Skip to main content
Log in

Research on the collapse process of a near-wall bubble

  • Special Column on the Salon for Young Scholars in Energy Field and Exchange Meeting of Editorial Board Members of Journal of Hydrodynamics in Beijing-Tianjin-Hebei Region (Guest Editor Yu-Ning Zhang)
  • Published:
Journal of Hydrodynamics Aims and scope Submit manuscript

Abstract

The effect of wall on the bubble collapse is significant. A compressible numerical simulation method based on the state equation was used to numerically calculate the collapse process of bubbles at different leaving wall distances. The results show that when the dimensionless distance between the bubble center and the wall is greater than zero, the bubble generates a high-pressure region at the top of the interface, which induces a jet toward the wall. When the dimensionless distance is less than zero, the jet is generated from the vicinity of the contact position between the bubble and the wall and moves along the wall towards the center axis of the bubble. When the dimensionless distance is equal to zero, that is, the center of the bubble coincides with the center of the wall, the bubble shrinks uniformly, and its collapse process is consistent with that of a single bubble in free space under the same parameter conditions. Comparison of these three typical cases of dimensionless distance from the wall reveals that the presence of the wall induces an asymmetric effect and a pressure gradient effect in the flow field around the bubble, and the farthest point away from the center of the attached wall is a high-pressure region, which induces destabilization of the bubble interface and the occurrence of jets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Rayleigh L. VIII. On the pressure developed in a liquid during the collapse of a spherical cavity [J]. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 2009, 34(200): 94–98.

    Article  Google Scholar 

  2. Han X., Wang Z., Costa M. et al. Experimental and kinetic modeling study of laminar burning velocities of NH3/air, NH3/H2/air, NH3/CO/air and NH3/CH4/air premixed flames [J]. Combustion and Flame, 2019, 206(8): 214–226.

    Article  Google Scholar 

  3. Tomita Y., Shima A. Mechanisms of impulsive pressure generation and damage pit formation by bubble collapse [J]. Journal of Fluid Mechanics, 1986, 169: 535–564.

    Article  Google Scholar 

  4. Brujan E. A., Ikeda T., Yoshinaka K. et al. The final stage of the collapse of a cloud of bubbles close to a rigid boundary [J]. Ultrasonics Sonochemistry, 2011, 18(1): 59–64.

    Article  Google Scholar 

  5. Zhang S., Zhang A. M., Wang S. P. et al. Dynamic characteristics of large scale spark bubbles close to different boundaries [J]. Physics of Fluids, 2017, 29(7): 092107.

    Article  Google Scholar 

  6. Choi J., Ceccio S. L. Dynamics and noise emission of vortex cavitation bubbles [J]. Journal of Fluid Mechanics, 2007, 575: 1–26.

    Article  Google Scholar 

  7. Supponen O., Obreschkow D., Kobel P. et al. Luminescence from cavitation bubbles deformed in uniform pressure gradients [J]. Physical Review E, 2017, 96(3): 033114.

    Article  Google Scholar 

  8. Lauterborn W., Bolle H. Experimental investigations of cavitation-bubble collapse in the neighbourhood of a solid boundary [J]. Journal of Fluid Mechanics, 1975, 72: 391–399.

    Article  Google Scholar 

  9. Naudé C. F., Ellis A. T. On the mechanism of cavitation damage by nonhemispherical cavities collapsing in contact with a solid boundary [J]. Journal of Basic Engineering, 1961, 83(4): 648–656.

    Article  Google Scholar 

  10. Yin Z., Prosperetti A. A microfluidic ‘blinking bubble’ pump [J]. Journal of Micromechanics and Microengineering, 2005, 15(12): 643–651.

    Article  Google Scholar 

  11. Trummler T., Bryngelson S. H., Schmidmayer K. et al. Near-surface dynamics of a gas bubble collapsing above a crevice [J]. Journal of Fluid Mechanics, 2020, 899: 1–22.

    Article  MathSciNet  Google Scholar 

  12. Li S., Zhang A. M., Wang S. et al. Transient interaction between a particle and an attached bubble with an application to cavitation in silt-laden flow [J]. Physics of Fluids, 2018, 30(8): 082111.

    Article  Google Scholar 

  13. Reuter F., Gonzalez-Avila S. R., Mettin R. et al. Flow fields and vortex dynamics of bubbles collapsing near a solid boundary [J]. Physical Review Fluids, 2017, 2(6): 064202.

    Article  Google Scholar 

  14. Saini M., Tanne E., Arrigoni M. et al. On the dynamics of a collapsing bubble in contact with a rigid wall [J]. Journal of Fluid Mechanics, 2022, 948: A45.

    Article  Google Scholar 

  15. Zhang A. M., Li S. M., Cui P. et al. A unified theory for bubble dynamics [J]. Physics of Fluids, 2023, 35(3): 033323.

    Article  Google Scholar 

  16. Beig S. A., Aboulhasanzadeh B., Johnsen E. Temperatures produced by inertially collapsing bubbles near rigid surfaces [J]. Journal of Fluid Mechanics, 2018, 852: 105–125.

    Article  MathSciNet  Google Scholar 

  17. Peng C., Tian S., Li G. et al. Single-component multiphase lattice Boltzmann simulation of free bubble and crevice heterogeneous cavitation nucleation [J]. Physical Review E, 2018, 98(2): 023305.

    Article  MathSciNet  Google Scholar 

  18. Feng J. T., Liu Y. L., Wang S. P. et al. Numerical analysis of nonlinear interaction between a gas bubble and free surface in a viscous compressible liquid [J]. Physics of Fluids, 2023, 35(7): 072103.

    Article  Google Scholar 

  19. Gonzalez-Avila S. R., Nguyen D. M., Arunachalam S. et al. Mitigating cavitation erosion using biomimetic gas-entrapping microtextured surfaces (GEMS) [J]. Science Advances, 2020, 6(13): eaax6192.

    Article  Google Scholar 

  20. Naing N. M. T., Park J., Hyun S. H. et al. Impact loads generated by tandem cavitation bubble on solid wall [J]. Journal of Hydrodynamics, 2022, 34(3): 467–482.

    Article  Google Scholar 

  21. Manmi K. M. A., Aziz I. A., Arjunan A. et al. Three-dimensional oscillation of an acoustic microbubble between two rigid curved plates [J]. Journal of Hydrodynamics, 2021, 33(5): 1019–1034.

    Article  Google Scholar 

  22. Zhang J. Y., Du Y. X., Liu J. Q. et al. Experimental and numerical investigations of the collapse of a laser-induced cavitation bubble near a solid wall [J]. Journal of Hydrodynamics, 2022, 34(2): 189–199.

    Article  Google Scholar 

  23. Kapila A. K., Menikoff R., Bdzil J. B. et al. Two-phase modeling of deflagration-to-detonation transition in granular materials: Reduced equations [J]. Physics of Fluids, 2001, 13(10): 3002–3024.

    Article  Google Scholar 

  24. Schmidmayer K., Petitpas F., Le Martelot S. et al. ECOGEN: An open-source tool for multiphase, compressible, multiphysics flows [J]. Computer Physics Communications, 2020, 251(1): 1–26.

    MathSciNet  Google Scholar 

  25. Bokman G. T., Biasiori-Poulanges L., Meyer D. W. et al. Scaling laws for bubble collapse driven by an impulsive shock wave [J]. Journal of Fluid Mechanics, 2023, 967: A33.

    Article  MathSciNet  Google Scholar 

  26. Schmidmayer K., Bryngelson S. H., Colonius T. An assessment of multicomponent flow models and interface capturing schemes for spherical bubble dynamics [J]. Journal of Computational Physics, 2020, 402(1): 109080.

    Article  MathSciNet  Google Scholar 

  27. Schmidmayer K., Cazé J., Petitpas F. et al. Modelling interactions between waves and diffused interfaces [J]. International Journal for Numerical Methods in Fluids, 2023, 95(2): 215–241.

    Article  MathSciNet  Google Scholar 

  28. Biasiori-Poulanges L., Schmidmayer K. A phenomenological analysis of droplet shock-induced cavitation using a multiphase modeling approach [J]. Physics of Fluids, 2022, 35(1): 013312

    Article  Google Scholar 

  29. Gilmore F. R. The growth or collapse of a spherical bubble in a viscous compressible liquid [R]. Pasadena, USA: California Institute of Technology, 1952, 26–40.

    Google Scholar 

  30. Denner F. The Gilmore-NASG model to predict single-bubble cavitation in compressible liquids [J]. Ultrasonics Sonochemistry, 2021, 70(6): 105307.

    Article  Google Scholar 

  31. Le Métayer O., Saurel R. The noble-abel stiffened-gas equation of state [J]. Physics of Fluids, 2016, 28(4): 046102.

    Article  Google Scholar 

  32. Lauterborn W., Vogel A. Shock wave emission by laser generated bubbles (Delale C. F. Bubble dynamics and shock waves) [M]. Berlin, Germany: Springer, 2013, 67–103.

    Google Scholar 

  33. Sieber A. B., Preso D. B., Farhat M. Dynamics of cavitation bubbles near granular boundaries [J]. Journal of Fluid Mechanics, 2022, 947: A39.

    Article  MathSciNet  Google Scholar 

  34. Trummler T., Schmidt S. J., Adams N. A. Effect of standoff distance and spatial resolution on the pressure impact of near-wall vapor bubble collapses [J]. International Journal of Multiphase Flow, 2021, 141: 103618.

    Article  Google Scholar 

Download references

Acknowledgement

This research received other funding agency in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Zhang.

Ethics declarations

Conflict of interest: The authors declare that they have no conflict of interest. Bing Zhu, Wei Zhang are editorial board members for the Journal of Hydrodynamics and was not involved in the editorial review, or the decision to publish this article. All authors declare that there are no other competing interests.

Ethical approval: This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent: Informed consent was obtained from all individual participants included in the study.

Additional information

Project supported by the National Natural Science Foundation of China (Grant Nos. 12272357, 91852117).

Biography: Bing Zhu (1979-), Male, Ph. D., Associate Professor

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, B., Han, W., Xu, Wj. et al. Research on the collapse process of a near-wall bubble. J Hydrodyn 35, 899–912 (2023). https://doi.org/10.1007/s42241-023-0067-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42241-023-0067-2

Key words

Navigation