Skip to main content
Log in

Fabrication of agarose hydrogel with patterned silver nanowires for motion sensor

  • Research Article
  • Published:
Bio-Design and Manufacturing Aims and scope Submit manuscript

Abstract

In this work, a facile strategy is proposed to construct stretchable electronics based on agarose hydrogels. The hot agarose solution is casted onto a template with patterned Ag nanowires, endowing agarose hydrogel with patterned conductive surface. After further heating treatment, Ag nanowires can be embedded into the agarose hydrogel, which improves the stability of Ag pattern and has no obvious effect on the conductivity of hydrogels. The agarose hydrogel with patterned Ag nanowires is certified to be an effective stretchable electrode to record the motion of joints, which has great potential applications in the field of wearable devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Yang Y, Gao W (2019) Wearable and flexible electronics for continuous molecular monitoring. Chem Soc Rev 48(6):1465–1491. https://doi.org/10.1039/c7cs00730b

    Article  Google Scholar 

  2. Toh WY, Tan YK, Koh WS, Siek L (2014) Autonomous wearable sensor nodes with flexible energy harvesting. IEEE Sens J 14(7):2299–2306. https://doi.org/10.1109/jsen.2014.2309900

    Article  Google Scholar 

  3. Teng X-F, Zhang Y-T, Poon CCY, Bonato P (2008) Wearable medical systems for p-Health. IEEE Rev Biomed Eng 1:62–74. https://doi.org/10.1109/rbme.2008.2008248

    Article  Google Scholar 

  4. Sanni A, Vilches A, Toumazou C (2012) Inductive and ultrasonic multi-tier interface for low-power, deeply implantable medical devices. IEEE Trans Biomed Circuits Syst 6(4):297–308. https://doi.org/10.1109/tbcas.2011.2175390

    Article  Google Scholar 

  5. Yuk H, Lu B, Zhao X (2019) Hydrogel bioelectronics. Chem Soc Rev 48(6):1642–1667. https://doi.org/10.1039/c8cs00595h

    Article  Google Scholar 

  6. Guo Y, Zhong M, Fang Z, Wan P, Yu G (2019) A wearable transient pressure sensor made with MXene nanosheets for sensitive broad-range human-machine interfacing. Nano Lett 19(2):1143–1150. https://doi.org/10.1021/acs.nanolett.8b04514

    Article  Google Scholar 

  7. Liao M, Wan P, Wen J, Gong M, Wu X, Wang Y, Shi R, Zhang L (2017) Wearable, healable, and adhesive epidermal sensors assembled from mussel-inspired conductive hybrid hydrogel framework. Adv Funct Mater 27(48):1703852. https://doi.org/10.1002/adfm.201703852

    Article  Google Scholar 

  8. Zhang M, Zhao M, Jian M, Wang C, Yu A, Yin Z, Liang X, Wang H, Xia K, Liang X, Zhai J, Zhang Y (2019) Printable smart pattern for multifunctional energy-management e-textile. Matter. https://doi.org/10.1016/j.matt.2019.02.003

    Article  Google Scholar 

  9. Trivedi TJ, Rao KS, Kumar A (2014) Facile preparation of agarose–chitosan hybrid materials and nanocomposite ionogels using an ionic liquid via dissolution, regeneration and sol–gel transition. Green Chem 16(1):320–330. https://doi.org/10.1039/c3gc41317a

    Article  Google Scholar 

  10. Hur J, Im K, Kim SW, Kim J, Chung D-Y, Kim T-H, Jo KH, Hahn JH, Bao Z, Hwang S, Park N (2014) Polypyrrole/agarose-based electronically conductive and reversibly restorable hydrogel. ACS Nano 8(10):10066–10076. https://doi.org/10.1021/nn502704g

    Article  Google Scholar 

  11. Zheng WJ, An N, Yang JH, Zhou J, Chen YM (2015) Tough Al-alginate/poly(N-isopropylacrylamide) hydrogel with tunable LCST for soft robotics. ACS Appl Mater Interfaces 7(3):1758–1764. https://doi.org/10.1021/am507339r

    Article  Google Scholar 

  12. Nordqvist D, Vilgis TA (2011) Rheological study of the gelation process of agarose-based solutions. Food Biophys 6(4):450–460. https://doi.org/10.1007/s11483-011-9225-0

    Article  Google Scholar 

  13. Kusukawa N, Ostrovsky MV, Garner MM (1999) Effect of gelation conditions on the gel structure and resolving power of agarose-based DNA sequencing gels. Electrophoresis 20(7):1455–1461. https://doi.org/10.1002/(sici)1522-2683(19990601)20:7%3c1455:aid-elps1455%3e3.3.co;2-c

    Article  Google Scholar 

  14. Lin T, Shi M, Huang F, Peng J, Bai Q, Li J, Zhai M (2018) One-pot synthesis of a double-network hydrogel electrolyte with extraordinarily excellent mechanical properties for a highly compressible and bendable flexible supercapacitor. ACS Appl Mater Interfaces 10(35):29684–29693. https://doi.org/10.1021/acsami.8b11377

    Article  Google Scholar 

  15. Vardar E, Vert M, Coudane J, Hasirci V, Hasirci N (2012) Porous agarose-based semi-IPN hydrogels: characterization and cell affinity studies. J Biomater Sci Polym Ed 23(18):2273–2286. https://doi.org/10.1163/156856211X614770

    Article  Google Scholar 

  16. Chen Q, Zhu L, Zhao C, Wang Q, Zheng J (2013) A robust, one-pot synthesis of highly mechanical and recoverable double network hydrogels using thermoreversible sol-gel polysaccharide. Adv Mater 25(30):4171–4176. https://doi.org/10.1002/adma.201300817

    Article  Google Scholar 

  17. Wang S, Zhang R, Yang Y, Wu S, Cao Y, Lu A, Zhang L (2018) Strength enhanced hydrogels constructed from agarose in alkali/urea aqueous solution and their application. Chem Eng J 331:177–184. https://doi.org/10.1016/j.cej.2017.08.118

    Article  Google Scholar 

  18. Jian H, Wang M, Wang S, Wang A, Bai S (2018) 3D bioprinting for cell culture and tissue fabrication. Biodes Manuf 1(1):45–61. https://doi.org/10.1007/s42242-018-0006-1

    Article  Google Scholar 

  19. Sun S, Xiao Q-R, Zhou X, Wei Y-Y, Shi L, Jiang Y (2018) A bio-based environment-friendly membrane with facile preparation process for oil–water separation. Colloids Surf A Physicochem Eng Asp 559:18–22. https://doi.org/10.1016/j.colsurfa.2018.09.038

    Article  Google Scholar 

  20. Deng J, Liang W, Rhodes S, Fang J (2019) Influence of polymer networks on the sensor properties of hydrogel dispersed liquid crystal droplets. Colloids Surf A Physicochem Eng Asp 570:438–443. https://doi.org/10.1016/j.colsurfa.2019.03.066

    Article  Google Scholar 

  21. Bai S, Nguyen TL, Mulvaney P, Wang D (2010) Using hydrogels to accommodate hydrophobic nanoparticles in aqueous media via solvent exchange. Adv Mater 22(30):3247–3250. https://doi.org/10.1002/adma.201000336

    Article  Google Scholar 

  22. Wang J, Zhang X, Huang X, Wang S, Qian Q, Du W, Wang Y (2013) Forced assembly of water-dispersible carbon nanotubes trapped in paper for cheap gas sensors. Small 9(22):3759–3764. https://doi.org/10.1002/smll.201300655

    Article  Google Scholar 

  23. Yamada T, Hayamizu Y, Yamamoto Y, Yomogida Y, Izadi-Najafabadi A, Futaba DN, Hata K (2011) A stretchable carbon nanotube strain sensor for human-motion detection. Nat Nanotechnol 6(5):296–301. https://doi.org/10.1038/nnano.2011.36

    Article  Google Scholar 

  24. Yang Y, Ding S, Araki T, Jiu J, Sugahara T, Wang J, Vanfleteren J, Sekitani T, Suganuma K (2016) Facile fabrication of stretchable Ag nanowire/polyurethane electrodes using high intensity pulsed light. Nano Res 9(2):401–414. https://doi.org/10.1007/s12274-015-0921-9

    Article  Google Scholar 

  25. McAlpine MC, Ahmad H, Wang D, Heath JR (2007) Highly ordered nanowire arrays on plastic substrates for ultrasensitive flexible chemical sensors. Nat Mater 6(5):379–384. https://doi.org/10.1038/nmat1891

    Article  Google Scholar 

  26. Qian F, Lan PC, Freyman MC, Chen W, Kou T, Olson TY, Zhu C, Worsley MA, Duoss EB, Spadaccini CM, Baumann T, Han TY (2017) Ultralight conductive silver nanowire aerogels. Nano Lett 17(12):7171–7176. https://doi.org/10.1021/acs.nanolett.7b02790

    Article  Google Scholar 

  27. Chen R, Das SR, Jeong C, Khan MR, Janes DB, Alam MA (2013) Co-percolating graphene-wrapped silver nanowire network for high performance, highly stable, transparent conducting electrodes. Adv Funct Mater 23(41):5150–5158. https://doi.org/10.1002/adfm.201300124

    Article  Google Scholar 

  28. Wu C, Fang L, Huang X, Jiang P (2014) Three-dimensional highly conductive graphene-silver nanowire hybrid foams for flexible and stretchable conductors. ACS Appl Mater Interfaces 6(23):21026–21034. https://doi.org/10.1021/am505908d

    Article  Google Scholar 

  29. Amjadi M, Pichitpajongkit A, Lee S, Ryu S, Park I (2014) Highly stretchable and sensitive strain sensor based on silver nanowire-elastomer nanocomposite. ACS Nano 8(5):5154–5163. https://doi.org/10.1021/nn501204t

    Article  Google Scholar 

  30. Park M, Im J, Shin M, Min Y, Park J, Cho H, Park S, Shim MB, Jeon S, Chung DY, Bae J, Park J, Jeong U, Kim K (2012) Highly stretchable electric circuits from a composite material of silver nanoparticles and elastomeric fibres. Nat Nanotechnol 7(12):803–809. https://doi.org/10.1038/nnano.2012.206

    Article  Google Scholar 

  31. Song P, Qin H, Gao HL, Cong HP, Yu SH (2018) Self-healing and superstretchable conductors from hierarchical nanowire assemblies. Nat Commun 9(1):2786. https://doi.org/10.1038/s41467-018-05238-w

    Article  Google Scholar 

  32. Jiu J, Araki T, Wang J, Nogi M, Sugahara T, Nagao S, Koga H, Suganuma K, Nakazawa E, Hara M, Uchida H, Shinozaki K (2014) Facile synthesis of very-long silver nanowires for transparent electrodes. J Mater Chem A 2(18):6326–6330. https://doi.org/10.1039/c4ta00502c

    Article  Google Scholar 

  33. Xu F, Zhu Y (2012) Highly conductive and stretchable silver nanowire conductors. Adv Mater 24(37):5117–5122. https://doi.org/10.1002/adma.201201886

    Article  Google Scholar 

  34. Jiu J, Murai K, Kim D, Kim K, Suganuma K (2009) Preparation of Ag nanorods with high yield by polyol process. Mater Chem Phys 114(1):333–338. https://doi.org/10.1016/j.matchemphys.2008.09.028

    Article  Google Scholar 

  35. Jiu J, Tokuno T, Nogi M, Suganuma K (2012) Synthesis and application of Ag nanowires via a trace salt assisted hydrothermal process. J Nanopart Res. https://doi.org/10.1007/s11051-012-0975-5

    Article  Google Scholar 

  36. Sun YG, Yin YD, Mayers BT, Herricks T, Xia YN (2002) Uniform silver nanowires synthesis by reducing AgNO3 with ethylene glycol in the presence of seeds and poly(vinyl pyrrolidone). Chem Mater 14(11):4736–4745. https://doi.org/10.1021/cm020587b

    Article  Google Scholar 

  37. Fatin-Rouge N, Milon A, Buffle J, Goulet RR, Tessier A (2003) Diffusion and partitioning of solutes in agarose hydrogels: the relative influence of electrostatic and specific interactions. J Phys Chem B 107(44):12126–12137. https://doi.org/10.1021/jp0303164

    Article  Google Scholar 

  38. Rees DA (1969) Structure, conformation, and mechanism in the formation of polysaccharide gels and networks. Adv Carbohydr Chem Biochem 24:267–332

    Article  Google Scholar 

  39. Wang H, Tang H, Liang J, Chen Y (2018) Dynamic agitation-induced centrifugal purification of nanowires enabling transparent electrodes with 99.2% transmittance. Adv Funct Mater 28(45):1804479. https://doi.org/10.1002/adfm.201804479

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support from the National Natural Science Foundation of China (Project No. 21774132, 21703253, 21877052, 31700706), Natural Science Foundation for Distinguished Young Scholars of Jiangsu Province (BK20180030), the Fundamental Research Funds for the Central Universities (JUSRP51712B) and Open Funding Project of the State Key Laboratory of Biochemical Engineering (No. 2019KF-02).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Anhe Wang, Shuo Bai or Jian Yin.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Ethical approval

This study does not contain any studies with human or animal subjects performed by any of the authors.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 948 kb)

Supplementary material 2 (AVI 5044 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, Q., Chen, Y., Song, W. et al. Fabrication of agarose hydrogel with patterned silver nanowires for motion sensor. Bio-des. Manuf. 2, 269–277 (2019). https://doi.org/10.1007/s42242-019-00051-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42242-019-00051-w

Keywords

Navigation