Skip to main content
Log in

Laser-induced cavitation bubble near boundaries

  • Special Column on the Salon for Young Scholars in Energy Field and Exchange Meeting of Editorial Board Members of Journal of Hydrodynamics in Beijing-Tianjin-Hebei Region (Guest Editor Yu-Ning Zhang)
  • Published:
Journal of Hydrodynamics Aims and scope Submit manuscript

Abstract

Laser-induced cavitation bubble has been widely used to investigate the mechanisms of hydraulic machinery cavitation erosion and to explore applications in atomization, alloy strengthening, ultrasonic chemistry, biomedicine, surface cleaning and materials processing. This paper consolidates existing research findings on the cavitation bubble dynamics near different boundaries and provides insights for future research work. Firstly, the dynamics of a single cavitation bubble in an infinite field is presented. Subsequently, the focus shifts to the dynamics of cavitation bubble near a rigid wall, angular walls, particles and hydrofoil. Lastly, the paper delves into the dynamics of cavitation bubble within a droplet, revealing the microscopic mechanism of droplet breakup induced by cavitation bubble.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Lauterborn W., Kurz T. Physics of bubble oscillations [J]. Reports on Progress in Physics, 2010, 73(10): 106501.

    Article  Google Scholar 

  2. Lauterborn W. High-speed photography of laser-induced breakdown in liquids [J]. Applied Physics Letters, 1972, 21(1): 27–29.

    Article  Google Scholar 

  3. Kling C. L., Hammitt F. G. A photographic study of spark-induced cavitation bubble collapse [J]. Journal of Fluids Engineering, 1972, 94(4): 825–833.

    Google Scholar 

  4. Lauterborn W., Bolle H. Experimental investigations of cavitation-bubble collapse in the neighbourhood of a solid boundary [J]. Journal of Fluid Mechanics, 1975, 72(2): 391–399.

    Article  Google Scholar 

  5. Vogel A., Busch S., Parlitz U. Shock wave emission and cavitation bubble generation by picosecond and nanosecond optical breakdown in water [J]. Journal of Acoustical Society of America, 1996, 100(1): 148–165.

    Article  Google Scholar 

  6. Liu Z., Gregory J. S., Psaltis D. Holographic recording of fast phenomena [J]. Applied Physics Letters, 2002, 80(5): 731–733.

    Article  Google Scholar 

  7. Akhatov I., Lindau O., Topolnikov A. et al. Collapse and rebound of a laser-induced cavitation bubble [J]. Physics of Fluids, 2001, 13(10): 2805–2819.

    Article  Google Scholar 

  8. Lim K. Y., Quinto-Su P. A., Klaseboer E. et al. Nonspherical laser-induced cavitation bubbles [J]. Physical Review E, 2010, 81(2): 016308.

    Article  Google Scholar 

  9. Binama M., Muhirwa A., Bisengimana E. Cavitation effects in centrifugal pumps-A review [J]. International Journal of Engineering Research and Applications, 2016, 6(5): 52–63.

    Google Scholar 

  10. Fu X., Li D., Wang H. et al. Hydraulic fluctuations during the pump power-off runaway transient process of a pump turbine with consideration of cavitation effects [J]. Journal of Hydrodynamics, 2021, 33(6): 1162–1175.

    Article  Google Scholar 

  11. Pfitsch W., Gowing S., Fry D. et al. Development of measurement techniques for studying propeller erosion damage in severe wake fields [C]. CAV2009-7th International Symposium on Cavitation, Michigan, USA, 2009.

  12. Venning J. A., Pearce B. W., Brandner P. A. Nucleation effects on cloud cavitation about a hydrofoil [J]. Journal of Fluid Mechanics, 2022, 947: A1.

    Article  Google Scholar 

  13. Yin T. Y., Pavesi G., Pei J. et al. Large eddy simulation of cloud cavitation and wake vortex cavitation around a trailing-truncated hydrofoil [J]. Journal of Hydrodynamics, 2022, 34(5): 893–903.

    Article  Google Scholar 

  14. Xie N., Tang Y. M., Liu Y. W. High-fidelity numerical simulation of unsteady cavitating flow around a hydrofoil [J]. Journal of Hydrodynamics, 2023, 35(1): 1–16.

    Article  Google Scholar 

  15. Suo D., Jin Z., Jiang X. et al. Microbubble mediated dual-frequency high intensity focused ultrasound thrombolysis: An in vitro study [J]. Applied Physics Letters, 2017, 110(2): 023703.

    Article  Google Scholar 

  16. Sagar H. J, Moctar O. Dynamics of a cavitation bubble between oblique plates [J]. Physics of Fluids, 2023, 35(1): 1–28.

    Article  Google Scholar 

  17. Loske A. M. The role of energy density and acoustic cavitation in shock wave lithotripsy [J]. Ultrasonics, 2010, 50(2): 300–305.

    Article  Google Scholar 

  18. Jasikova D., Rysová M., Kotek M. Application of laser-induced breakdown cavitation bubbles for cell lysis in vitro [J]. International Journal of Applied Pharmaceutics, 2019, 11(5): 186–190.

    Article  Google Scholar 

  19. Lohse D., Janve V., Arora M. et al. Surface cleaning from laser-induced cavitation bubbles [J]. Applied Physics Letters, 2006, 89(7): 074102.

    Article  Google Scholar 

  20. Verhaagen B., Rivas D. F. Measuring cavitation and its cleaning effect [J]. Ultrasonics Sonochemistry, 2016, 29: 619–628.

    Article  Google Scholar 

  21. Cui P., Zhang A. M., Wang S. et al. Ice breaking by a collapsing bubble [J]. Journal of Fluid Mechanics, 2018, 841: 287–309.

    Article  Google Scholar 

  22. Song W. D., Hong M. H., Lukyanchuk B. et al. Laser-induced cavitation bubbles for cleaning of solid surfaces [J]. Journal of Applied Physics, 2004, 95(6): 2952–2956.

    Article  Google Scholar 

  23. Charee W., Tangwarodomnukun V. Dynamic features of bubble induced by a nanosecond pulse laser in still and flowing water [J]. Optics and Laser Technology, 2018, 100: 230–243.

    Article  Google Scholar 

  24. Ren X. D., Wang J., Yuan S. Q. et al. Mechanical effect of laser-induced cavitation bubble of 2A02 alloy [J]. Optics and Laser Technology, 2018, 105: 180–184.

    Article  Google Scholar 

  25. Xu W. W., Tzanakis I., Srirangam P. et al. Synchrotron quantification of ultrasound cavitation and bubble dynamics in Al−10Cu melts [J]. Ultrasonics Sonochemistry, 2016, 31: 355–361.

    Article  Google Scholar 

  26. Sutkar V. S., Gogate P. R. Mapping of cavitational activity in high frequency sonochemical reactor [J]. Chemical Engineering Journal, 2010, 158(2): 296–304.

    Article  Google Scholar 

  27. Tian Z. L., Liu Y. L., Zhang A. M. et al. Jet development and impact load of underwater explosion bubble on solid wall [J]. Applied Ocean Research, 2020, 95: 102013.

    Article  Google Scholar 

  28. Zhang A. M., Zeng L. Y., Cheng X. D. et al. The evaluation method of total damage to ship in underwater explosion [J]. Applied Ocean Research, 2011, 33(4): 240–251.

    Article  Google Scholar 

  29. Besant W. H. A treatise on hydrostatics and hydrodynamics [M]. Deighton, UK: BiblioBazaar, 1859.

    Google Scholar 

  30. Rayleigh L. VIII. On the pressure developed in a liquid during the collapse of a spherical cavity [J]. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1917, 34(200): 94–98.

    Article  Google Scholar 

  31. Plesset M. S., Prosperetti A. Bubble dynamics and cavitation [J]. Annual Review of Fluid Mechanics, 1977, 9(1): 145–185.

    Article  Google Scholar 

  32. Kirkwood J. G., Bethe H. A. Basic propagation theory [R]. Washington DC, USA: Office of Scientific Research and Development, 1942, 588–675.

    Google Scholar 

  33. Zhao R., Xu R., Shen Z. et al. Experimental investigation of the collapse of laser-generated cavitation bubbles near a solid boundary [J]. Optics and Laser Technology, 2007, 39(5): 968–972.

    Article  Google Scholar 

  34. Dijkink R., Ohl C. D. Measurement of cavitation induced wall shear stress [J]. Applied Physics Letters, 2008, 93(25): 254107.

    Article  Google Scholar 

  35. Li B. B., Zhang H. C., Han B. et al. Numerical study of ambient pressure for laser-induced bubble near a rigid boundary [J]. Science China Physics, Mechanics and Astronomy, 2012, 55(7): 1291–1296.

    Article  Google Scholar 

  36. Yang Y. X., Wang Q. X., Keat T. S. Dynamic features of a laser-induced cavitation bubble near a solid boundary [J]. Ultrasonics Sonochemistry, 2013, 20(4): 1098–1103.

    Article  Google Scholar 

  37. Liu L. T., Yao X. L., Zhang A. M. et al. Numerical analysis of the jet stage of bubble near a solid wall using a front tracking method [J]. Physics of Fluids, 2017, 29(1): 012105.

    Article  Google Scholar 

  38. Zhang J. Y., Du Y. Q., Liu J. Q. et al. Experimental and numerical investigations of the collapse of a laser-induced cavitation bubble near a solid wall [J]. Journal of Hydrodynamics, 2022, 34(2): 189–199.

    Article  Google Scholar 

  39. Zhao D., Deng F., Zhang L. Numerical investigation on the impact pressure induced by a cavitation bubble collapsing near a solid wall [J]. Physics of Fluids, 2023, 35(4): 043315.

    Article  Google Scholar 

  40. Reuter F., Ohl C. D. Supersonic needle-jet generation with single cavitation bubbles [J]. Applied Physics Letters, 2021, 118: 134103.

    Article  Google Scholar 

  41. Bußmann A., Riahi F., Gökce B. et al. Investigation of cavitation bubble dynamics near a solid wall by highresolution numerical simulation [J]. Physics of Fluids, 2023, 35(1): 016115.

    Article  Google Scholar 

  42. Lechner C., Lauterborn W., Koch M. et al. Fast, thin jets from bubbles expanding and collapsing in extreme vicinity to a solid boundary: A numerical study [J]. Physical Review Fluids, 2019, 4(2): 021601.

    Article  Google Scholar 

  43. Lechner C., Lauterborn W., Koch M. et al. Jet formation from bubbles near a solid boundary in a compressible liquid: Numerical study of distance dependence [J]. Physical Review Fluids, 2020, 5(9): 093604.

    Article  Google Scholar 

  44. Poulain S., Guenoun G., Gart S. et al. Particle motion induced by bubble cavitation [J]. Physical Review Letters, 2015, 114(21): 214501.

    Article  Google Scholar 

  45. Li S., Han R., Zhang A. M. Nonlinear interaction between a gas bubble and a suspended sphere [J]. Journal of Fluids and Structures, 2016, 65: 333–354.

    Article  Google Scholar 

  46. Wu S., Zuo Z., Stone H. A. et al. Motion of a free-settling spherical particle driven by a laser-induced bubble [J]. Physical Review Letters, 2017, 119(8): 084501.

    Article  Google Scholar 

  47. Xu W., Zhang Y., Luo J. et al. The impact of particles on the collapse characteristics of cavitation bubbles [J]. Ocean Engineering, 2017, 131: 15–24.

    Article  Google Scholar 

  48. Zhang Y., Chen F., Zhang Y. et al. Experimental investigations of interactions between a laser-induced cavitation bubble and a spherical particle [J]. Experimental Thermal and Fluid Science, 2018, 98: 645–661.

    Article  Google Scholar 

  49. Lv L., Zhang Y., Zhang Y. Experimental investigations of the particle motions induced by a laser-generated cavitation bubble [J]. Ultrasonics Sonochemistry, 2019, 56: 63–76.

    Article  Google Scholar 

  50. Zheng Y., Chen L., Liang X. et al. Numerical study of the interaction between a collapsing bubble and a movable particle in a free field [J]. Water, 2020, 12(12): 3331.

    Article  Google Scholar 

  51. Zevnik J., Dular M. Cavitation bubble interaction with a rigid spherical particle on a microscale [J]. Ultrasonics Sonochemistry, 2020, 69: 105252.

    Article  Google Scholar 

  52. Li S., Zhang A. M., Han R. et al. Experimental and numerical study on bubble-sphere interaction near a rigid wall [J]. Physics of Fluids, 2017, 29(9): 092102.

    Article  Google Scholar 

  53. Teran L. A., Rodriguez S. A., Laín S. et al. Interaction of particles with a cavitation bubble near a solid wall [J]. Physics of Fluids, 2018, 30(12): 123304.

    Article  Google Scholar 

  54. Teran L. A., Laín S., Jung S. et al. Surface damage caused by the interaction of particles and a spark-generated bubble near a solid wall [J]. Wear, 2019, 438: 203076.

    Article  Google Scholar 

  55. Zhang Y., Xie X., Zhang Y. et al. High-speed experimental photography of collapsing cavitation bubble between a spherical particle and a rigid wall [J]. Journal of Hydrodynamics, 2018, 30: 1012–1021.

    Article  Google Scholar 

  56. Zhang Y., Xie X., Zhang Y. et al. Experimental study of influences of a particle on the collapsing dynamics of a laser-induced cavitation bubble near a solid wall [J]. Experimental Thermal and Fluid Science, 2019, 105: 289–306.

    Article  Google Scholar 

  57. Fabiilli M. L., Haworth K. J., Fakhri N. H. et al. The role of inertial cavitation in acoustic droplet vaporization [J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2009, 56(5): 1006–1017.

    Article  Google Scholar 

  58. Qamar A., Wong Z. Z., Fowlkes J. B. et al. Evolution of acoustically vaporized microdroplets in gas embolotherapy [J]. Journal of Biomechanical Engineering, 2012, 134: 31010.

    Article  Google Scholar 

  59. Feng Y., Qin D., Zhang J. et al. Acoustic signal characteristics of laser induced cavitation in DDFP droplet: Spectrum and time-frequency analysis [J]. Bio-Medical Materials and Engineering, 2015, 26(s1): S423–S427.

    Article  Google Scholar 

  60. Kang S. T., Huang Y. L., Yeh C. K. Characterization of acoustic droplet vaporization for control of bubble generation under flow conditions [J]. Ultrasound in Medicine and Biology, 2014, 40(3): 551–561.

    Article  Google Scholar 

  61. Kobel P., Obreschkow D., de Bosset A. et al. Techniques for generating centimetric drops in microgravity and application to cavitation studies [J]. Experiments in Fluids, 2009, 47: 39–48.

    Article  Google Scholar 

  62. Obreschkow D., Kobel P., Dorsaz N. et al. Cavitation bubble dynamics inside liquid drops in microgravity [J]. Physical Review Letters, 2006, 97(9): 094502.

    Article  Google Scholar 

  63. Obreschkow D., Dorsaz N., Kobel P. et al. Confined shocks inside isolated liquid volumes: A new path of erosion? [J]. Physics of Fluids, 2011, 23(10): 101702–101705.

    Article  Google Scholar 

  64. Thoroddsen S. T., Takehara K., Etoh T. G. et al. Spray and microjets produced by focusing a laser pulse into a hemispherical drop [J]. Physics of Fluids, 2009, 21(11): 112101.

    Article  Google Scholar 

  65. Padilla-Martinez J. P., Ramirez-San-Juan J. C., Berrospe-Rodriguez C. et al. Controllable direction of liquid jets generated by thermocavitation within a droplet [J]. Applied Optics, 2017, 56(25): 7167–7173.

    Article  Google Scholar 

  66. Avila S. R. G., Ohl C. D. Fragmentation of acoustically levitating droplets by laser-induced cavitation bubbles [J]. Journal of Fluid Mechanics, 2016, 805: 551–576.

    Article  MathSciNet  Google Scholar 

  67. Ming L., Zhi N., Chunhua S. Numerical simulation of cavitation bubble collapse within a droplet [J]. Computers and Fluids, 2017, 152: 157–163.

    Article  MathSciNet  Google Scholar 

  68. Zeng Q., Gonzalez-Avila S. R., Voorde S. T. et al. Jetting of viscous droplets from cavitation-induced Rayleigh–Taylor instability [J]. Journal of Fluid Mechanics, 2018, 846: 916–943.

    Article  Google Scholar 

  69. Liang Y., Jiang Y., Wen C. Y. et al. Interaction of a planar shock wave and a water droplet embedded with a vapour cavity [J]. Journal of Fluid Mechanics, 2020, 885: R6.

    Article  Google Scholar 

  70. Rosselló J. M., Reese H., Raman K. A. et al. Bubble nucleation and jetting inside a millimetric droplet [J]. Journal of Fluid Mechanics, 2023, 968: A19.

    Article  MathSciNet  Google Scholar 

  71. Zhang Y., Zhang X., Zhang X. et al. Collapsing and splashing dynamics of single laser-induced cavitation bubbles within droplets [J]. Symmetry, 2023, 15(7): 1323.

    Article  Google Scholar 

  72. Zhang Y., Zhang X., Zhang S. et al. Research on dynamic process and droplet splash of laser-induced cavitation bubble collapse within a droplet [J]. Applied Sciences, 2023, 13(13): 7862.

    Article  Google Scholar 

  73. Zhang Y., Zhang X., Zhang S. et al. Research on eccentric cavitation bubble collapse dynamics within droplets [J]. Symmetry, 2023, 15(7): 1375.

    Article  Google Scholar 

  74. Sinibaldi G., Occhicone A., Pereira F. A. et al. Laser induced cavitation: Plasma generation and breakdown shockwave [J]. Physics of Fluids, 2019, 31(10): 103302.

    Article  Google Scholar 

  75. Wen H., Yao Z., Zhong Q. et al. Energy partitioning in laser-induced millimeter-sized spherical cavitation up to the fourth oscillation [J]. Ultrasonics Sonochemistry, 2023, 95: 106391.

    Article  Google Scholar 

  76. Zhong X., Eshraghi J., Vlachos P. et al. A model for a laser-induced cavitation bubble [J]. International Journal of Multiphase Flow, 2020, 132: 103433.

    Article  MathSciNet  Google Scholar 

  77. Lee H., Gojani A. B., Han T. et al. Dynamics of laser-induced bubble collapse visualized by time-resolved optical shadowgraph [J]. Journal of Visualization, 2011, 14: 331–337.

    Article  Google Scholar 

  78. Holzfuss J., Rüggeberg M., Billo A. et al. Shock wave emissions of a sonoluminescing bubble [J]. Physical Review Letters, 1998, 81(24): 5434–5437.

    Article  Google Scholar 

  79. Pecha R., Gompf B. Microimplosions: Cavitation collapse and shock wave emission on a nanosecond time scale [J]. Physical Review Letters, 2000, 84(6): 1328.

    Article  Google Scholar 

  80. Plesset M. S. The dynamics of cavitation bubbles [J]. Journal of Applied Mechanics-Transactions ASME, 1949, 16: 277–282.

    Article  Google Scholar 

  81. Keller J., Joseph B. Bubble oscillations of large amplitude [J]. Acoustical Society of America Journal, 1980, 68(2): 628–633.

    Article  Google Scholar 

  82. Herring C. Theory of the pulsations of the gas bubble produced by an underwater explosion [R]. New London, USA: Columbia University, 1941.

    Google Scholar 

  83. Gilmore F. R. The growth or collapse of a spherical bubble in a viscous compressible liquid [J]. California Institute of Technology, 1952, 26(4): 117–125.

    Google Scholar 

  84. Lai G., Geng S., Zheng H. et al. Early dynamics of a laser-induced underwater shock wave [J]. Journal of Fluids Engineering, 2022, 144(1): 011501.

    Article  Google Scholar 

  85. Geng S., Yao Z., Zhong Q. et al. Propagation of shock wave at the cavitation bubble expansion stage induced by a nanosecond laser pulse [J]. Journal of Fluids Engineering, 2021, 143(5): 051209.

    Article  Google Scholar 

  86. Ma X., Huang B., Wang G. Numerical investigation of dynamic responses of the composite material subjected to the bubble collapse [J]. Computational and Experimental Methods in Multiphase and Complex Flow IX, 2017, 43: 115.

    Google Scholar 

  87. Wu P., Bai L., Lin W. et al. Mechanism and dynamics of hydrodynamic-acoustic cavitation (HAC) [J]. Ultrasonics Sonochemistry, 2018, 49: 89–96.

    Article  Google Scholar 

  88. Wang S. P., Zhang A. M., Liu Y. L. et al. Bubble dynamics and its applications [J]. Journal of Hydrodynamics, 2018, 30(6): 975–991.

    Article  Google Scholar 

  89. Aganin A. A., Ilgamov M. A., Kosolapova L. A. et al. Dynamics of a cavitation bubble near a solid wall [J]. Thermophysics and Aeromechanics, 2016, 23: 211–220.

    Article  Google Scholar 

  90. Sagar H. J., el Moctar O. Dynamics of a cavitation bubble near a solid surface and the induced damage [J]. Journal of Fluids and Structures, 2020, 92: 102799.

    Article  Google Scholar 

  91. Lindau O., Lauterborn W. Cinematographic observation of the collapse and rebound of a laser-produced cavitation bubble near a wall [J]. Journal of Fluid Mechanics, 2003, 479: 327–348.

    Article  Google Scholar 

  92. Benjamin T. B., Ellis A. T. The collapse of cavitation bubbles and the pressures thereby produced against solid boundaries [J]. Philosophical Transactions for the Royal Society of London. Series A, Mathematical and Physical Sciences, 1966, 260(1110): 221–240.

    Google Scholar 

  93. Vogel A., Lauterborn W., Timm R. Optical and acoustic investigations of the dynamics of laser-produced cavitation bubbles near a solid boundary [J]. Journal of Fluid Mechanics, 1989, 206: 299–338.

    Article  Google Scholar 

  94. Luo J., Xu W., Deng J. et al. Experimental study on the impact characteristics of cavitation bubble collapse on a wall [J]. Water, 2018, 10(9): 1262.

    Article  Google Scholar 

  95. Bai L. X., Xu W. L., Zhong T. et al. A high-speed photographic study of ultrasonic cavitation near rigid boundary [J]. Journal of Hydrodynamics, 2008, 20(5): 637–644.

    Article  Google Scholar 

  96. Yang X., Liu C., Wan D. et al. Numerical study of the shock wave and pressure induced by single bubble collapse near planar solid wall [J]. Physics of Fluids, 2021, 33(7): 073311.

    Article  Google Scholar 

  97. Li X., Duan Y., Zhang Y. et al. Retardant effects of collapsing dynamics of a laser-induced cavitation bubble near a solid wall [J]. Symmetry, 2019, 11(8): 1051.

    Article  Google Scholar 

  98. Zhang M., Chang Q., Ma X. et al. Physical investigation of the counterjet dynamics during the bubble rebound [J]. Ultrasonics Sonochemistry, 2019, 58: 104706.

    Article  Google Scholar 

  99. Sun Y., Du Y., Yao Z. et al. The effect of surface geometry of solid wall on the collapse of a cavitation bubble [J]. Journal of Fluids Engineering, 2022, 144(7): 071402.

    Article  Google Scholar 

  100. Reuter F., Ohl C. Supersonic needle-jet generation with single cavitation bubbles [J]. Applied Physics Letters, 2021, 118(13): 134103.

    Article  Google Scholar 

  101. Jin Z., Gao Z., Qian J. et al. A parametric study of hydrodynamic cavitation inside globe valves [J]. Journal of Fluids Engineering, 2018, 140(3): 031208.

    Article  Google Scholar 

  102. Ji C., Li B., Zou J. Secondary cavitation in a rigid tube [J]. Physics of Fluids, 2017, 29(8): 082107.

    Article  Google Scholar 

  103. Chen F., Yao C., Yang Z. Failure analysis on abnormal wall thinning of heat-transfer titanium tubes of condensers in nuclear power plant Part II: Erosion and cavitation corrosion [J]. Engineering Failure Analysis, 2014, 37: 42–52.

    Article  Google Scholar 

  104. Sreedhar B. K., Albert S. K., Pandit A. B. Cavitation damage: Theory and measurements–A review [J]. Wear, 2017, 372: 177–196.

    Article  Google Scholar 

  105. Singh R., Tiwari S. K., Mishra S. K. Cavitation erosion in hydraulic turbine components and mitigation by coatings: Current status and future needs [J]. Journal of Materials Engineering and Performance, 2012, 21: 1539–1551.

    Article  Google Scholar 

  106. Chang H., Xie X., Zheng Y. et al. Numerical study on the cavitating flow in liquid hydrogen through elbow pipes with a simplified cavitation model [J]. International Journal of Hydrogen Energy, 2017, 42(29): 18325–18332.

    Article  Google Scholar 

  107. Pan Z., Kiyama A., Tagawa Y. et al. Cavitation onset caused by acceleration [J]. Proceedings of the National Academy of Sciences, 2017, 114(32): 8470–8474.

    Article  Google Scholar 

  108. Cai S. Cavitation occurring in capillary tubes [J]. Physics Letters A, 2019, 383(6): 509–513.

    Article  Google Scholar 

  109. Wang X., Wu G., Shen J. et al. Research on the collapse dynamics of a restricted cavitation bubble near a right-angle wall based on Kelvin impulse theory [J]. Physics of Fluids, 2023, 35(7): 073335.

    Article  Google Scholar 

  110. Brujan E. A., Noda T., Ishigami A. et al. Dynamics of laser-induced cavitation bubbles near two perpendicular rigid walls [J]. Journal of Fluid Mechanics, 2018, 841: 28–49.

    Article  Google Scholar 

  111. Tagawa Y., Peters I. R. Bubble collapse and jet formation in corner geometries [J]. Physical Review Fluids, 2018, 3(8): 081601.

    Article  Google Scholar 

  112. Wang Q., Mahmud M., Cui J. et al. Numerical investigation of bubble dynamics at a corner [J]. Physics of Fluids, 2020, 32(5): 053306.

    Article  Google Scholar 

  113. Zhang Y., Qiu X., Zhang X. et al. Collapsing dynamics of a laser-induced cavitation bubble near the edge of a rigid wall [J]. Ultrasonics Sonochemistry, 2020, 67: 105157.

    Article  Google Scholar 

  114. Brujan E. A., Takahira H., Ogasawara T. Planar jets in collapsing cavitation bubbles [J]. Experimental Thermal and Fluid Science, 2019, 101: 48–61.

    Article  Google Scholar 

  115. Andrews E. D., Rivas D. F., Peters I. R. Cavity collapse near slot geometries [J]. Journal of Fluid Mechanics, 2020, 901: A29.

    Article  MathSciNet  Google Scholar 

  116. Gao S., Wang L., Yang Y. Summary of abrasion research on overflow components and discharge structures of hydropower station [J]. Yunnan Water Power, 2022, 38(12): 315–318 (in Chinese).

    Google Scholar 

  117. Zhang Y., Zhang Y., Qian Z. et al. A review of microscopic interactions between cavitation bubbles and particles in silt-laden flow [J]. Renewable and Sustainable Energy Reviews, 2016, 56: 303–318.

    Article  MathSciNet  Google Scholar 

  118. Duan C., Karelin V. Y. Abrasive erosion and corrosion of hydraulic machinery [M]. Singapore: World Scientific, 2003.

    Book  Google Scholar 

  119. Zhou Z., Xu Z., Finch J. A. et al. On the role of cavitation in particle collection in flotation–A critical review. II [J]. Minerals Engineering, 2009, 22(5): 419–433.

    Article  Google Scholar 

  120. Dular M., Petkovšek M. On the mechanisms of cavitation erosion–Coupling high speed videos to damage patterns [J]. Experimental Thermal and Fluid Science, 2015, 68: 359–370.

    Article  Google Scholar 

  121. Wang X., Wu G., Zheng X. et al. Theoretical investigation and experimental support for the cavitation bubble dynamics near a spherical particle based on Weiss theorem and Kelvin impulse [J]. Ultrasonics Sonochemistry, 2022, 89: 106130.

    Article  Google Scholar 

  122. Zheng X., Wang X., Ding Z. et al. Investigation on the cavitation bubble collapse and the movement characteristics near spherical particles based on Weiss theorem [J]. Ultrasonics Sonochemistry, 2023, 93: 106301.

    Article  Google Scholar 

  123. Su K., Wu J., Xia D. Dual role of microparticles in synergistic cavitation–particle erosion: Modeling and experiments [J]. Wear, 2021, 470: 203633.

    Article  Google Scholar 

  124. Wu S., Li B., Zuo Z. et al. Dynamics of a single free-settling spherical particle driven by a laser-induced bubble near a rigid boundary [J]. Physical Review Fluids, 2021, 6(9): 093602.

    Article  Google Scholar 

  125. Ren Z., Zuo Z., Wu S. et al. Particulate projectiles driven by cavitation bubbles [J]. Physical Review Letters, 2022, 128(4): 044501.

    Article  Google Scholar 

  126. Acosta A. J. Hydrofoils and hydrofoil craft [J]. Annual Review of Fluid Mechanics, 1973, 5(1): 161–184.

    Article  Google Scholar 

  127. Lian G. C. The studies of finite supercavitating airfoil [J]. Applied Mathematics and Mechanics, 1986, 7(12): 1203–1221.

    Article  Google Scholar 

  128. Kapania N. R., Terracciano K., Taylor S. Modeling the fluid flow around airfoils using conformal mapping [J]. SIAM Undergraduate Research Online, 2008, 1(2): 70–99.

    Article  Google Scholar 

  129. Li S., Zhang A. M., Han R. Counter-jet formation of an expanding bubble near a curved elastic boundary [J]. Physics of Fluids, 2018, 30(12): 121703.

    Article  Google Scholar 

  130. Zheng H., Dayton P. A., Caskey C. et al. Ultrasound-driven microbubble oscillation and translation within small phantom vessels [J]. Ultrasound in Medicine and Biology, 2007, 33(12): 1978–1987.

    Article  Google Scholar 

  131. Zhang A. M., Xiao W., Wang S. P. Experimental investigation of the interaction between a pulsating bubble and a rigid cylinder [J]. Acta Mechanica Sinica, 2013, 29(4): 503–512.

    Article  Google Scholar 

  132. Ajaev V. S., Homsy G. M. Modeling shapes and dynamics of confined bubbles [J]. Annual Review of Fluid Mechanics, 2006, 38: 277–307.

    Article  MathSciNet  Google Scholar 

  133. Zwaan E., Le Gac S., Tsuji K. et al. Controlled cavitation in microfluidic systems [J]. Physical Review Letters, 2007, 98(25): 254501.

    Article  Google Scholar 

  134. Takahira H., Fujikawa S., Akamatsu T. Collapse motion of a single gas bubble near a plane or curved rigid wall [J]. Transactions of the Japan Society of Mechanical Engineers, 1989, 55: 2720–2728.

    Article  Google Scholar 

  135. Aganin A. A., Kosolapova L. A., Malakhov V. G. Bubble dynamics near a locally curved region of a plane rigid wall [J]. Physics of Fluids, 2022, 34(9): 097105.

    Article  Google Scholar 

  136. Liu Y., Peng Y. Study on the collapse process of cavitation bubbles including heat transfer by lattice Boltzmann method [J]. Journal of Marine Science and Engineering, 2021, 9(2): 219.

    Article  Google Scholar 

  137. Aziz I. A., Manmi K. M. A., Saeed R. K. et al. Modeling three dimensional gas bubble dynamics between two curved rigid plates using boundary integral method [J]. Engineering Analysis with Boundary Elements, 2019, 109: 19–31.

    Article  MathSciNet  Google Scholar 

  138. Dadvand A., Manmi K. M. A., Aziz I. A. Three-dimensional bubble jetting inside a corner formed by rigid curved plates: Boundary integral analysis [J]. International Journal of Multiphase Flow, 2023, 158: 104308.

    Article  Google Scholar 

  139. Shen J., Liu Y., Wang X. et al. Research on the dynamics of a restricted cavitation bubble near a symmetric Joukowsky hydrofoil [J]. Physics of Fluids, 2023, 35(7): 072111.

    Article  Google Scholar 

  140. Suh H. K., Lee C. S. Effect of cavitation in nozzle orifice on the diesel fuel atomization characteristics [J]. International Journal of Heat and Fluid Flow, 2008, 29(4): 1001–1009.

    Article  Google Scholar 

  141. Wu Z., Shi Z., Zhao H. et al. Effects of bubbles in the liquid jet on the air-blast atomization [J]. Fuel, 2020, 266: 117117.

    Article  Google Scholar 

  142. Lü M., Ning Z., Yan K. et al. Breakup of cavitation bubbles within the diesel droplet [J]. Chinese Journal of Mechanical Engineering, 2014, 27(1): 198–204.

    Article  Google Scholar 

Download references

Acknowledgment

(This research received other funding agency in the public, commercial, or not-for-profit sectors.)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-ning Zhang.

Ethics declarations

Conflict of interest: The authors declare that they have no conflict of interest. Yu-ning Zhang is editorial board member for the Journal of Hydrodynamics and was not involved in the editorial review, or the decision to publish this article. All authors declare that there are no other competing interests.

Ethical approval: This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent: Informed consent was obtained from all individual participants included in the study.

Additional information

Project supported by the National Natural Science Foundation of China (Grant No. 51976056).

Biography: Jia-xin Yu (1993-), Female, Ph. D.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, Jx., Wang, Xy., Hu, Js. et al. Laser-induced cavitation bubble near boundaries. J Hydrodyn 35, 858–875 (2023). https://doi.org/10.1007/s42241-023-0074-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42241-023-0074-3

Key words

Navigation