interaction for restorative materials in dentistry. Int J Polym Mater Polym Biomater 68(17):1005. https://doi.org/10.1080/00914037.2018.1525544

    Article  Google Scholar 

  52. Wegst UG, Bai H, Saiz E, Tomsia AP, Ritchie RO (2015) Bioinspired structural materials. Nat Mater 14(1):23. https://doi.org/10.1038/nmat4089

    Article  Google Scholar 

  53. Bruet BJ, Song J, Boyce MC, Ortiz C (2008) Materials design principles of ancient fish armour. Nat Mater 7(9):748. https://doi.org/10.1038/nmat2231

    Article  Google Scholar 

  54. Espinosa HD, Soler-Crespo R (2017) Lessons from tooth enamel. Nature 543(7643):42. https://doi.org/10.1038/543042a

    Article  Google Scholar 

  55. Zhang S, Liu Y, Shang J, Chudry MKU, Zheng Y, Cai J, An B, Zhang D, Zheng R (2020) Enamel-inspired materials design achieving balance of high stiffness and large energy dissipation. J Mech Behav Biomed Mater 103:103587. https://doi.org/10.1016/j.jmbbm.2019.103587

    Article  Google Scholar 

  56. Zelik KE, Kuo AD (2010) Human walking isn’t all hard work: evidence of soft tissue contributions to energy dissipation and return. J Exp Biol 213(Pt 24):4257. https://doi.org/10.1242/jeb.044297

    Article  Google Scholar 

  57. Tsang H, Tse K, Chan K, Lu G, Lau AK (2019) Energy absorption of muscle-inspired hierarchical structure: experimental investigation. Compos Struct 226:111250. https://doi.org/10.1016/j.compstruct.2019.111250

    Article  Google Scholar 

  58. Tsang H, Raza S (2018) Impact energy absorption of bio-inspired tubular sections with structural hierarchy. Compos Struct 195:199. https://doi.org/10.1016/j.compstruct.2018.04.057

    Article  Google Scholar 

  59. Liang P, Sun Y, Liu S, Liang T, Zhang Y, Wang Y, Ren L (2019) A bionic study on the anti-erosion mechanism of Laudakia stoliczkana: experimental and numerical aspects. J Bionic Eng 16(5):882. https://doi.org/10.1007/s42235-019-0103-7

    Article  Google Scholar 

  60. Achrai B, Bar-On B, Wagner H (2015) Biological armors under impact-effect of keratin coating, and synthetic bio-inspired analogues. Bioinspir Biomim 10(1):016009. https://doi.org/10.1088/1748-3190/10/1/016009

    Article  Google Scholar 

  61. Bührig-Polaczek A, Fleck C, Speck T, Schüler P, Fischer S, Caliaro M, Thielen M (2016) Biomimetic cellular metals-using hierarchical structuring for energy absorption. Bioinspir Biomim 11(4):045002. https://doi.org/10.1088/1748-3190/11/4/045002

    Article  Google Scholar 

  62. Arslan E, Ekiz MS, Cimenci CE, Can N, Gemci MH, Ozkan H, Guler MO, Tekinay AB (2018) Protective therapeutic effects of peptide nanofiber and hyaluronic acid hybrid membrane in in vivo osteoarthritis model. Acta Biomater 73:263. https://doi.org/10.1016/j.actbio.2018.04.015

    Article  Google Scholar 

  63. Bölgen N, Yang Y, Korkusuz P, Güzel E, El Haj A, Pişkin E (2011) 3D ingrowth of bovine articular chondrocytes in biodegradable cryogel scaffolds for cartilage tissue engineering. J Tissue Eng Regen Medi 5(10):770. https://doi.org/10.1002/term.375

    Article  Google Scholar 

  64. Gulsen A, Merve G, Meltem P (2018) Biotribology of cartilage wear in knee and hip joints review of recent developments. IOP Conf Ser Mater Sci Eng 295:012040. https://doi.org/10.1088/1757-899x/295/1/012040

    Article  Google Scholar 

  65. Ferenczi MA, Bershitsky SY, Koubassova NA, Kopylova GV, Fernandez M, Narayanan T, Tsaturyan AK (2014) Why muscle is an efficient shock absorber. PLoS One 9(1):e85739. https://doi.org/10.1371/journal.pone.0085739

    Article  Google Scholar 

  66. Currey JD (2003) How well are bones designed to resist fracture? J Bone Miner Res 18(4):591. https://doi.org/10.1359/jbmr.2003.18.4.591

    Article  Google Scholar 

  67. Currey JD (2006) Bones: structure and mechanics. Princeton University Press, Princeton

    Google Scholar 

  68. Achrai B, Wagner HD (2017) The turtle carapace as an optimized multi-scale biological composite armor-a review. J Mech Behav Biomed Mater 73:50. https://doi.org/10.1016/j.jmbbm.2017.02.027

    Article  Google Scholar 

  69. White ZW, Vernerey FJ (2018) Armours for soft bodies: how far can bioinspiration take us? Bioinspir Biomim 13(4):041004. https://doi.org/10.1088/1748-3190/aababa

    Article  Google Scholar 

  70. Achrai B, Wagner HD (2013) Micro-structure and mechanical properties of the turtle carapace as a biological composite shield. Acta Biomater 9(4):5890. https://doi.org/10.1016/j.actbio.2012.12.023

    Article  Google Scholar 

  71. Rhee H, Horstemeyer M, Hwang Y, Lim H, El Kadiri H, Trim W (2009) A study on the structure and mechanical behavior of the Terrapene carolina carapace: a pathway to design bio-inspired synthetic composites. Mater Sci Eng C 29(8):2333. https://doi.org/10.1016/j.msec.2009.06.002

    Article  Google Scholar 

  72. Stayton CT (2011) Biomechanics on the half shell: functional performance influences patterns of morphological variation in the emydid turtle carapace. Zoology 114(4):213. https://doi.org/10.1016/j.zool.2011.03.002

    Article  Google Scholar 

  73. Zhang W, Yin S, Yu T, Xu J (2019) Crushing resistance and energy absorption of pomelo peel inspired hierarchical honeycomb. Int J Impact Eng 125:163. https://doi.org/10.1016/j.ijimpeng.2018.11.014

    Article  Google Scholar 

  74. Fischer SF, Thielen M, Loprang RR, Seidel R, Fleck C, Speck T, Bührig-Polaczek A (2010) Pummelos as concept generators for biomimetically inspired low weight structures with excellent damping properties. Adv Eng Mater 12(12):B658. https://doi.org/10.1002/adem.201080065

    Article  Google Scholar 

  75. Chintapalli RK, Mirkhalaf M, Dastjerdi AK, Barthelat F (2014) Fabrication, testing and modeling of a new flexible armor inspired from natural fish scales and osteoderms. Bioinspir Biomim 9(3):036005. https://doi.org/10.1088/1748-3182/9/3/036005

    Article  Google Scholar 

  76. Toni M, Dalla Valle L, Alibardi L (2007) Hard (beta-) keratins in the epidermis of reptiles: composition, sequence, and molecular organization. J Proteome Res 6(9):3377. https://doi.org/10.1021/pr0702619

    Article  Google Scholar 

  77. Yang W, Chen IH, Gludovatz B, Zimmermann EA, Ritchie RO, Meyers MA (2013) Natural flexible dermal armor. Adv Mater 25(1):31. https://doi.org/10.1002/adma.201202713

    Article  Google Scholar 

  78. Owen-Smith RN (1988) Megaherbivores: the influence of very large body size on ecology. Cambridge University Press, Cambridge. https://doi.org/10.1016/0006-3207(90)90068-Z

    Book  Google Scholar 

  79. Heim M, Keerl D, Scheibel T (2009) Spider silk: from soluble protein to extraordinary fiber. Angew Chem Int Ed 48(20):3584. https://doi.org/10.1002/anie.200803341

    Article  Google Scholar 

  80. Okuda M, Takeguchi M, Tagaya M, Tonegawa T, Hashimoto A, Hanagata N, Ikoma T (2009) Elemental distribution analysis of type I collagen fibrils in tilapia fish scale with energy-filtered transmission electron microscope. Micron 40(5):665. https://doi.org/10.1016/j.micron.2009.04.001

    Article  Google Scholar 

  81. Vernerey FJ, Barthelat F (2010) On the mechanics of fishscale structures. Int J Solids Struct 47(17):2268. https://doi.org/10.1016/j.ijsolstr.2010.04.018

    Article  MATH  Google Scholar 

  82. Zhu D, Szewciw L, Vernerey F, Barthelat F (2013) Puncture resistance of the scaled skin from striped bass: collective mechanisms and inspiration for new flexible armor designs. J Mech Behav Biomed Mater 24:30. https://doi.org/10.1016/j.jmbbm.2013.04.011

    Article  Google Scholar 

  83. Libonati F, Vellwock AE, Louizi FE, Hoffmann R, Colombo C, Ziegmann G, Vergani L (2020) Squeeze-winding: a new manufacturing route for biomimetic fiber-reinforced structures. Compos Part A Appl Sci Manuf. https://doi.org/10.1016/j.compositesa.2020.105839

    Article  Google Scholar 

  84. Jia H, Li Y, Luan Y, Zheng Y, Yang J, Wang L, Guo Z, Wu X (2020) Bioinspired nacre-like GO-based bulk with easy scale-up process and outstanding mechanical properties. Compos Part A Appl Sci Manuf. https://doi.org/10.1016/j.compositesa.2020.105829

    Article  Google Scholar 

  85. Yadav R, Naebe M, Wang X, Kandasubramanian B (2016) Body armour materials: from steel to contemporary biomimetic systems. RSC Adv 6(116):115145. https://doi.org/10.1039/c6ra24016j

    Article  Google Scholar 

  86. Rout AK, Satapathy A (2012) Study on mechanical and tribo-performance of rice-husk filled glass-epoxy hybrid composites. Mater Des 41:131. https://doi.org/10.1016/j.matdes.2012.05.002

    Article  Google Scholar 

  87. Mishra P, Acharya S (2010) Solid particle erosion of bagasse fiber reinforced epoxy composite. Int J Phys Sci 5(2):109. https://doi.org/10.1142/S0218127410025612

    Article  Google Scholar 

  88. Gupta A, Kumar A, Patnaik A, Biswas S (2011) Effect of different parameters on mechanical and erosion wear behavior of bamboo fiber reinforced epoxy composites. Int J Polym Sci 2011:1. https://doi.org/10.1155/2011/592906

    Article  Google Scholar 

  89. Biswas S, Satapathy A (2010) A comparative study on erosion characteristics of red mud filled bamboo–epoxy and glass–epoxy composites. Mater Des 31(4):1752. https://doi.org/10.1016/j.matdes.2009.11.021

    Article  Google Scholar 

  90. Jena H, Pradhan AK, Pandit MK (2018) Study of solid particle erosion wear behavior of bamboo fiber reinforced polymer composite with cenosphere filler. Adv Polym Technol 37(3):761. https://doi.org/10.1002/adv.21718

    Article  Google Scholar 

  91. Ojha S, Raghavendra G, Acharya S (2014) A comparative investigation of bio waste filler (wood apple-coconut) reinforced polymer composites. Polym Compos 35(1):180. https://doi.org/10.1002/pc.22648

    Article  Google Scholar 

  92. Zainudin E, Yan LH, Haniffah W, Jawaid M, Alothman OY (2014) Effect of coir fiber loading on mechanical and morphological properties of oil palm fibers reinforced polypropylene composites. Polym Compos 35(7):1418. https://doi.org/10.1002/pc.22794

    Article  Google Scholar 

  93. Lv J, Zeng D, Wei C (2015) Mechanical and wear properties of sisal fiber cellulose microcrystal reinforced unsaturated polyester composites. Adv Polym Technol. https://doi.org/10.1002/adv.21483

    Article  Google Scholar 

  94. Sahu P, Gupta M (2019) Enhancement in erosion wear resistance of sisal composites by eco-friendly treatment and coating. Mater Res Express 6(8):085348. https://doi.org/10.1088/2053-1591/ab29b5

    Article  Google Scholar 

  95. Bhatnagar R, Gupta G, Yadav S (2015) A review on composition and properties of banana fibers. Cellulose 60:65

    Google Scholar 

  96. Mohanty JR (2015) Investigation on solid particle erosion behavior of date palm leaf fiber-reinforced polyvinyl pyrrolidone composites. J Thermoplast Compos Mater 30(7):1003. https://doi.org/10.1177/0892705715614079

    Article  Google Scholar 

  97. Mohanta N, Acharya SK (2015) Mechanical and tribological performance of Luffa cylindrica fibre-reinforced epoxy composite. BioResources 10(4):8364. https://doi.org/10.15376/biores.10.4.8364-8377

    Article  Google Scholar 

  98. Jha AK, Mantry S, Satapathy A, Patnaik A (2009) Erosive wear performance analysis of jute-epoxy-SiC hybrid composites. J Compos Mater 44(13):1623. https://doi.org/10.1177/0021998309353962

    Article  Google Scholar 

  99. Verma M, Malviya RK, Sahu G, Khandelwal A (2014) Taguchi analysis of erosion wear maize husk based polymer composite. Int J Mod Eng Res (IJMER) 4(3):130–138

    Google Scholar 

  100. Yang W, Sherman VR, Gludovatz B, Mackey M, Zimmermann EA, Chang EH, Schaible E, Qin Z, Buehler MJ, Ritchie RO et al (2014) Protective role of Arapaima gigas fish scales: structure and mechanical behavior. Acta Biomater 10(8):3599. https://doi.org/10.1016/j.actbio.2014.04.009

    Article  Google Scholar 

  101. Browning A, Ortiz C, Boyce MC (2013) Mechanics of composite elasmoid fish scale assemblies and their bioinspired analogues. J Mech Behav Biomed Mater 19:75. https://doi.org/10.1016/j.jmbbm.2012.11.003

    Article  Google Scholar 

  102. Aradhyula TV, Bian D, Reddy AB, Jeng YR, Chavali M, Sadiku E, Malkapuram R (2019) Compounding and the mechanical properties of catla fish scales reinforced-polypropylene composite-from biowaste to biomaterial. Adv Compos Mate. https://doi.org/10.1080/09243046.2019.1647981

    Article  Google Scholar 

  103. Satapathy A, Patnaik A, Pradhan MK (2009) A study on processing, characterization and erosion behavior of fish (Labeo-rohita) scale filled epoxy matrix composites. Mater Des 30(7):2359. https://doi.org/10.1016/j.matdes.2008.10.033

    Article  Google Scholar 

  104. Toro P, Quijada R, Yazdani-Pedram M, Arias JL (2007) Eggshell, a new bio-filler for polypropylene composites. Mater Lett 61(22):4347. https://doi.org/10.1016/j.matlet.2007.01.102

    Article  Google Scholar 

  105. Khan MA, Manikandan S, Ebenezer G, Uthayakumar M, Kumaran ST (2019) Solid particle erosion studies on fibre composite with egg shell as filler materials. Int J Surf Sci Eng 13(1):1. https://doi.org/10.1504/IJSURFSE.2019.10019179

    Article  Google Scholar 

  106. Panchal M, Raghavendra G, Prakash MO, Ojha S (2018) Effects of environmental conditions on erosion wear of eggshell particulate epoxy composites. Silicon 10(2):627. https://doi.org/10.1007/s12633-016-9505-x

    Article  Google Scholar 

  107. Verma A, Negi P, Singh VK (2018) Experimental analysis on carbon residuum transformed epoxy resin: chicken feather fiber hybrid composite. Polym Compos 40(7):2690. https://doi.org/10.1002/pc.25067

    Article  Google Scholar 

  108. Jagadeeshgouda K, Reddy PR, Ishwaraprasad K (2014) Experimental study of behaviour of poultry feather fiber: a reinforcing material for composites. Int J Res Eng Technol 3(2):362. https://doi.org/10.15623/ijret.2014.0302065

    Article  Google Scholar 

  109. Ananda Rao V, Satapathy A, Mishra S (2007) Polymer composites reinforced with short fibers obtained from poultry feathers. In: Proceedings of international and INCCOM-6 conference, Future trends in composite materials and processing, December 12–14, 2007. Indian Institute of Technology, Kanpur. http://dspace.nitrkl.ac.in/dspace/handle/2080/561

  110. Verma SK, Gupta A, Singh T, Gangil B, Jánosi E, Fekete G (2019) Influence of dolomite on mechanical, physical and erosive wear properties of natural-synthetic fiber reinforced epoxy composites. Mater Res Express 6(12):125704. https://doi.org/10.1088/2053-1591/ab5abb

    Article  Google Scholar 

  111. Rout AK, Satapathy A (2013) Study on mechanical and erosion wear performance of granite filled glass–epoxy hybrid composites. Proc Inst Mech Eng Part L J Mater Des Appl 229(1):38. https://doi.org/10.1177/1464420713499483

    Article  Google Scholar 

  112. Pawar M, Patnaik A, Nagar R (2016) Numerical simulation and experimental validation of granite powder filled jute epoxy composite for slurry jet erosive wear. Int Polym Process 31(1):37. https://doi.org/10.3139/217.3135

    Article  Google Scholar 

  113. Rout A, Satapathy A, Mantry S, Sahoo A, Mohanty T (2012) Erosion wear performance analysis of polyester-GF-granite hybrid composites using the Taguchi method. Procedia Eng 38:1863. https://doi.org/10.1016/j.proeng.2012.06.230

    Article  Google Scholar 

  114. Kalusuraman G, Kumaran ST, Aslan M, Küçükömeroğluc T, Siva I (2019) Use of waste copper slag filled jute fiber reinforced composites for effective erosion prevention. Measurement 148:106950. https://doi.org/10.1016/j.measurement.2019.106950

    Article  Google Scholar 

  115. Purohit A, Satapathy A (2018) Erosion wear response of epoxy composites filled with steel industry slag and sludge particles: a comparative study. IOP Conf Ser Mater Sci Eng 338:012059. https://doi.org/10.1088/1757-899x/338/1/012059

    Article  Google Scholar 

  116. Padhi PK, Satapathy A (2012) Prediction and simulation of erosion wear behavior of glass–epoxy composites filled with blast furnace slag. Adv Mater Res 585:549. https://doi.org/10.4028/www.scientific.net/AMR.585.549

    Article  Google Scholar 

  117. Pani B, Chandrasekhar P, Singh S (2019) Investigation of erosion behaviour of an iron-mud filled glass-fibre epoxy hybrid composite. Bull Mater Sci 42(5):217. https://doi.org/10.1007/s12034-019-1894-1

    Article  Google Scholar 

  118. Chang BP, Akil HM, Zamri M (2017) Tribological characteristics of green biocomposites. Green Biocompos. https://doi.org/10.1007/978-3-319-46610-1_7

    Article  Google Scholar 

  119. Omrani E, Menezes PL, Rohatgi PK (2016) State of the art on tribological behavior of polymer matrix composites reinforced with natural fibers in the green materials world. Eng Sci Technol Int J 19(2):717. https://doi.org/10.1016/j.jestch.2015.10.007

    Article  Google Scholar 

  120. Vigneshwaran S, Uthayakumar M, Arumugaprabu V, Deepak Joel Johnson R (2018) Influence of filler on erosion behavior of polymer composites: a comprehensive review. J Reinf Plast Compos 37(15):1011. https://doi.org/10.1177/0731684418777111

    Article  Google Scholar 

  121. Miyazaki N (2016) Solid particle erosion of composite materials: a critical review. J Compos Mater 50(23):3175. https://doi.org/10.1177/0021998315617818

    Article  Google Scholar 

  122. Erkliğ A, Alsaadi M, Bulut M (2016) A comparative study on industrial waste fillers affecting mechanical properties of polymer-matrix composites. Mater Res Express 3(10):105302. https://doi.org/10.1088/2053-1591/3/10/105302

    Article  Google Scholar 

  123. Sawyer WG, Freudenberg KD, Bhimaraj P, Schadler LS (2003) A study on the friction and wear behavior of PTFE filled with alumina nanoparticles. Wear 254(5–6):573. https://doi.org/10.1016/s0043-1648(03)00252-7

    Article  Google Scholar 

  124. Akinci A, Ercenk E, Yilmaz S, Sen U (2011) Slurry erosion behaviors of basalt filled low density polyethylene composites. Mater Des 32(5):3106. https://doi.org/10.1016/j.matdes.2010.12.029

    Article  Google Scholar 

  125. Felix D (2017) Experimental investigation on suspended sediment, hydro-abrasive erosion and efficiency reductions of coated pelton turbines. Ph.D. thesis, ETH Zurich

  126. Ali V, Haque FZ, Zulfequar M, Husain M (2007) Preparation and characterization of polyether-based polyurethane dolomite composite. J Appl Polym Sci 103(4):2337. https://doi.org/10.1002/app.24839

    Article  Google Scholar 

  127. Karaca S, Gürses A, Ejder M, Açıkyıldız M (2006) Adsorptive removal of phosphate from aqueous solutions using raw and calcinated dolomite. J Hazard Mater 128(2–3):273. https://doi.org/10.1016/j.jhazmat.2005.08.003

    Article  Google Scholar 

  128. Egan P, Sinko R, LeDuc PR, Keten S (2015) The role of mechanics in biological and bio-inspired systems. Nat Commun 6:7418. https://doi.org/10.1038/ncomms8418

    Article  Google Scholar 

  129. Liu K, Jiang L (2011) Bio-inspired design of multiscale structures for function integration. Nano Today 6(2):155. https://doi.org/10.1016/j.nantod.2011.02.002

    Article  Google Scholar 

  130. Elices M, Guinea G, Pérez-Rigueiro J, Plaza G (2011) Polymeric fibers with tunable properties: lessons from spider silk. Mater Sci Eng C 31(6):1184. https://doi.org/10.1016/j.msec.2010.11.010

    Article  Google Scholar 

  131. Salehi S, Koeck K, Scheibel T (2020) Spider silk for tissue engineering applications. Molecules. https://doi.org/10.3390/molecules25030737

    Article  Google Scholar 

  132. Cao Y, Mei ML, Li QL, Lo ECM, Chu CH (2014) Agarose hydrogel biomimetic mineralization model for the regeneration of enamel prismlike tissue. ACS Appl Mater interfaces 6(1):410. https://doi.org/10.1021/am4044823

    Article  Google Scholar 

  133. Han M, Li QL, Cao Y, Fang H, Xia R, Zhang ZH (2017) In vivo remineralization of dentin using an agarose hydrogel biomimetic mineralization system. Sci Rep 7:41955. https://doi.org/10.1038/srep41955

    Article  Google Scholar 

  134. Zhao X, Tang G, Liu Z, Zhang YW (2020) Numerical investigation of erosion characteristics of multiple-particle impact on ductile material with patterned surfaces. Powder Technol 362:527. https://doi.org/10.1016/j.powtec.2019.12.005

    Article  Google Scholar 

  135. Wahab J, Ghazali MJ (2019) Erosion resistance of laser textured plasma-sprayed Al2o3-13% Tio2 coatings on mild steel. Wear 432–433:202937. https://doi.org/10.1016/j.wear.2019.202937

    Article  Google Scholar 

  136. Perera AS, Coppens MO (2019) Re-designing materials for biomedical applications: from biomimicry to nature-inspired chemical engineering. Philos Trans A Math Phys Eng Sci 377(2138):20180268. https://doi.org/10.1098/rsta.2018.0268

    Article  Google Scholar 

  137. Menezes PL, Nosonovsky M, Ingole SP, Kailas SV, Lovell MR (2013) Tribology for scientists and engineers. Springer, Berlin. https://doi.org/10.1007/978-1-4614-1945-7

    Book  Google Scholar 

  138. Zheng L, Wu J, Zhang S, Sun S, Zhang Z, Liang S, Liu Z, Ren L (2016) Bionic coupling of hardness gradient to surface texture for improved anti-wear properties. J Bionic Eng 13(3):406. https://doi.org/10.1016/s1672-6529(16)60313-x

    Article  Google Scholar 

  139. Wang H, Xu H, Li Q, Fu Y (2018) PHP-based collaborative education and management system for water hydraulic laboratory. Comput Appl Eng Educ 26(2):259. https://doi.org/10.1002/cae.21882

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of China under Grant 51875113, Natural Science Foundation of the Heilongjiang Province of China under Grant F2016003, and Natural Science Joint Guidance Foundation of the Heilongjiang Province of China under Grant LH2019E027. Also, we are grateful to Mr. Vishwanath Pooneeth for excellent language polishing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to He Xu.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Ethical approval

This study does not contain any studies with human or animal subjects performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, F., Xu, H. A review of biomimetic research for erosion wear resistance. Bio-des. Manuf. 3, 331–347 (2020). https://doi.org/10.1007/s42242-020-00079-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42242-020-00079-3

Keywords

Navigation