Skip to main content
Log in

Large-eddy simulation of turbulent boundary layer flow over multiple hills

  • Articles
  • Published:
Journal of Hydrodynamics Aims and scope Submit manuscript

Abstract

Atmospheric boundary layer (ABL) flow over multiple-hill terrain is studied numerically. The spectral vanishing viscosity (SVV) method is employed for implicit large eddy simulation (ILES). ABL flow over one hill, double hills, and three hills are presented in detail. The instantaneous three-dimensional vortex structures, mean velocity, and turbulence intensity in mainstream and vertical directions around the hills are investigated to reveal the main properties of this turbulent flow. During the flow evolution downstream, the Kelvin-Helmholtz vortex, braid vortex, and hairpin vortex are observed sequentially. The turbulence intensity is enhanced around crests and reduced in the recirculation zones. The present results are helpful for understanding the impact of topography on the turbulent flow. The findings can be useful in various fields, such as wind energy, air pollution, and weather forecasting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Finnigan J., Ayotte K., Harman I. et al. Boundary-layer flow over complex topography [J]. Boundary-Layer Meteorology, 2020, 177(2): 247–313.

    Article  Google Scholar 

  2. Liu L., Stevens R. Effects of two-dimensional steep hills on the performance of wind turbines and wind farms [J]. Boundary-Layer Meteorology, 2020, 176(2): 251–269.

    Article  Google Scholar 

  3. Gao Z. T., Feng X. Y., Zhang Z. T. et al. A brief discussion on offshore wind turbine hydrodynamics problem [J]. Journal of Hydrodynamics, 2022, 34(1): 15–30.

    Article  Google Scholar 

  4. Pardyjak E. R., Stoll R. Improving measurement technology for the design of sustainable cities [J]. Measurement Science and Technology, 2017, 28(9): 092001.

    Article  Google Scholar 

  5. Holtslag A. A. M., Svensson G., Baas P. et al. Stable atmospheric boundary layers and diurnal cycles–Challenges for weather and climate models [J]. Bulletin of the American Meteorological Society, 2013, 94(11): 1691–1706.

    Article  Google Scholar 

  6. Cao S., Tamura T. Experimental study on roughness effects on turbulent boundary layer flow over a two-dimensional steep hill [J]. Journal of Wind Engineering and Industrial Aerodynamics, 2006, 94(1): 1–19.

    Article  Google Scholar 

  7. Li J., Wang B., Qiu X. et al. Three-dimensional vortex dynamics and transitional flow induced by a circular cylinder placed near a plane wall with small gap ratios [J]. Journal of Fluid Mechanics, 2022, 953: A2.

    Article  Google Scholar 

  8. Wang S. C., Huang S. X., Li Y. Sensitive numerical simulation and analysis of rainstorm using nested WRF model [J]. Journal of Hydrodynamics, 2006, 18(5): 578–586.

    Article  Google Scholar 

  9. Hu W. C., Yang Q. S., Chen H. P. et al. Wind field characteristics over hilly and complex terrain in turbulent boundary layers [J]. Energy, 2021, 224: 120070.

    Article  Google Scholar 

  10. Li G., Qin J. M., Yu H. X. et al. Wind-tunnel experimental studies of the spatial snow distribution over grass and bush surfaces[J]. Journal of Hydrodynamics, 2022, 34(1): 85–93.

    Article  Google Scholar 

  11. Mattuella J. M. L., Loredo-Souza A. M., Oliveira M. G. K. et al. Wind tunnel experimental analysis of a complex terrain micrositing [J]. Renewable and Sustainable Energy Review, 2016, 54: 110–119.

    Article  Google Scholar 

  12. Deng Y., Chong K. L., Wang B. F. et al. Coupling framework for a wind speed forecasting model applied to wind energy [J]. Science China Technological Sciences, 2022, 65(10): 2462–2473.

    Article  Google Scholar 

  13. Luo Y., Yang H., Lu L. Dynamic and microscopic simulation of the counter-current flow in a liquid desiccant dehumidifier [J]. Apply Energy, 2014, 136: 1018–1025.

    Article  Google Scholar 

  14. Lyu J., Mason M. S., Wang C. M. Predicting far-lee wind flow characteristics behind a 2D wedge-shaped obstacle: Experiments, numerical simulations and empirical equations [J]. Building and Environment, 2021, 194: 107673.

    Article  Google Scholar 

  15. Eidsvik K. J. A system for wind power estimation in mountainous terrain. Prediction of Askervein hill data [J]. Wind Energy, 2005, 8(2): 237–249.

    Article  Google Scholar 

  16. Berg J., Mann J., Bechmann A., et al. The bolund experiment, Part I: flow over a steep, three-dimensional hill [J]. Boundary-Layer Meteorology, 2011, 141(2): 219–243.

    Article  Google Scholar 

  17. Jiang H., Dun H., Tong D. et al. Sand transportation and reverse patterns over leeward face of sand dune [J]. Geomorphology, 2017, 283: 41–47.

    Article  Google Scholar 

  18. Dupont S., Bruneta Y., Finnigan J. J. Large-eddy simulation of turbulent flow over a forested hill: Validation and coherent structure identification [J]. Quarterly Journal of the Royal Meteorological Society, 2008, 134(636): 1911–1929.

    Article  Google Scholar 

  19. Zhou Z. T., Xu Z. Y., Wang S. Z. et al. Wall-modeled large-eddy simulation of noise generated by turbulence around an appended axisymmetric body of revolution [J]. Journal of Hydrodynamics, 2022, 34(4): 533–554.

    Article  Google Scholar 

  20. Yang Q., Zhou T., Yan B. et al. LES study of topographical effects of simplified 3D hills with different slopes on ABL flows considering terrain exposure conditions [J]. Journal of Wind Engineering and Industrial Aerodynamics, 2021, 210: 104513.

    Article  Google Scholar 

  21. Aminian J. Scale adaptive simulation of vortex structures past a square cylinder [J]. Journal of Hydrodynamics, 2018, 30(4): 657–671.

    Article  Google Scholar 

  22. Wood N. Wind flow over complex terrain: A historical perspective and the prospect for large-eddy modelling [J]. Boundary-Layer Meteorology, 2000, 96(1–2): 11–32.

    Article  Google Scholar 

  23. Tamura T., Okuno A., Sugio Y. LES analysis of turbulent boundary layer over 3D steep hill covered with vegetation [J]. Journal of Wind Engineering and Industrial Aerodynamics, 2007, 95(9–11): 1463–1475.

    Article  Google Scholar 

  24. Cao S., Tong W., Ge Y. et al. Numerical study on turbulent boundary layers over two-dimensional hills–Effects of surface roughness and slope [J]. Journal of Wind Engineering and Industrial Aerodynamics, 2012, 104–106: 342–349.

    Article  Google Scholar 

  25. Liu Z., Ishihara T., Tanaka T. et al. LES study of turbulent flow fields over a smooth 3-D hill and a smooth 2-D ridge [J]. Journal of Wind Engineering and Industrial Aerodynamics, 2016, 153: 1–12.

    Article  Google Scholar 

  26. Liu Z., Wang W., Wang Y. et al. Large-eddy simulations of slope effects on flow fields over isolated hills and ridges [J]. Journal of Wind Engineering and Industrial Aerodynamics, 2020, 201: 104178.

    Article  Google Scholar 

  27. Ishihara T., Qi Y. Numerical study of turbulent flow fields over steep terrain by using modified delayed detached-eddy simulations [J]. Boundary-Layer Meteorology, 2019, 170(1): 45–68.

    Article  Google Scholar 

  28. Wang B., Cheng F., Xu H. et al. Implicit Large eddy simulation of wind flow over rough terrain [C]. 17th International Symposium on Transport Phenomena and Dynamics of Rotating Machinery (ISROMAC2017), Maui, USA, 2017.

  29. Sherwin S. J., Kirby R. M., Biotto C. et al. Nektar++: An open-source spectral/hp element framework [J]. Computer Physics Communications, 2015, 192: 205–219.

    Article  MATH  Google Scholar 

  30. Xu H., Cantwell C. D., Monteserin C. et al. Spectral/hp element methods: Recent developments, applications, and perspectives [J]. Journal of Hydrodynamics, 2018, 30(1): 1–22.

    Article  Google Scholar 

  31. Tadmor E. Convergence of spectral methods for nonlinear conservation laws [J]. SIAM Journal on Numerical Analysis, 1989, 26(1): 30–44.

    Article  MathSciNet  MATH  Google Scholar 

  32. Maday Y., Kaber S. M. O., Tadmor E. Legendre pseudospectral viscosity method for nonlinear conservation laws [J]. SIAM Journal on Numerical Analysis, 1993, 30(2): 321–342.

    Article  MathSciNet  MATH  Google Scholar 

  33. Kirby R. M., Sherwin S. J. Stabilisation of spectral/hp element methods through spectral vanishing viscosity: Application to fluid mechanics modelling [J]. Computer Methods in Applied Mechanics and Engineering, 2006, 195(23–24): 3128–3144.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgement

This research received other funding agency in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo-fu Wang.

Ethics declarations

Conflict of interest: The authors declare that they have no conflict of interest. Bo-fu Wang is an editorial board member for the Journal of Hydrodynamics and was not involved in the editorial review, or the decision to publish this article. All authors declare that there are no other competing interests.

Ethical approval: This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent: Informed consent was obtained from all individual participants included in the study.

Additional information

Project supported by the National Natural Science Foundation of China (Grant Nos. 12372220, 12372219, 11972220, 12072185, 91952102 and 12032016).

Biography: Ying Deng (1990-), Female, Ph. D.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, Y., Chong, K.L., Li, Y. et al. Large-eddy simulation of turbulent boundary layer flow over multiple hills. J Hydrodyn 35, 746–756 (2023). https://doi.org/10.1007/s42241-023-0050-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42241-023-0050-y

Key words

Navigation