Skip to main content
Log in

One-dimensional microstructure-assisted intradermal and intracellular delivery

  • Review
  • Published:
Bio-Design and Manufacturing Aims and scope Submit manuscript

Abstract

The advancement in the materials manufacturing at micrometer and nanometer scales has already enabled numerous applications in electronics, optics, chemistry, biology and medicine. Biomedical devices carrying micro-/nanostructures are currently being widely used in drug delivery, drug release, biosensing and therapy. New clinical methods for disease diagnosis and treatments are being developed enabled by nanotechnology. One-dimensional (1D) structures are playing an important role in the direct drug delivery both in vivo and ex vivo among various micro-/nanostructures. Here, in this paper, we reviewed recent progresses made on next-generation intradermal and intracellular delivery strategies and applications with focus on 1D microstructure-based approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Kim K, Xu X, Guo J, Fan DL (2014) Ultrahigh-speed rotating nanoelectromechanical system devices assembled from nanoscale building blocks. Nat Commun 5:3632

    Article  Google Scholar 

  2. Xu X, Kim K, Fan D (2015) Tunable release of multiplex biochemicals by plasmonically active rotary nanomotors. Angew Chem Int Ed 54(8):2525–2529

    Article  Google Scholar 

  3. Liao W-S, Cheunkar S, Cao HH, Bednar HR, Weiss PS, Andrews AM (2012) Subtractive patterning via chemical lift-off lithography. Science 337(6101):1517–1521

    Article  Google Scholar 

  4. Xu X, Yang Q, Cheung KM, Zhao C, Wattanatorn N, Belling JN, Abendroth JM, Slaughter LS, Mirkin CA, Andrews AM, Weiss PS (2017) Polymer-pen chemical lift-off lithography. Nano Lett 17:3302–3311

    Article  Google Scholar 

  5. Xu X, Yang Q, Wattanatorn N, Zhao C, Chiang N, Jonas SJ, Weiss PS (2017) Multiple-patterning nanosphere lithography for fabricating periodic three-dimensional hierarchical nanostructures. ACS Nano 11:10384–10391

    Article  Google Scholar 

  6. Dai S, Chu Y, Liu D, Cao F, Wu X, Zhou J, Zhou B, Chen Y, Huang J (2018) Intrinsically ionic conductive cellulose nanopapers applied as all solid dielectrics for low voltage organic transistors. Nat Commun 9(1):2737

    Article  Google Scholar 

  7. Pelaz B, Alexiou C, Alvarez-Puebla RA, Alves F, Andrews AM, Ashraf S, Balogh LP, Ballerini L, Bestetti A, Brendel C, Bosi S, Carril M, Chan WCW, Chen C, Chen X, Chen X, Cheng Z, Cui D, Du J, Dullin C, Escudero A, Feliu N, Gao M, George M, Gogotsi Y, Grünweller A, Gu Z, Halas NJ, Hampp N, Hartmann RK, Hersam MC, Hunziker P, Jian J, Jiang X, Jungebluth P, Kadhiresan P, Kataoka K, Khademhosseini A, Kopeček J, Kotov NA, Krug HF, Lee DS, Lehr C-M, Leong KW, Liang X-J, Ling Lim M, Liz-Marzán LM, Ma X, Macchiarini P, Meng H, Möhwald H, Mulvaney P, Nel AE, Nie S, Nordlander P, Okano T, Oliveira J, Park TH, Penner RM, Prato M, Puntes V, Rotello VM, Samarakoon A, Schaak RE, Shen Y, Sjöqvist S, Skirtach AG, Soliman MG, Stevens MM, Sung H-W, Tang BZ, Tietze R, Udugama BN, VanEpps JS, Weil T, Weiss PS, Willner I, Wu Y, Yang L, Yue Z, Zhang Q, Zhang Q, Zhang X-E, Zhao Y, Zhou X, Parak WJ (2017) Diverse applications of nanomedicine. ACS Nano 11(3):2313–2381

    Article  Google Scholar 

  8. Choi J, Ghaffari R, Baker LB, Rogers JA (2018) Skin-interfaced systems for sweat collection and analytics. Sci Adv 4(2):3921

    Article  Google Scholar 

  9. Jeong J-W, McCall JG, Shin G, Zhang Y, Al-Hasani R, Kim M, Li S, Sim JY, Jang K-I, Shi Y, Hong DY, Liu Y, Schmitz GP, Xia L, He Z, Gamble P, Ray WZ, Huang YY, Bruchas MR, Rogers JA (2015) Wireless optofluidic systems for programmable in vivo pharmacology and optogenetics. Cell 162(3):662–674

    Article  Google Scholar 

  10. Kim J, Gutruf P, Chiarelli AM, Heo SY, Cho K, Xie Z, Banks A, Han S, Jang K-I, Lee JW, Lee K-T, Feng X, Huang Y, Fabiani M, Gratton G, Paik U, Rogers JA (2017) Miniaturized battery-free wireless systems for wearable pulse oximetry. Adv Funct Mater 27(1):1604373

    Article  Google Scholar 

  11. Ye Y, Yu J, Wen D, Kahkoska AR, Gu Z (2018) Polymeric microneedles for transdermal protein delivery. Adv Drug Deliv Rev 127:106–118

    Article  Google Scholar 

  12. Stewart MP, Sharei A, Ding X, Sahay G, Langer R, Jensen KF (2016) In vitro and ex vivo strategies for intracellular delivery. Nature 538(7624):183–192

    Article  Google Scholar 

  13. Wang J, Ye Y, Yu J, Kahkoska AR, Zhang X, Wang C, Sun W, Corder RD, Chen Z, Khan SA, Buse JB, Gu Z (2018) Core–shell microneedle gel for self-regulated insulin delivery. ACS Nano. https://doi.org/10.1021/acsnano.7b08152

    Article  Google Scholar 

  14. Rouphael NG, Paine M, Mosley R, Henry S, McAllister DV, Kalluri H, Pewin W, Frew PM, Yu T, Thornburg NJ, Kabbani S, Lai L, Vassilieva EV, Skountzou I, Compans RW, Mulligan MJ, Prausnitz MR, Beck A, Edupuganti S, Heeke S, Kelley C, Nesheim W (2017) The safety, immunogenicity, and acceptability of inactivated influenza vaccine delivered by microneedle patch (TIV-MNP 2015): a randomised, partly blinded, placebo-controlled, phase 1 trial. Lancet 390(10095):649–658

    Article  Google Scholar 

  15. Samant PP, Prausnitz MR (2018) Mechanisms of sampling interstitial fluid from skin using a microneedle patch. In: Proceedings of the National Academy of Sciences

  16. Prausnitz MR (2015) Puncturing cells en masse. Nat Mater 14(5):470–471

    Article  Google Scholar 

  17. Xie X, Xu AM, Leal-Ortiz S, Cao Y, Garner CC, Melosh NA (2013) Nanostraw-electroporation system for highly efficient intracellular delivery and transfection. ACS Nano 7(5):4351–4358

    Article  Google Scholar 

  18. Lee JH, Jung YS, Kim GM, Bae JM (2018) A hyaluronic acid-based microneedle patch to treat psoriatic plaques: a pilot open trial. Brit J Dermatol 178(1):E24–E25

    Article  Google Scholar 

  19. Zhang YQ, Yu JC, Wen D, Chen GJ, Gu Z (2018) The potential of a microneedle patch for reducing obesity. Expert Opin Drug Deliv 15(5):431–433

    Article  Google Scholar 

  20. Kim JH, Shin JU, Kim SH, Noh JY, Kim HR, Lee J, Chu H, Jeong KY, Park KH, Kim JD, Kim HK, Jeong DH, Yong TS, Park JW, Lee KH (2018) Successful transdermal allergen delivery and allergen-specific immunotherapy using biodegradable microneedle patches. Biomaterials 150:38–48

    Article  Google Scholar 

  21. Choi J-S, Zhu Y, Li H, Peyda P, Nguyen TT, Shen MY, Yang YM, Zhu J, Liu M, Lee MM, Sun S-S, Yang Y, Yu H-H, Chen K, Chuang GS, Tseng H-R (2017) Cross-linked fluorescent supramolecular nanoparticles as finite tattoo pigments with controllable intradermal retention times. ACS Nano 11(1):153–162

    Article  Google Scholar 

  22. van der Maaden K, Jiskoot W, Bouwstra J (2012) Microneedle technologies for (trans)dermal drug and vaccine delivery. J Control Release 161(2):645–655

    Article  Google Scholar 

  23. Herwadkar A, Banga AK (2012) Peptide and protein transdermal drug delivery. Drug Discov Today Technol 9(2):e147–e154

    Article  Google Scholar 

  24. Sivamani RK, Liepmann D, Maibach HI (2007) Microneedles and transdermal applications. Expert Opin Drug Deliv 4(1):19–25

    Article  Google Scholar 

  25. Perez Cuevas MB, Kodani M, Choi Y, Joyce J, O’Connor SM, Kamili S, Prausnitz MR (2018) Hepatitis B vaccination using a dissolvable microneedle patch is immunogenic in mice and rhesus macaques. Bioeng Transl Med 3:186–196

    Article  Google Scholar 

  26. Yim S, Jeon S, Kim JM, Baek KM, Lee GH, Kim H, Shin J, Jung YS (2018) Transferrable plasmonic au thin film containing sub-20 nm nanohole array constructed via high-resolution polymer self-assembly and nanotransfer printing. ACS Appl Mater Interfaces 10(3):2216–2223

    Article  Google Scholar 

  27. Bennewitz NL, Babensee JE (2005) The effect of the physical form of poly(lactic-co-glycolic acid) carriers on the humoral immune response to co-delivered antigen. Biomaterials 26(16):2991–2999

    Article  Google Scholar 

  28. Boccafoschi F, Mosca C, Ramella M, Carmagnola I, Chiono V, Ciardelli G, Cannas M (2013) Biological evaluation of materials for cardiovascular application: the role of the short-term inflammatory response in endothelial regeneration. J Biomed Mater Res Part A 101(11):3131–3140

    Google Scholar 

  29. Jiang W, Tian Q, Vuong T, Shashaty M, Gopez C, Sanders T, Liu H (2017) Comparison study on four biodegradable polymer coatings for controlling magnesium degradation and human endothelial cell adhesion and spreading. ACS Biomater Sci Eng 3(6):936–950

    Article  Google Scholar 

  30. Kim Y-C, Park J-H, Prausnitz MR (2012) Microneedles for drug and vaccine delivery. Adv Drug Deliv Rev 64(14):1547–1568

    Article  Google Scholar 

  31. McAllister DV, Wang PM, Davis SP, Park J-H, Canatella PJ, Allen MG, Prausnitz MR (2003) Microfabricated needles for transdermal delivery of macromolecules and nanoparticles: fabrication methods and transport studies. Proc Natl Acad Sci 100(24):13755–13760

    Article  Google Scholar 

  32. Prausnitz MR, Langer R (2008) Transdermal drug delivery. Nat Biotechnol 26:1261

    Article  Google Scholar 

  33. Kaushik S, Hord AH, Denson DD, McAllister DV, Smitra S, Allen MG, Prausnitz MR (2001) Lack of pain associated with microfabricated microneedles. Anesth Analg 92(2):502–504

    Article  Google Scholar 

  34. Yang JB, Chen ZP, Ye R, Li JY, Lin Y, Gao J, Ren L, Liu B, Jiang L (2018) Touch-actuated microneedle array patch for closed-loop transdermal drug delivery. Drug Deliv 25(1):1728–1739

    Article  Google Scholar 

  35. Joyce JC, Carroll TD, Collins ML, Chen MH, Fritts L, Dutra JC, Rourke TL, Goodson JL, McChesney MB, Prausnitz MR, Rota PA (2018) A microneedle patch for measles and rubella vaccination is immunogenic and protective in infant rhesus macaques. J Infect Dis 218(1):124–132

    Article  Google Scholar 

  36. Maurya A, Nanjappa SH, Honnavar S, Salwa M, Murthy SN (2018) Rapidly dissolving microneedle patches for transdermal iron replenishment therapy. J Pharm Sci US 107(6):1642–1647

    Article  Google Scholar 

  37. Lee JW, Choi SO, Felner EI, Prausnitz MR (2011) Dissolving microneedle patch for transdermal delivery of human growth hormone. Small 7(4):531–539

    Article  Google Scholar 

  38. Van Damme P, Oosterhuis-Kafeja F, Van der Wielen M, Almagor Y, Sharon O, Levin Y (2009) Safety and efficacy of a novel microneedle device for dose sparing intradermal influenza vaccination in healthy adults. Vaccine 27(3):454–459

    Article  Google Scholar 

  39. Zhang Y, Liu Q, Yu J, Yu S, Wang J, Qiang L, Gu Z (2017) Locally induced adipose tissue browning by microneedle patch for obesity treatment. ACS Nano 11(9):9223–9230

    Article  Google Scholar 

  40. Kajimura S, Spiegelman BM, Seale P (2015) Brown and beige fat: physiological roles beyond heat generation. Cell Metab 22(4):546–559

    Article  Google Scholar 

  41. Chen X, Kask AS, Crichton ML, McNeilly C, Yukiko S, Dong L, Marshak JO, Jarrahian C, Fernando GJP, Chen D, Koelle DM, Kendall MAF (2010) Improved DNA vaccination by skin-targeted delivery using dry-coated densely-packed microprojection arrays. J Control Release 148(3):327–333

    Article  Google Scholar 

  42. Ma Y, Gill HS (2014) Coating solid dispersions on microneedles via a molten dip-coating method: development and in vitro evaluation for transdermal delivery of a water-insoluble drug. J Pharm Sci 103(11):3621–3630

    Article  Google Scholar 

  43. Kumar V, Banga AK (2012) Modulated iontophoretic delivery of small and large molecules through microchannels. Int J Pharm 434(1–2):106–114

    Article  Google Scholar 

  44. Chu LY, Choi S-O, Prausnitz MR (2010) Fabrication of dissolving polymer microneedles for controlled drug encapsulation and delivery: bubble and pedestal microneedle designs. J Pharm Sci 99(10):4228–4238

    Article  Google Scholar 

  45. Chen M-C, Ling M-H, Lai K-Y, Pramudityo E (2012) Chitosan microneedle patches for sustained transdermal delivery of macromolecules. Biomacromolecules 13(12):4022–4031

    Article  Google Scholar 

  46. Prausnitz MR, Langer R (2008) Transdermal drug delivery. Nat Biotechnol 26(11):1261–1268

    Article  Google Scholar 

  47. DeMuth PC, Min Y, Irvine DJ, Hammond PT (2014) Implantable silk composite microneedles for programmable vaccine release kinetics and enhanced immunogenicity in transcutaneous immunization. Adv Healthc Mater 3(1):47–58

    Article  Google Scholar 

  48. Tsioris K, Raja WK, Pritchard EM, Panilaitis B, Kaplan DL, Omenetto FG (2012) Fabrication of silk microneedles for controlled-release drug delivery. Adv Funct Mater 22(2):330–335

    Article  Google Scholar 

  49. Lu Y, Aimetti AA, Langer R, Gu Z (2016) Bioresponsive materials. Nat Rev Mater 2(1):16075

    Article  Google Scholar 

  50. Yu J, Zhang Y, Kahkoska AR, Gu Z (2017) Bioresponsive transcutaneous patches. Curr Opin Biotechnol 48:28–32

    Article  Google Scholar 

  51. Ding X, Stewart MP, Sharei A, Weaver JC, Langer RS, Jensen KF (2017) High-throughput nuclear delivery and rapid expression of DNA via mechanical and electrical cell-membrane disruption. Nat Biomed Eng 1(3):0039

    Article  Google Scholar 

  52. Denais CM, Gilbert RM, Isermann P, McGregor AL, te Lindert M, Weigelin B, Davidson PM, Friedl P, Wolf K, Lammerding J (2016) Nuclear envelope rupture and repair during cancer cell migration. Science 352(6283):353–358

    Article  Google Scholar 

  53. Chiappini C, De Rosa E, Martinez JO, Liu X, Steele J, Stevens MM, Tasciotti E (2015) Biodegradable silicon nanoneedles delivering nucleic acids intracellularly induce localized in vivo neovascularization. Nat Mater 14(5):532–539

    Article  Google Scholar 

  54. Xie X, Xu AM, Angle MR, Tayebi N, Verma P, Melosh NA (2013) Mechanical model of vertical nanowire cell penetration. Nano Lett 13(12):6002–6008

    Article  Google Scholar 

  55. Xu AM, Aalipour A, Leal-Ortiz S, Mekhdjian AH, Xie X, Dunn AR, Garner CC, Melosh NA (2014) Quantification of nanowire penetration into living cells. Nat Commun 5(1):3613

    Article  Google Scholar 

  56. Shalek AK, Robinson JT, Karp ES, Lee JS, Ahn D-R, Yoon M-H, Sutton A, Jorgolli M, Gertner RS, Gujral TS, MacBeath G, Yang EG, Park H (2010) Vertical silicon nanowires as a universal platform for delivering biomolecules into living cells. Proc Natl Acad Sci USA 107(5):1870–1875

    Article  Google Scholar 

  57. Kim W, Ng JK, Kunitake ME, Conklin BR, Yang P (2007) Interfacing silicon nanowires with mammalian cells. J Am Chem Soc 129(23):7228–7229

    Article  Google Scholar 

  58. Bucaro MA, Vasquez Y, Hatton BD, Aizenberg J (2012) Fine-tuning the degree of stem cell polarization and alignment on ordered arrays of high-aspect-ratio nanopillars. ACS Nano 6(7):6222–6230

    Article  Google Scholar 

  59. Fu J, Wang Y-K, Yang MT, Desai RA, Yu X, Liu Z, Chen CS (2010) Mechanical regulation of cell function with geometrically modulated elastomeric substrates. Nat Methods 7(9):733–736

    Article  Google Scholar 

  60. Wang Y, Yang Y, Yan L, Kwok SY, Li W, Wang Z, Zhu X, Zhu G, Zhang W, Chen X, Shi P (2014) Poking cells for efficient vector-free intracellular delivery. Nat Commun 5:4466

    Article  Google Scholar 

  61. VanDersarl JJ, Xu AM, Melosh NA (2011) Nanostraws for direct fluidic intracellular access. Nano Lett 12(8):3881–3886

    Article  Google Scholar 

  62. Durney AR, Frenette LC, Hodvedt EC, Krauss TD, Mukaibo H (2016) Fabrication of tapered microtube arrays and their application as a microalgal injection platform. ACS Appl Mater Interfaces 8(50):34198–34208

    Article  Google Scholar 

  63. Fox CB, Cao Y, Nemeth CL, Chirra HD, Chevalier RW, Xu AM, Melosh NA, Desai TA (2016) Fabrication of sealed nanostraw microdevices for oral drug delivery. ACS Nano 10(6):5873–5881

    Article  Google Scholar 

  64. Marshall S, Sahm LJ, Moore AC (2016) The success of microneedle-mediated vaccine delivery into skin. Hum Vaccines Immunother 12(11):2975–2983

    Article  Google Scholar 

  65. Stevenson DJ, Gunn-Moore FJ, Campbell P, Dholakia K (2010) Single cell optical transfection. J R Soc Interface 7(47):863–871

    Article  Google Scholar 

  66. DiTommaso T, Cole JM, Cassereau L, Buggé JA, Hanson JLS, Bridgen DT, Stokes BD, Loughhead SM, Beutel BA, Gilbert JB, Nussbaum K, Sorrentino A, Toggweiler J, Schmidt T, Gyuelveszi G, Bernstein H, Sharei A (2018) Cell engineering with microfluidic squeezing preserves functionality of primary immune cells in vivo. Proc Natl Acad Sci 115(46):E10907–E10914

    Article  Google Scholar 

  67. Kollmannsperger A, Sharei A, Raulf A, Heilemann M, Langer R, Jensen KF, Wieneke R, Tampé R (2016) Live-cell protein labelling with nanometre precision by cell squeezing. Nat Commun 7(1):10372

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the helpful discussions with Dr. Steven J. Jonas and Ms. Isaura M. Frost from University of California Los Angeles.

Funding

X.X. and W.J. acknowledges the support from Tongji University. L.M. acknowledges the support from National Natural Science Foundation of China under Grants 51875518, 81501607 and 51475419, Key Research and Development Projects of Zhejiang Province under Grant 2017C01054.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaobin Xu.

Ethics declarations

Conflict of interest

WJ, L.M and X.X declare that they have no conflict of interest.

Ethical approval

This review does not contain any studies with human or animal subjects performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, W., Ma, L. & Xu, X. One-dimensional microstructure-assisted intradermal and intracellular delivery. Bio-des. Manuf. 2, 24–30 (2019). https://doi.org/10.1007/s42242-019-00034-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42242-019-00034-x

Keywords

Navigation