3D bioprinting for cell culture and tissue fabrication

Abstract

Three-dimensional (3D) bioprinting is a computer-assisted technology which precisely controls spatial position of biomaterials, growth factors and living cells, offering unprecedented possibility to bridge the gap between structurally mimic tissue constructs and functional tissues or organoids. We briefly focus on diverse bioinks used in the recent progresses of biofabrication and 3D bioprinting of various tissue architectures including blood vessel, bone, cartilage, skin, heart, liver and nerve systems. This paper provides readers a guideline with the conjunction between bioinks and the targeted tissue or organ types in structuration and final functionalization of these tissue analogues. The challenges and perspectives in 3D bioprinting field are also illustrated.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. 1.

    Ozbolat IT, Yu Y (2013) Bioprinting toward organ fabrication: challenges and future trends. IEEE Trans Bio-Med Eng 60(3):691–699

    Article  Google Scholar 

  2. 2.

    Lee JM, Yeong WY (2016) Design and printing strategies in 3D bioprinting of cell-hydrogels: a review. Adv Healthc Mater 5(22):2856–2865

    Article  Google Scholar 

  3. 3.

    Mir TA, Nakamura M (2017) 3D-Bioprinting: towards the era of manufacturing human organs as spare parts for healthcare and medicine. Tissue Eng Part B Rev 23(3):245–256

    Article  Google Scholar 

  4. 4.

    Gauvin R, Chen YC, Jin WL, Soman P, Zorlutuna P, Nichol JW, Bae H, Chen S, Khademhosseini A (2012) Microfabrication of complex porous tissue engineering scaffolds using 3D projection stereolithography. Biomaterials 33(15):3824–3834

    Article  Google Scholar 

  5. 5.

    Zhang YS, Yue K, Aleman J, Mollazadehmoghaddam K, Bakht SM, Yang J, Jia W, Dell’Erba V, Assawes P, Shin SR (2017) 3D bioprinting for tissue and organ fabrication. Ann Biomed Eng 45(1):148–163

    Article  Google Scholar 

  6. 6.

    Kengla C, Atala A, Sang JL (2015) Chapter 15-bioprinting of organoids. In: Haley M (ed) Essentials of 3D biofabrication and translation. Elsevier Inc, USA

    Google Scholar 

  7. 7.

    Chang R, Nam Y, Sun W (2008) Direct cell writing of 3D microorgan for in vitro pharmacokinetic model. Tissue Eng Part C-Methods 14(2):157–166

    Article  Google Scholar 

  8. 8.

    Dababneh AB, Ozbolat IT (2014) Bioprinting technology: a current state-of-the-art review. J Manuf Sci Eng 136(6):061016

    Article  Google Scholar 

  9. 9.

    Ozbolat IT, Hospodiuk M (2016) Current advances and future perspectives in extrusion-based bioprinting. Biomaterials 76(37):321–343

    Article  Google Scholar 

  10. 10.

    Gudapati H, Dey M, Ozbolat I (2016) A comprehensive review on droplet-based bioprinting: past, present and future. Biomaterials 102:20–42

    Article  Google Scholar 

  11. 11.

    Schiele NR, Corr DT, Huang Y, Raof NA, Xie Y, Chrisey DB (2010) Laser-based direct-write techniques for cell printing. Biofabrication 2(3):032001

    Article  Google Scholar 

  12. 12.

    Hospodiuk M, Dey M, Sosnoski D, Ozbolat IT (2017) The bioink: a comprehensive review on bioprintable materials. Biotechnol Adv 35(2):217–239

    Article  Google Scholar 

  13. 13.

    Yao X, Peng R, Ding JD (2013) Cell-material interactions revealed via material techniques of surface patterning. Adv Mater 25(37):5257–5286

    Article  Google Scholar 

  14. 14.

    Jungst T, Smolan W, Schacht K, Scheibel T, Groll J (2016) Strategies and molecular design criteria for 3D printable hydrogels. Chem Rev 116(3):1496–1539

    Article  Google Scholar 

  15. 15.

    Yu L, Ding JD (2008) Injectable hydrogels as unique biomedical materials. Chem Soc Rev 37(8):1473–1481

    Article  Google Scholar 

  16. 16.

    Ahmed EM (2015) Hydrogel: preparation, characterization, and applications: a review. J Adv Res 6(2):105–121

    Article  Google Scholar 

  17. 17.

    Marchant RE (2011) Design properties of hydrogel tissue-engineering scaffolds. Expert Rev Med Devices 8(5):607–626

    Article  Google Scholar 

  18. 18.

    Alakpa E, Jayawarna V, Lampel A, Burgess K, West C, Bakker SJ, Roy S, Javid N, Fleming S, Lamprou D (2016) Tunable supramolecular hydrogels for selection of lineage-guiding metabolites in stem cell cultures. Chem 1(2):298–319

    Article  Google Scholar 

  19. 19.

    Discher DE, Janmey P, Wang YL (2005) Tissue cells feel and respond to the stiffness of their substrate. Science 310(5751):1139–1143

    Article  Google Scholar 

  20. 20.

    Wells RG (2008) The role of matrix stiffness in regulating cell behavior. Hepatology 47(4):1394–1400

    Article  Google Scholar 

  21. 21.

    Lutolf MP, Weber FE, Schmoekel HG, Schense JC, Kohler T, Müller R, Hubbell JA (2003) Repair of bone defects using synthetic mimetics of collagenous extracellular matrices. Nat Biotechnol 21(5):513–518

    Article  Google Scholar 

  22. 22.

    Richardson TP, Peters MC, Ennett AB, Mooney DJ (2001) Polymeric system for dual growth factor delivery. Nat Biotechnol 19(11):1029–1034

    Article  Google Scholar 

  23. 23.

    Malda J, Visser J, Melchels FP, Jüngst T, Hennink WE, Dhert WJ, Groll J, Hutmacher DW (2013) 25th Anniversary article: engineering hydrogels for biofabrication. Adv Mater 25(36):5011–5028

    Article  Google Scholar 

  24. 24.

    Murphy SV, Aleksander S, Anthony A (2013) Evaluation of hydrogels for bio-printing applications. J Biomed Mater Res, Part A 101(1):272–284

    Article  Google Scholar 

  25. 25.

    Carrow JK, Kerativitayanan P, Jaiswal MK, Lokhande G, Gaharwar AK (2015) Chapter 13-polymers for bioprinting. In: Haley M (ed) Essentials of 3D biofabrication and translation. Elsevier Inc, USA

    Google Scholar 

  26. 26.

    Burdick JA, Chung C, Jia X (2005) Controlled degradation and mechanical behavior of photopolymerized hyaluronic acid networks. Biomacromolecules 6(1):386–391

    Article  Google Scholar 

  27. 27.

    Wu LB, Ding JD (2004) In vitro degradation of three-dimensional porous poly(D, L-lactide-co-glycolide) scaffolds for tissue engineering. Biomaterials 25(27):5821–5830

    Article  Google Scholar 

  28. 28.

    Khalil S, Sun W (2009) Bioprinting endothelial cells with alginate for 3D tissue constructs. Trans ASME J Biomech Eng 131(11):111002

    Article  Google Scholar 

  29. 29.

    Malheiro A, Wieringa P, Mota C, Baker M, Moroni L (2016) Patterning vasculature: the role of biofabrication to achieve an integrated multicellular ecosystem. ACS Biomater Sci Eng 2(10):1694–1709

    Article  Google Scholar 

  30. 30.

    Melchiorri AJ, Fisher JP (2015) Chapter 20-bioprinting of blood vessels. In: Haley M (ed) Essentials of 3D biofabrication and translation. Elsevier Inc, USA

    Google Scholar 

  31. 31.

    Murphy SV, Atala A (2014) 3D bioprinting of tissues and organs. Nat Biotechnol 32(8):773–785

    Article  Google Scholar 

  32. 32.

    Muschler GF, Nakamoto C, Griffith LG (2004) Engineering principles of clinical cell-based tissue engineering. J Bone Joint Surg 86–A:1541–1558

  33. 33.

    Norotte C, Marga FS, Niklason LE, Forgacs G (2009) Scaffold-free vascular tissue engineering using bioprinting. Biomaterials 30(30):5910

    Article  Google Scholar 

  34. 34.

    Lu HJ, Feng ZQ, Gu ZZ, Liu CJ (2009) Growth of outgrowth endothelial cells on aligned PLLA nanofibrous scaffolds. J Mater Sci-Mater Med 20(9):1937–1944

    Article  Google Scholar 

  35. 35.

    Xu C, Chai W, Huang Y, Markwald RR (2012) Scaffold-free inkjet printing of three-dimensional zigzag cellular tubes. Biotechnol Bioeng 109(12):3152–3160

    Article  Google Scholar 

  36. 36.

    Miller JS, Stevens KR, Yang MT, Baker BM, Nguyen DH, Cohen DM, Toro E, Chen AA, Galie PA, Yu X, Chaturvedi R, Bhatia SN, Chen CS (2012) Rapid casting of patterned vascular networks for perfusable engineered three-dimensional tissues. Nat Mater 11(9):768–774

    Article  Google Scholar 

  37. 37.

    Bertassoni LE, Cecconi M, Manoharan V, Nikkhah M, Hjortnaes J, Cristino AL, Barabaschi G, Demarchi D, Dokmeci MR, Yang Y, Khademhosseini A (2014) Hydrogel bioprinted microchannel networks for vascularization of tissue engineering constructs. Lab Chip 14(13):2202–2211

    Article  Google Scholar 

  38. 38.

    Fan R, Piou M, Darling E, Cormier D, Sun J, Wan J (2016) Bio-printing Cell-laden Matrigel-agarose Constructs. J Biomater Appl 31(5):684–692

    Article  Google Scholar 

  39. 39.

    Bertassoni LE, Cardoso JC, Manoharan V, Cristino AL, Bhise NS, Araujo WA, Zorlutuna P, Vrana NE, Ghaemmaghami AM, Dokmeci MR, Khademhosseini A (2014) Direct-write bioprinting of cell-laden methacrylated gelatin hydrogels. Biofabrication 6(2):024105

    Article  Google Scholar 

  40. 40.

    Skardal A, Zhang J, McCoard L, Xu X, Oottamasathien S, Prestwich GD (2010) Photocrosslinkable Hyaluronan-gelatin hydrogels for two-step bioprinting. Tissue Eng Part A 16(8):2675–2685

    Article  Google Scholar 

  41. 41.

    Salgado AJ, Coutinho OP, Reis RL (2004) Bone Tissue engineering: state of the art and future trends. Macromol Biosci 4(8):743–765

    Article  Google Scholar 

  42. 42.

    Knothe MLT (2003) Whither flows the fluid in bone? An osteocyte’s perspective. J Biomech 36(10):1409–1424

    Google Scholar 

  43. 43.

    Hing KA (1825) Bone repair in the twenty-first century: biology, chemistry or engineering? Philos Trans 2004(362):2821–2850

    Google Scholar 

  44. 44.

    Larsen M, Mishra R, Miller M, Dean D (2015) Chapter 17-bioprinting of bone. In: Haley M (ed) Essentials of 3D biofabrication and translation. Elsevier Inc, USA

    Google Scholar 

  45. 45.

    Sun W, Puzas JE, Sheu TJ, Liu X, Fauchet PM (2007) Nano- to microscale porous silicon as a cell interface for bone-tissue engineering. Adv Mater 19(7):921–924

    Article  Google Scholar 

  46. 46.

    Fedorovich NE, De Wijn JR, Verbout AJ, Alblas J, Dhert WJ (2008) Three-dimensional fiber deposition of cell-laden, viable, patterned constructs for bone tissue printing. Tissue Eng Part A 14(1):127–133

    Article  Google Scholar 

  47. 47.

    Gruene M, Deiwick A, Koch L, Schlie S, Unger C, Hofmann N, Bernemann I, Glasmacher B, Chichkov B (2011) Laser printing of stem cells for biofabrication of scaffold-free autologous grafts. Tissue Eng Part C Methods 17(1):79–87

    Article  Google Scholar 

  48. 48.

    Byambaa B, Annabi N, Yue K, Trujillo-de Santiago G, Alvarez MM, Jia W, Kazemzadeh-Narbat M, Shin SR, Tamayol A, Khademhosseini A (2017) Bioprinted osteogenic and vasculogenic patterns for engineering 3D bone tissue. Adv Healthc Mater 6(16):1700015

    Article  Google Scholar 

  49. 49.

    Keriquel V, Oliveira H, Remy M, Ziane S, Delmond S, Rousseau B, Rey S, Catros S, Amedee J, Guillemot F, Fricain JC (2017) In situ printing of mesenchymal stromal cells, by laser-assisted bioprinting, for in vivo bone regeneration applications. Sci Rep 7(1):1778

    Article  Google Scholar 

  50. 50.

    Fedorovich NE, Wijnberg HM, Dhert WJ, Alblas J (2011) Distinct tissue formation by heterogeneous printing of osteo- and endothelial progenitor cells. Tissue Eng Part A 17(15–16):2113–2121

    Article  Google Scholar 

  51. 51.

    Carlier A, Skvortsov GA, Hafezi F, Ferraris E, Patterson J, Koc B, Van Oosterwyck H (2016) Computational model-informed design and bioprinting of cell-patterned constructs for bone tissue engineering. Biofabrication 8(2):025009

    Article  Google Scholar 

  52. 52.

    Hung BP, Naved BA, Nyberg EL, Dias M, Holmes CA, Elisseeff JH, Dorafshar AH, Grayson WL (2016) Three-dimensional printing of bone extracellular matrix for craniofacial regeneration. ACS Biomater Sci Eng 2(10):1806–1816

    Article  Google Scholar 

  53. 53.

    Naumann A, Dennis JE, Awadallah A, Carrino DA, Mansour JM, Kastenbauer E, Caplan AI (2002) Immunochemical and mechanical characterization of cartilage subtypes in rabbit. J Histochem Cytochem Off Jo Histochem Soc 50(8):1049–1058

    Article  Google Scholar 

  54. 54.

    Umlauf D, Frank S, Pap T, Bertrand J (2010) Cartilage biology, pathology, and repair. Cell Mol Life Sci 67(24):4197–4211

    Article  Google Scholar 

  55. 55.

    Liu M, Zeng X, Ma C, Yi H, Ali Z, Mou X, Li S, Deng Y, He N (2017) Injectable hydrogels for cartilage and bone tissue engineering. Bone Res 5:17014

    Article  Google Scholar 

  56. 56.

    Cui X, Breitenkamp K, Finn MG, Lotz M, D’Lima DD (2012) Direct human cartilage repair using three-dimensional bioprinting technology. Tissue Eng Part A 18(11–12):1304–1312

    Article  Google Scholar 

  57. 57.

    Zhang YS, Yue K, Aleman J, Mollazadeh-Moghaddam K, Bakht SM, Yang J, Jia W, Dell’Erba V, Assawes P, Shin SR, Dokmeci MR, Oklu R, Khademhosseini A (2016) 3D bioprinting for tissue and organ fabrication. Ann Biomed Eng 45(1):148–163

    Article  Google Scholar 

  58. 58.

    Lai K, Xu T (2015) Chapter 18-bioprinting of cartilage: recent progress on bioprinting of cartilage. In: Haley M (ed) Essentials of 3D biofabrication and translation. Elsevier Inc, USA

    Google Scholar 

  59. 59.

    Schuurman W, Levett PA, Pot MW, van Weeren PR, Dhert WJ, Hutmacher DW, Melchels FP, Klein TJ, Malda J (2013) Gelatin-methacrylamide hydrogels as potential biomaterials for fabrication of tissue-engineered cartilage constructs. Macromol Biosci 13(5):551–561

    Article  Google Scholar 

  60. 60.

    Park JY, Choi JC, Shim JH, Lee JS, Park H, Kim SW, Doh J, Cho DW (2014) A comparative study on collagen type I and hyaluronic acid dependent cell behavior for osteochondral tissue bioprinting. Biofabrication 6(3):035004

    Article  Google Scholar 

  61. 61.

    Daly AC, Critchley SE, Rencsok EM, Kelly DJ (2016) A comparison of different bioinks for 3D bioprinting of fibrocartilage and hyaline cartilage. Biofabrication 8(4):045002

    Article  Google Scholar 

  62. 62.

    Shi W, Sun M, Hu X, Ren B, Cheng J, Li C, Duan X, Fu X, Zhang J, Chen H, Ao Y (2017) Structurally and functionally optimized silk-fibroin-gelatin scaffold using 3D printing to repair cartilage injury in vitro and in vivo. Adv Mater 29(29):170189

    Article  Google Scholar 

  63. 63.

    Kundu J, Shim JH, Jang J, Kim SW, Cho DW (2015) An additive manufacturing-based PCL-alginate-chondrocyte bioprinted scaffold for cartilage tissue engineering. J Tissue Eng Regen Med 9(11):1286–1297

    Article  Google Scholar 

  64. 64.

    Pescosolido L, Schuurman W, Malda J, Matricardi P, Alhaique F, Coviello T, van Weeren PR, Dhert WJ, Hennink WE, Vermonden T (2011) Hyaluronic acid and dextran-based semi-IPN hydrogels as biomaterials for bioprinting. Biomacromolecules 12(5):1831–1838

    Article  Google Scholar 

  65. 65.

    Apelgren P, Amoroso M, Lindahl A, Brantsing C, Rotter N, Gatenholm P, Kolby L (2017) Chondrocytes and stem cells in 3D-bioprinted structures create human cartilage in vivo. PLoS ONE 12(12):e0189428

    Article  Google Scholar 

  66. 66.

    Stichler S, Bock T, Paxton N, Bertlein S, Levato R, Schill V, Smolan W, Malda J, Tessmar J, Blunk T, Groll J (2017) Double printing of hyaluronic acid/poly(glycidol) hybrid hydrogels with poly(epsilon-caprolactone) for MSC chondrogenesis. Biofabrication 9(4):044108

    Article  Google Scholar 

  67. 67.

    Rhee S, Puetzer JL, Mason BN, Reinhartking CA, Bonassar LJ (2016) 3D bioprinting of spatially heterogeneous collagen constructs for cartilage tissue engineering. ACS Biomater Sci Eng 2(10):1800–1805

    Article  Google Scholar 

  68. 68.

    Vijayavenkataraman S, Lu WF, Fuh JY (2016) 3D bioprinting of skin: a state-of-the-art review on modelling, materials, and processes. Biofabrication 8(3):032001

    Article  Google Scholar 

  69. 69.

    Bouwstra JA, Honeywell-Nguyen PL, Gooris GS, Ponec M (2003) Structure of the skin barrier and its modulation by vesicular formulations. Prog Lipid Res 42(1):1–36

    Article  Google Scholar 

  70. 70.

    Koch L, Michael S, Reimers K, Vogt PM, Chichkov B (2015) Chapter 13-bioprinting for skin. In: Geraghty F (ed) 3D bioprinting and nanotechnology in tissue engineering and regenerative medicine. Elsevier Inc, USA

    Google Scholar 

  71. 71.

    Michael S, Sorg H, Peck CT, Koch L, Deiwick A, Chichkov B, Vogt PM, Reimers K (2013) Tissue engineered skin substitutes created by laser-assisted bioprinting form skin-like structures in the dorsal skin fold chamber in mice. PLoS ONE 8(3):e57741

    Article  Google Scholar 

  72. 72.

    Lineen E, Namias N (2008) Biologic dressing in burns. J Craniofac Surg 19(4):923–928

    Article  Google Scholar 

  73. 73.

    Lee W, Debasitis JC, Lee VK, Lee JH, Fischer K, Edminster K, Park JK, Yoo SS (2009) Multi-layered culture of human skin fibroblasts and keratinocytes through three-dimensional freeform fabrication. Biomaterials 30(8):1587–1595

    Article  Google Scholar 

  74. 74.

    Lee V, Singh G, Trasatti JP, Bjornsson C, Xu X, Tran TN, Yoo SS, Dai G, Karande P (2014) Design and fabrication of human skin by three-dimensional bioprinting. Tissue Eng Part C Methods 20(6):473–484

    Article  Google Scholar 

  75. 75.

    Cubo N, Garcia M, Del Canizo JF, Velasco D, Jorcano JL (2016) 3D bioprinting of functional human skin: production and in vivo analysis. Biofabrication 9(1):015006

    Article  Google Scholar 

  76. 76.

    Pourchet LJ, Thepot A, Albouy M, Courtial EJ, Boher A, Blum LJ, Marquette CA (2017) Human skin 3D bioprinting using scaffold-free approach. Adv Healthc Mater 6(4):1601101

    Article  Google Scholar 

  77. 77.

    Farrell MJ, Kirby ML (2001) Cell biology of cardiac development. Int Rev Cytol 202(202):99–158

    Article  Google Scholar 

  78. 78.

    Severs NJ (2000) The cardiac muscle cell. BioEssays 22(2):188–199

    Article  Google Scholar 

  79. 79.

    Gelb BD (2013) Recent advances in understanding the genetics of congenital heart defects. Curr Opin Pediatr 25(5):561–566

    Article  Google Scholar 

  80. 80.

    Silvestri A, Boffito M, Sartori S, Ciardelli G (2013) Biomimetic materials and scaffolds for myocardial tissue regeneration. Macromol Biosci 13(8):984–1019

    Article  Google Scholar 

  81. 81.

    Mironov V, Reis N, Derby B (2006) Review: bioprinting: a beginning. Tissue Eng 12(4):631–634

    Article  Google Scholar 

  82. 82.

    Gaetani R, Doevendans PA, Metz CH, Alblas J, Messina E, Giacomello A, Sluijter JP (2012) Cardiac tissue engineering using tissue printing technology and human cardiac progenitor cells. Biomaterials 33(6):1782–1790

    Article  Google Scholar 

  83. 83.

    Zhang YS, Arneri A, Bersini S, Shin SR, Zhu K, Goli-Malekabadi Z, Aleman J, Colosi C, Busignani F, Dell’Erba V, Bishop C, Shupe T, Demarchi D, Moretti M, Rasponi M, Dokmeci MR, Atala A, Khademhosseini A (2016) Bioprinting 3D microfibrous scaffolds for engineering endothelialized myocardium and heart-on-a-chip. Biomaterials 110:45–59

    Article  Google Scholar 

  84. 84.

    Duan B, Hockaday LA, Kang KH, Butcher JT (2013) 3D bioprinting of heterogeneous aortic valve conduits with alginate/gelatin hydrogels. J Biomed Mater Res A 101(5):1255–1264

    Article  Google Scholar 

  85. 85.

    Gaebel R, Ma N, Liu J, Guan J, Koch L, Klopsch C, Gruene M, Toelk A, Wang W, Mark P, Wang F, Chichkov B, Li W, Steinhoff G (2011) Patterning human stem cells and endothelial cells with laser printing for cardiac regeneration. Biomaterials 32(35):9218–9230

    Article  Google Scholar 

  86. 86.

    Filová E, Straka F, Mirejovský T, Masín J, Bacáková L (2009) Tissue-engineered heart valves. Physiol Res 58 Suppl 2(6):S141–158

  87. 87.

    Ji B, Fisher J, Nyberg SL (2011) Liver regeneration and tissue engineering. In: Bernstein HS (ed) Tissue engineering in regenerative medicine. Humana Press, USA

    Google Scholar 

  88. 88.

    Song ZW, Gupta K, Ng IC, Xing JW, Yang YA, Yu H (2018) Mechanosensing in liver regeneration. Semin Cell Dev Biol 71:153–167

    Article  Google Scholar 

  89. 89.

    Michalopoulos GK, DeFrances MC (1997) Liver regeneration. Science 276(5309):60–66

    Article  Google Scholar 

  90. 90.

    Bedossa P, Paradis V (2003) Liver extracellular matrix in health and disease. J Pathol 200(4):504–515

    Article  Google Scholar 

  91. 91.

    Natarajan V, Harris EN (2017) Kidambi S (2017) SECs (sinusoidal endothelial cells), liver microenvironment, and fibrosis. Biomed Res Int 1:4097205

    Google Scholar 

  92. 92.

    Chang R, Emami K, Wu HL, Sun W (2010) Biofabrication of a three-dimensional liver micro-organ as an in vitro drug metabolism model. Biofabrication 2(4):045004

    Article  Google Scholar 

  93. 93.

    Bhise NS, Manoharan V, Massa S, Tamayol A, Ghaderi M, Miscuglio M, Lang Q, Zhang YS, Shin SR, Calzone G, Annabi N, Shupe TD, Bishop CE, Atala A, Dokmeci MR, Khademhosseini A (2016) A liver-on-a-chip platform with bioprinted hepatic spheroids. Biofabrication 8(1):014101

    Article  Google Scholar 

  94. 94.

    Matsusaki M, Sakaue K, Kadowaki K, Akashi M (2013) Three-dimensional human tissue chips fabricated by rapid and automatic inkjet cell printing. Adv Healthc Mater 2(4):534–539

    Article  Google Scholar 

  95. 95.

    Ma XY, Qu X, Zhu W, Li YS, Yuan SL, Zhang H, Liu J, Wang PR, Lai CSE, Zanella F, Feng GS, Sheikh F, Chien S, Chen SC (2016) Deterministically patterned biomimetic human ipsc-derived hepatic model via rapid 3D bioprinting. Proc Nat Acad Sci USA 113(8):2206–2211

    Article  Google Scholar 

  96. 96.

    Nguyen DG, Funk J, Robbins JB, Crogan-Grundy C, Presnell SC, Singer T, Roth AB (2016) Bioprinted 3D primary liver tissues allow assessment of organ-level response to clinical drug induced toxicity in vitro. PLoS ONE 11(7):e0158674

    Article  Google Scholar 

  97. 97.

    Snyder JE, Hamid Q, Wang C, Chang R, Emami K, Wu H, Sun W (2011) Bioprinting cell-laden matrigel for radioprotection study of liver by pro-drug conversion in a dual-tissue microfluidic chip. Biofabrication 3(3):034112

    Article  Google Scholar 

  98. 98.

    Wang XH, Yan YN, Pan YQ, Xiong Z, Liu HX, Cheng B, Liu F, Lin F, Wu RD, Zhang RJ, Lu QP (2006) Generation of three-dimensional hepatocyte/gelatin structures with rapid prototyping system. Tissue Eng 12(1):83–90

    Article  Google Scholar 

  99. 99.

    Zhu W, Castro NJ, Zhang LG (2015) Chapter 14-nanotechnology and 3D bioprinting for neural tissue regeneration. In: Geraghty F (ed) 3D bioprinting and nanotechnology in tissue engineering and regenerative medicine. Elsevier Inc, USA

    Google Scholar 

  100. 100.

    Owens C, Marga F, Forgacs G (2015) Chapter 23-bioprinting of nerve. In: Haley M (ed) Essentials of 3D biofabrication and translation. Elsevier Inc, USA

    Google Scholar 

  101. 101.

    Moneim M, Omer G (1998) Clinical Outcome Following Acute Nerve Repair. Management of Peripheral Nerve Problems. 1998:414–419

    Google Scholar 

  102. 102.

    Cunha C, Panseri S, Antonini S (2011) Emerging nanotechnology approaches in tissue engineering for peripheral nerve regeneration. Nanomed Nanotechnol Biol Med 7(1):50–59

    Article  Google Scholar 

  103. 103.

    Subramanian A, Krishnan UM, Sethuraman S (2009) Development of biomaterial scaffold for nerve tissue engineering: biomaterial mediated neural regeneration. J Biomed Sci 16(1):108

    Article  Google Scholar 

  104. 104.

    Chen JL, Yin Z, Shen WLA, Chen XA, Heng BC, Zou XAH, Ouyang HW (2010) Efficacy of hESC-MSCs in knitted silk-collagen scaffold for tendon tissue engineering and their roles. Biomaterials 31(36):9438–9451

    Article  Google Scholar 

  105. 105.

    Ladak A, Olson J, Tredget EE, Gordon T (2011) Differentiation of mesenchymal stem cells to support peripheral nerve regeneration in a rat model. Exp Neurol 228(2):242–252

    Article  Google Scholar 

  106. 106.

    Lee Y-B, Polio S, Lee W, Dai G, Menon L, Carroll RS, Yoo S-S (2010) Bio-printing of collagen and VEGF-releasing fibrin gel scaffolds for neural stem cell culture. Exp Neurol 223(2):645–652

    Article  Google Scholar 

  107. 107.

    Ferris CJ, Gilmore KJ, Beirne S, McCallum D, Wallace GG, Panhuis MIH (2013) Bio-ink for on-demand printing of living cells. Biomater Sci 1(2):224–230

    Article  Google Scholar 

  108. 108.

    Gu Q, Tomaskoviccrook E, Lozano R, Chen Y, Kapsa RM, Zhou Q, Wallace GG, Crook JM (2016) Functional 3D neural mini-tissues from printed gel-based bioink and human neural stem cells. Adv Healthc Mater 5(12):1429–1438

    Article  Google Scholar 

  109. 109.

    Owens CM, Marga F, Forgacs G, Heesch CM (2013) Biofabrication and testing of a fully cellular nerve graft. Biofabrication 5(4):045007

    Article  Google Scholar 

  110. 110.

    Lee W, Pinckney J, Lee V, Lee JH, Fischer K, Polio S, Park JK, Yoo SS (2009) Three-dimensional bioprinting of rat embryonic neural cells. NeuroReport 20(8):798–803

    Article  Google Scholar 

  111. 111.

    Xu T, Gregory CA, Molnar P, Cui X, Jalota S, Bhaduri SB, Boland T (2006) Viability and electrophysiology of neural cell structures generated by the inkjet printing method. Biomaterials 27(19):3580–3588

    Google Scholar 

  112. 112.

    Hopp B, Smausz T, Kresz N, Barna N, Bor Z, Kolozsvari L, Chrisey DB, Szabo A, Nogradi A (2005) Survival and proliferative ability of various living cell types after laser-induced forward transfer. Tissue Eng 11(11–12):1817–1823

    Article  Google Scholar 

  113. 113.

    Hsieh FY, Hsu SH (2015) 3D bioprinting: a new insight into the therapeutic strategy of neural tissue regeneration. Organogenesis 11(4):153–158

    Article  Google Scholar 

  114. 114.

    Du X, Zhou J, Shi J, Xu B (2015) Supramolecular hydrogelators and hydrogels: from soft matter to molecular biomaterials. Chem Rev 115(24):13165

    Article  Google Scholar 

  115. 115.

    Dou XQ, Feng CL (2017) Amino acids and peptide-based supramolecular hydrogels for three-dimensional cell culture. Adv Mater 29(16):1604062

    Article  Google Scholar 

  116. 116.

    Fleming S, Ulijn RV (2014) Design of nanostructures based on aromatic peptide amphiphiles. Chem Soc Rev 43(23):8150

    Article  Google Scholar 

  117. 117.

    Miller JS (2014) The billion cell construct: will three-dimensional printing get us there? PLoS Biol 12(6):e1001882

    Article  Google Scholar 

  118. 118.

    Niklason LE, Langer RS (1997) Advances in tissue engineering of blood vessels and other tissues. Transpl Immunol 5(4):303–306

    Article  Google Scholar 

  119. 119.

    Miller JS, Stevens KR, Yang MT, Baker BM, Nguyen DH, Cohen DM, Toro E, Chen AA, Galie PA, Yu X (2012) Rapid casting of patterned vascular networks for perfusable engineered three-dimensional tissues. Nat Mater 11(9):768–774

  120. 120.

    Novosel EC, Kleinhans C, Kluger PJ (2011) Vascularization is the key challenge in tissue engineering. Adv Drug Deliv Rev 63(4–5):300–311

    Article  Google Scholar 

  121. 121.

    Jeyaraj R, Natasha G, Kirby G, Rajadas J, Mosahebi A, Seifalian AM, Tan A (2015) Vascularisation in regenerative therapeutics and surgery. Mater Sci Eng C Mater Biol Appl 54:225–238

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support from the National Natural Science Foundation of China (Project No. 21703253, 21774132, 21644007) and the Talent Fund of the Recruitment Program of Global Youth Experts.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Shuo Bai.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jian, H., Wang, M., Wang, S. et al. 3D bioprinting for cell culture and tissue fabrication. Bio-des. Manuf. 1, 45–61 (2018). https://doi.org/10.1007/s42242-018-0006-1

Download citation

Keywords

  • 3D bioprinting
  • Bioink
  • Cell culture
  • Tissue fabrication
  • Organoid