Comparison of low-pressure oxygen plasma and chemical treatments for surface modifications of Ti6Al4V

Abstract

Different treatments were conducted over Ti6Al4V samples in order to produce a surface modification to increase cell attachment and proliferation. The surface treatments evaluated in this study were as follows: etching with sulfuric acid/hydrochloric acid, oxidizing with hydrogen peroxide and low-pressure oxygen plasma treatment. In contrast to other works found in the literature, this research conducts a comparison between different chemical and physical treatments in terms of different assays for surface characterization: X-ray diffraction, scanning electron microscope (SEM), energy-dispersive X-ray spectroscopy, water contact angle, release of vanadium ions and cell viability tests (MTT) of human osteoblasts (hFOB 1.19). Cell morphology over the different substrates was also studied by SEM observation. It was found that plasma and peroxide treatments increase the O/Ti ratio at the titanium surface and provide an increase in cell affinity. On the other hand, acid etching provides a superhydrophilic surface which is not able to improve the cell attachment of human osteoblasts.

Graphical abstract

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    Sandomierski M, Buchwald T, Strzemiecka B, Voelkel A (2018) Modification of Ti6Al4V surface by diazonium compounds. Spectrochim Acta Part A Mol Biomol Spectrosc 191:27–35. https://doi.org/10.1016/j.saa.2017.09.070

    Article  Google Scholar 

  2. 2.

    Wang G, Fu H, Zhao Y, Zhou K, Zhu S (2017) Bone integration properties of antibacterial biomimetic porous titanium implants. Trans Nonferrous Met Soc China 27:2007–2014. https://doi.org/10.1016/S1003-6326(17)60225-5

    Article  Google Scholar 

  3. 3.

    Ataee A, Li Y, Fraser D, Song G, Wen C (2018) Anisotropic Ti–6Al–4V gyroid scaffolds manufactured by electron beam melting (EBM) for bone implant applications. Mater Des 137:345–354. https://doi.org/10.1016/j.matdes.2017.10.040

    Article  Google Scholar 

  4. 4.

    Hu X, Neoh KG, Shi Z, Kang ET, Poh C, Wang W (2010) An in vitro assessment of titanium functionalized with polysaccharides conjugated with vascular endothelial growth factor for enhanced osseointegration and inhibition of bacterial adhesion. Biomaterials 31:8854–8863. https://doi.org/10.1016/j.biomaterials.2010.08.006

    Article  Google Scholar 

  5. 5.

    Zhao L, Hu Y, Xu D, Cai K (2014) Surface functionalization of titanium substrates with chitosan–lauric acid conjugate to enhance osteoblasts functions and inhibit bacteria adhesion. Colloids Surf B Biointerfaces 119:115–125. https://doi.org/10.1016/J.COLSURFB.2014.05.002

    Article  Google Scholar 

  6. 6.

    Osmon DR, Berbari EF, Berendt AR, Lew D, Zimmerli W, Steckelberg JM, Rao N, Hanssen A, Wilson WR (2013) Diagnosis and management of prosthetic joint infection: clinical practice guidelines by the infectious diseases Society of America. Clin Infect Dis 56:e1–e25. https://doi.org/10.1093/cid/cis803

    Article  Google Scholar 

  7. 7.

    Ahuir-Torres JI, Arenas MA, Perrie W, de Damborenea J (2018) Influence of laser parameters in surface texturing of Ti6Al4V and AA2024-T3 alloys. Opt Lasers Eng 103:100–109. https://doi.org/10.1016/j.optlaseng.2017.12.004

    Article  Google Scholar 

  8. 8.

    Moon B-S, Kim S, Kim H-E, Jang T-S (2017) Hierarchical micro-nano structured Ti6Al4V surface topography via two-step etching process for enhanced hydrophilicity and osteoblastic responses. Mater Sci Eng C 73:90–98. https://doi.org/10.1016/j.msec.2016.12.064

    Article  Google Scholar 

  9. 9.

    Ramskogler C, Warchomicka F, Mostofi S, Weinberg A, Sommitsch C (2017) Innovative surface modification of Ti6Al4V alloy by electron beam technique for biomedical application. Mater Sci Eng C 78:105–113

    Article  Google Scholar 

  10. 10.

    Habibovic P, Li J, van der Valk CM, Meijer G, Layrolle P, van Blitterswijk CA, de Groot K (2005) Biological performance of uncoated and octacalcium phosphate-coated Ti6Al4V. Biomaterials 26:23–36. https://doi.org/10.1016/j.biomaterials.2004.02.026

    Article  Google Scholar 

  11. 11.

    Stoch A, Jastrzȩbski W, Brozek A, Stoch J, Szaraniec J, Trybalska B, Kmita G (2000) FTIR absorption-reflection study of biomimetic growth of phosphates on titanium implants. J Mol Struct. https://doi.org/10.1016/s0022-2860(00)00623-2

    Article  Google Scholar 

  12. 12.

    Singh G, Singh S, Prakash S (2011) Surface characterization of plasma sprayed pure and reinforced hydroxyapatite coating on Ti6Al4V alloy. Surf Coat Technol 205:4814–4820. https://doi.org/10.1016/j.surfcoat.2011.04.064

    Article  Google Scholar 

  13. 13.

    He D, Liu P, Liu X, Ma F, Chen X, Li W, Du J, Wang P, Zhao J (2016) Characterization of hydroxyapatite coatings deposited by hydrothermal electrochemical method on NaOH immersed Ti6Al4V. J Alloys Compd 672:336–343. https://doi.org/10.1016/j.jallcom.2016.02.173

    Article  Google Scholar 

  14. 14.

    Jang CH, Lee H, Kim M, Kim GH (2018) Accelerated osteointegration of the titanium-implant coated with biocomponents, collagen/hydroxyapatite/bone morphogenetic protein-2, for bone-anchored hearing aid. J Ind Eng Chem. https://doi.org/10.1016/j.jiec.2018.02.019

    Article  Google Scholar 

  15. 15.

    Rodriguez GM, Bowen J, Grossin D, Ben-Nissan B, Stamboulis A (2017) Functionalisation of Ti6Al4V and hydroxyapatite surfaces with combined peptides based on KKLPDA and EEEEEEEE peptides. Colloids Surf B Biointerfaces 160:154–160. https://doi.org/10.1016/j.colsurfb.2017.09.022

    Article  Google Scholar 

  16. 16.

    Felgueiras HP, Migonney V (2016) Cell spreading and morphology variations as a result of protein adsorption and bioactive coating on Ti6Al4V surfaces. IRBM 37:165–171. https://doi.org/10.1016/J.IRBM.2016.03.006

    Article  Google Scholar 

  17. 17.

    Felgueiras HP, Decambron A, Manassero M, Tulasne L, Evans MDM, Viateau V, Migonney V (2017) Bone tissue response induced by bioactive polymer functionalized Ti6Al4V surfaces: in vitro and in vivo study. J Colloid Interface Sci 491:44–54. https://doi.org/10.1016/j.jcis.2016.12.023

    Article  Google Scholar 

  18. 18.

    Rodríguez-Cano A, Cintas P, Fernández-Calderón MC, Pacha-Olivenza MÁ, Crespo L, Saldaña L, Vilaboa N, González-Martín ML, Babiano R (2013) Controlled silanization-amination reactions on the Ti6Al4V surface for biomedical applications. Colloids Surf B Biointerfaces 106:248–257. https://doi.org/10.1016/j.colsurfb.2013.01.034

    Article  Google Scholar 

  19. 19.

    Michiardi A, Hélary G, Nguyen PCT, Gamble LJ, Anagnostou F, Castner DG, Migonney V (2010) Bioactive polymer grafting onto titanium alloy surfaces. Acta Biomater 6:667–675. https://doi.org/10.1016/j.actbio.2009.08.043

    Article  Google Scholar 

  20. 20.

    Lv H, Chen Z, Yang X, Cen L, Zhang X, Gao P (2014) Layer-by-layer self-assembly of minocycline-loaded chitosan/alginate multilayer on titanium substrates to inhibit biofilm formation. J Dent 42:1464–1472. https://doi.org/10.1016/j.jdent.2014.06.003

    Article  Google Scholar 

  21. 21.

    Aita H, Hori N, Takeuchi M, Suzuki T, Yamada M, Anpo M, Ogawa T (2009) The effect of ultraviolet functionalization of titanium on integration with bone. Biomaterials 30:1015–1025. https://doi.org/10.1016/j.biomaterials.2008.11.004

    Article  Google Scholar 

  22. 22.

    Ueno T, Yamada M, Suzuki T, Minamikawa H, Sato N, Hori N, Takeuchi K, Hattori M, Ogawa T (2010) Enhancement of bone–titanium integration profile with UV-photofunctionalized titanium in a gap healing model. Biomaterials 31:1546–1557. https://doi.org/10.1016/J.BIOMATERIALS.2009.11.018

    Article  Google Scholar 

  23. 23.

    Lee J-H, Jeong W-S, Seo S-J, Kim H-W, Kim K-N, Choi E-H, Kim K-M (2017) Non-thermal atmospheric pressure plasma functionalized dental implant for enhancement of bacterial resistance and osseointegration. Dent Mater 33:257–270. https://doi.org/10.1016/J.DENTAL.2016.11.011

    Article  Google Scholar 

  24. 24.

    de Queiroz JDF, de Souza Leal AM, Terada M, Agnez-Lima LF, Costa I, de Souza Pinto NC, Batistuzzo de Medeiros SR (2014) Surface modification by argon plasma treatment improves antioxidant defense ability of CHO-k1 cells on titanium surfaces. Toxicol Vitro 28(2014):381–387. https://doi.org/10.1016/j.tiv.2013.11.012

    Article  Google Scholar 

  25. 25.

    Choi S-H, Jeong W-S, Cha J-Y, Lee J-H, Yu H-S, Choi E-H, Kim K-M, Hwang C-J (2016) Time-dependent effects of ultraviolet and nonthermal atmospheric pressure plasma on the biological activity of titanium. Sci Rep 6:33421. https://doi.org/10.1038/srep33421

    Article  Google Scholar 

  26. 26.

    Zreiqat H, Valenzuela SM, Ben Nissan B, Roest R, Knabe C, Radlanski RJ, Renz H, Evans PJ (2005) The effect of surface chemistry modification of titanium alloy on signalling pathways in human osteoblasts. Biomaterials 26:7579–7586. https://doi.org/10.1016/j.biomaterials.2005.05.024

    Article  Google Scholar 

  27. 27.

    Chen S, Usta AD, Eriten M (2017) Microstructure and wear resistance of Ti6Al4V surfaces processed by pulsed laser. Surf Coat Technol 315:220–231. https://doi.org/10.1016/j.surfcoat.2017.02.031

    Article  Google Scholar 

  28. 28.

    Rebl H, Finke B, Lange R, Weltmann KD, Nebe JB (2012) Impact of plasma chemistry versus titanium surface topography on osteoblast orientation. Acta Biomater 8:3840–3851. https://doi.org/10.1016/j.actbio.2012.06.015

    Article  Google Scholar 

  29. 29.

    Finke B, Hempel F, Testrich H, Artemenko A, Rebl H, Kylián O, Meichsner J, Biederman H, Nebe B, Weltmann KD, Schröder K (2011) Plasma processes for cell-adhesive titanium surfaces based on nitrogen-containing coatings. Surf Coat Technol 205:S520–S524. https://doi.org/10.1016/j.surfcoat.2010.12.044

    Article  Google Scholar 

  30. 30.

    Durdu S, Usta M, Berkem AS (2016) Bioactive coatings on Ti6Al4V alloy formed by plasma electrolytic oxidation. Surf Coat Technol 301:85–93. https://doi.org/10.1016/j.surfcoat.2015.07.053

    Article  Google Scholar 

  31. 31.

    Mussano F, Genova T, Verga Falzacappa E, Scopece P, Munaron L, Rivolo P, Mandracci P, Benedetti A, Carossa S, Patelli A (2017) In vitro characterization of two different atmospheric plasma jet chemical functionalizations of titanium surfaces. Appl Surf Sci 409:314–324. https://doi.org/10.1016/j.apsusc.2017.02.035

    Article  Google Scholar 

  32. 32.

    Cvijović-Alagić I, Cvijović Z, Bajat J, Rakin M (2016) Electrochemical behaviour of Ti-6Al-4V alloy with different microstructures in a simulated bio-environment. Mater Corros 67:1075–1087. https://doi.org/10.1002/maco.201508796

    Article  Google Scholar 

  33. 33.

    Kokubo T, Yamaguchi S (2016) Novel bioactive materials developed by simulated body fluid evaluation: surface-modified Ti metal and its alloys. Acta Biomater 44:16–30. https://doi.org/10.1016/j.actbio.2016.08.013

    Article  Google Scholar 

  34. 34.

    Daw AE, Kazi HAA, Colombo JS, Rowe WG, Williams DW, Waddington RJ, Thomas DW, Moseley R (2013) Differential cellular and microbial responses to nano-/micron-scale titanium surface roughness induced by hydrogen peroxide treatment. J Biomater Appl 28:144–160. https://doi.org/10.1177/0885328212441495

    Article  Google Scholar 

  35. 35.

    de Morais LS, Serra GG, Albuquerque Palermo EF, Andrade LR, Müller CA, Meyers MA, Elias CN (2009) Systemic levels of metallic ions released from orthodontic mini-implants. Am J Orthod Dentofac Orthop 135:522–529. https://doi.org/10.1016/j.ajodo.2007.04.045

    Article  Google Scholar 

  36. 36.

    Chassot E, Irigaray J, Terver S, Vanneuville G (2004) Contamination by metallic elements released from joint prostheses. Med Eng Phys 26:193–199. https://doi.org/10.1016/J.MEDENGPHY.2003.10.008

    Article  Google Scholar 

  37. 37.

    Costa BC, Tokuhara CK, Rocha LA, Oliveira RC, Lisboa-Filho PN, Costa Pessoa J (2018) Vanadium ionic species from degradation of Ti-6Al-4V metallic implants: in vitro cytotoxicity and speciation evaluation. Mater Sci Eng C 96:730–739. https://doi.org/10.1016/j.msec.2018.11.090

    Article  Google Scholar 

  38. 38.

    Montiel-Dávalos A, Gonzalez-Villava A, Rodriguez-Lara V, Montaño LF, Fortoul TI, López-Marure R (2012) Vanadium pentoxide induces activation and death of endothelial cells. J Appl Toxicol 32:26–33. https://doi.org/10.1002/jat.1695

    Article  Google Scholar 

  39. 39.

    Sharan J, Koul V, Dinda AK, Kharbanda OP, Lale SV, Duggal R, Mishra M, Gupta G, Singh MP (2018) Bio-functionalization of grade V titanium alloy with type I human collagen for enhancing and promoting human periodontal fibroblast cell adhesion—an in vitro study. Colloids Surf B Biointerfaces 161:1–9. https://doi.org/10.1016/J.COLSURFB.2017.10.024

    Article  Google Scholar 

  40. 40.

    Mamaghani AH, Haghighat F, Lee C-S (2018) Gas phase adsorption of volatile organic compounds onto titanium dioxide photocatalysts. Chem Eng J 337:60–73. https://doi.org/10.1016/J.CEJ.2017.12.082

    Article  Google Scholar 

  41. 41.

    Gomathi Thanga Keerthana B, Solaiyammal T, Muniyappan S, Murugakoothan P (2018) Hydrothermal synthesis and characterization of TiO2 nanostructures prepared using different solvents. Mater Lett 220:20–23. https://doi.org/10.1016/j.matlet.2018.02.119

    Article  Google Scholar 

  42. 42.

    Mandracci P, Mussano F, Rivolo P, Carossa S (2016) Surface treatments and functional coatings for biocompatibility improvement and bacterial adhesion reduction in dental implantology. Coatings 6:7. https://doi.org/10.3390/coatings6010007

    Article  Google Scholar 

  43. 43.

    Chen YK, Ji H, Zheng XB (2007) Apatite formation on vacuum plasma sprayed titanium coating after chemical modification. In: Thermal spray 2007: global coating solutions. ASM International. https://www.asminternational.org/home/-/journal_content/56/10192/CP2007ITSC0381/CONFERENCE-PAPER

  44. 44.

    Li R, Riester L, Watkins TR, Blau PJ, Shih AJ (2008) Metallurgical analysis and nanoindentation characterization of Ti–6Al–4V workpiece and chips in high-throughput drilling. Mater Sci Eng A 472:115–124. https://doi.org/10.1016/J.MSEA.2007.03.054

    Article  Google Scholar 

  45. 45.

    Ban S, Iwaya Y, Kono H, Sato H (2006) Surface modification of titanium by etching in concentrated sulfuric acid. Dent Mater 22:1115–1120. https://doi.org/10.1016/J.DENTAL.2005.09.007

    Article  Google Scholar 

  46. 46.

    Hallab NJ, Mikecz K, Vermes C, Skipor A, Jacobs JJ (2001) Orthopaedic implant related metal toxicity in terms of human lymphocyte reactivity to metal-protein complexes produced from cobalt-base and titanium-base implant alloy degradation. Mol Cell Biochem 222:127–136. https://doi.org/10.1023/A:1017979710992

    Article  Google Scholar 

  47. 47.

    Alemán-Domínguez ME, Ortega Z, Benítez AN, Vilariño-Feltrer G, Gómez-Tejedor JA, Vallés-Lluch A (2018) Tunability of polycaprolactone hydrophilicity by carboxymethyl cellulose loading. J Appl Polym Sci 135:46134. https://doi.org/10.1002/app.46134

    Article  Google Scholar 

  48. 48.

    Chen S, Guo Y, Liu R, Wu S, Fang J, Huang B, Li Z, Chen Z, Chen Z (2018) Tuning surface properties of bone biomaterials to manipulate osteoblastic cell adhesion and the signaling pathways for the enhancement of early osseointegration. Colloids Surf B Biointerfaces 164:58–69. https://doi.org/10.1016/J.COLSURFB.2018.01.022

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the support of the Spanish Ministry of Economy and Competitiveness (MINECO), funding the SUPPORT project (DPI2015-71073-R) and the UNLP10-3E-726 Infrastructure Project (2010), co-financed with ERDF funds. M.E. Alemán would like to express her gratitude for the funding through the Ph.D. Grant Program of ULPGC (code of the Grant: PIFULPGC-2014-ING-ARQU-2) and the BAMOS project (H2020-MSCA-RISE-734156, funded from the European Union’s Horizon 2020 research and innovation program) for providing funding for mobility.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Zaida Ortega.

Ethics declarations

Conflict of interest

Authors declare no conflict of interest.

Ethical approval

This paper does not contain any studies with human or animal subjects.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (AVI 6732 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Alemán-Domínguez, M.E., Ortega, Z., Benítez, A.N. et al. Comparison of low-pressure oxygen plasma and chemical treatments for surface modifications of Ti6Al4V. Bio-des. Manuf. 2, 65–75 (2019). https://doi.org/10.1007/s42242-019-00036-9

Download citation

Keywords

  • Surface activation
  • Titanium alloys
  • Surface functionalization
  • Low-pressure plasma