Skip to main content
Log in

On systematic development of FSI solvers in the context of particle methods

  • Special Column on the 5th CMHL Symposium 2022 (Guest Editor De-Cheng Wan)
  • Published:
Journal of Hydrodynamics Aims and scope Submit manuscript

Abstract

This paper presents a review on state-of-the-art of developments corresponding to fluid-structure interaction (FSI) solvers developed within the context of particle methods. The paper reviews and highlights the potential robustness of entirely Lagrangian meshfree FSI solvers in reproducing FSI corresponding to extreme events and portrays the future perspectives for systematic developments towards reliable engineering applications with respect to rapid advances in technology and emergence of so-called advanced materials that can result in complex and highly non-linear structural responses. Accordingly, the paper highlights the necessity for reproduction of comprehensive structural responses, including viscoelastic, elastoplastic and progressive damages/failures, by the advanced FSI solvers developed within the context of particle methods. In this regard, extensions of the structure model are suggested to be conducted in a variationally consistent framework to ensure stability, accuracy and physical reliability including thermodynamic consistency. The paper reviews basics of mathematical and numerical modelling for entirely Lagrangian meshfree hydroelastic FSI solvers and presents a brief background on extensions of such solvers towards reproducing viscoelastic structural responses. Some preliminary numerical results on structural viscoelasticity achieved by an extended Hamiltonian SPH (HSPH) model are presented. This vision paper also concisely portrays the future perspectives for systematic development of particle-based FSI solvers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fragasso J., Moro L., Mendoza Vassallo P. N. et al. Experimental characterization of viscoelastic materials for marine applications (Progress in the analysis and design of marine structures) [M]. London, UK: CRC Press, 2017.

    Google Scholar 

  2. Townsend P., Suárez-Bermejo J. C., Sanz-Horcajo E. et al. Reduction of slamming damage in the hull of high-speed crafts manufactured from composite materials using viscoelastic layers [J]. Ocean Engineering, 2018, 159: 253–267.

    Article  Google Scholar 

  3. Tsimouri I. C., Montibeller S., Kern L. et al. A simulation-driven design approach to the manufacturing of stiff composites with high viscoelastic damping [J]. Composites Science and Technology, 2021, 208: 108744.

    Article  Google Scholar 

  4. Chen J. F., Morozov E. V., Shankar K. A combined elastoplastic damage model for progressive failure analysis of composite materials and structures [J]. Composite Structures, 2012, 94(12): 3478–3489.

    Article  Google Scholar 

  5. Wang W. Y., Li J., Liu W. et al. Integrated computational materials engineering for advanced materials: A brief review [J]. Computational Materials Science, 2019, 158: 42–48.

    Article  Google Scholar 

  6. Gingold R. A., Monaghan J. J. Smoothed particle hydrodynamics: Theory and application to non-spherical stars [J]. Monthly Notices of the Royal Astronomical Society, 1977, 181(3): 375–389.

    Article  MATH  Google Scholar 

  7. Shao S., Lo E. Y. M. Incompressible SPH method for simulating Newtonian and non-Newtonian flows with a free surface [J]. Advances in Water Resources, 2003, 26(7): 787–800.

    Article  Google Scholar 

  8. Koshizuka S., Oka Y. Moving-particle semi-implicit method for fragmentation of incompressible fluid [J]. Nuclear Science and Engineering, 1996, 123(3): 421–43.

    Article  Google Scholar 

  9. Khayyer A., Gotoh H., Shimizu Y. et al. A 3D Lagrangian meshfree projection-based solver for hydroelastic fluid-structure. Interactions [J]. Journal of Fluids and Structures, 2021, 105: 103342.

    Article  Google Scholar 

  10. Khayyer A., Shimizu Y., Gotoh H. et al. Multi-resolution ISPH-SPH for accurate and efficient simulation of hydroelastic fluid-structure interactions in ocean engineering [J]. Ocean Engineering, 2021, 226: 108652.

    Article  Google Scholar 

  11. Gotoh H., Khayyer A., Shimizu Y. Entirely Lagrangian meshfree computational methods for hydroelastic fluid-structure interactions in ocean engineering-reliability, adaptivity and generality [J]. Applied Ocean Research, 2021, 115: 102822.

    Article  Google Scholar 

  12. Khayyer A., Gotoh H., Falahaty H. et al. An enhanced ISPH-SPH coupled method for simulation of incompressible fluid-elastic structure interactions [J]. Computer Physics Communications, 2018, 232: 139–164.

    Article  MathSciNet  Google Scholar 

  13. Khayyer A., Gotoh H., Shimizu Y. et al. Development of a projection-based SPH method for numerical wave flume with porous media of variable porosity [J]. Coastal Engineering, 2018, 140: 1–22.

    Article  Google Scholar 

  14. Khayyer A., Shimizu Y., Gotoh H. et al. A coupled incompressible SPH-Hamiltonian SPH solver for hydroelastic FSI corresponding to composite structures [J]. Applied Mathematical Modelling, 2021, 94: 242–271.

    Article  MathSciNet  MATH  Google Scholar 

  15. Cleary P. W. Elastoplastic deformation during projectile-wall collision [J]. Applied Mathematical Modelling, 2010, 34: 266–283.

    Article  MathSciNet  MATH  Google Scholar 

  16. Mutsuda H., Yuto.K, Doi Y. Numerical method for fluid structure interaction using SPH and application to impact pressure problems [J]. Journal of Japan Society of Civil Engineers, Ser. B2 (Coastal Engineering), 2009, 65: 36–40.

    Article  Google Scholar 

  17. De Vuyst T., Vignjevic R., Campbell J. C. et al. A study of the effect of aspect ratio on fragmentation of explosively driven cylinders [J]. Procedia Engineering, 2017, 204: 194–20.

    Article  Google Scholar 

  18. Vyas D. R., Cummins S. J., Delaney G. W. et al. Elasto-plastic frictional collisions with Collisional-SPH [J]. Tribology International, 2022, 168: 107438.

    Article  Google Scholar 

  19. Greto G., Kulasegaram S. An efficient and stabilised SPH method for large strain metal plastic deformations [J]. Computational Particle Mechanics, 2020, 7: 523–539.

    Article  Google Scholar 

  20. Sun P. N., Le Touzé D., Zhang A. M. Study of a complex fluid-structure dam-breaking benchmark problem using a multi-phase SPH method with APR [J]. Engineering Analysis with Boundary Elements, 2019, 104: 240–258.

    Article  MathSciNet  MATH  Google Scholar 

  21. Khayyer A., Gotoh H. A multiphase compressible-incompressible particle method for water slamming [J]. International Journal of Offshore and Polar Engineering, 2016, 26(1): 20–25.

    Article  Google Scholar 

  22. Li M. J., Lian Y., Zhang X. An immersed finite element material point (IFEMP) method for free surface fluid-structure interaction problems [J]. Computer Methods in Applied Mechanics and Engineering, 2022, 393: 114809.

    Article  MathSciNet  MATH  Google Scholar 

  23. Zhang G., Zha R., Wan D. MPS-FEM coupled method for 3D dam-break flows with elastic gate structures [J]. European Journal of Mechanics-B/Fluids, 2022, 94: 171–189.

    Article  MathSciNet  MATH  Google Scholar 

  24. Zhang G., Zhao W., Wan D. Partitioned MPS-FEM method for free-surface flows interacting with deformable structures [J]. Applied Ocean Research, 2021, 114: 102775.

    Article  Google Scholar 

  25. McLoone M., Quinlan N. J. Coupling of the meshless finite volume particle method and the finite element method for fluid-structure interaction with thin elastic structures [J]. European Journal of Mechanics-B/Fluids, 2022, 92: 117–131.

    Article  MathSciNet  MATH  Google Scholar 

  26. Long T., Huang C., Hu D. et al. Coupling edge-based smoothed finite element method with smoothed particle hydrodynamics for fluid structure interaction problems [J]. Ocean Engineering, 2021, 225: 108772.

    Article  Google Scholar 

  27. Zhang Z. L., Khalid M. S. U., Long T. et al. Improved element-particle coupling strategy with δ-SPH and particle shifting for modeling sloshing with rigid or deformable structures [J]. Applied Ocean Research, 2021, 114: 102774.

    Article  Google Scholar 

  28. Shimizu Y., Khayyer A., Gotoh H. An SPH-based fully-Lagrangian meshfree implicit FSI solver with high-order discretization terms [J]. Engineering Analysis with Boundary Elements, 2022, 137: 160–181.

    Article  MathSciNet  MATH  Google Scholar 

  29. Ng K. C., Alexiadis A., Ng Y. L. An improved particle method for simulating Fluid-Structure Interactions: The multi-resolution SPH-VCPM approach [J]. Ocean Engineering, 2022, 247: 110779.

    Article  Google Scholar 

  30. Ng K. C., Alexiadis A., Chen H. et al. Numerical computation of fluid-solid mixture flow using the SPH-VCPM-DEM method [J]. Journal of Fluids and Structures, 2021, 106: 103369.

    Article  Google Scholar 

  31. Meng Z. F., Zhang A. M, Yan J. L. et al. A hydroelastic fluid-structure interaction solver based on the Riemann-SPH method [J]. Computer Methods in Applied Mechanics and Engineering, 2022, 390: 114522.

    Article  MathSciNet  MATH  Google Scholar 

  32. Peng Y. X., Zhang A. M., Wang S. P. Coupling of WCSPH and RKPM for the simulation of incompressible fluid-structure interactions [J]. Journal of Fluids and Structures, 2021, 102: 103254.

    Article  Google Scholar 

  33. Sun P. N., Le Touzé D., Oger G. et al. An accurate FSI-SPH modeling of challenging fluid-structure interaction problems in two and three dimensions [J]. Ocean Engineering, 2021, 221: 108552.

    Article  Google Scholar 

  34. Lyu H. G., Sun P. N., Huang X. T. et al. On removing the numerical instability induced by negative pressures in SPH simulations of typical fluid-structure interaction problems in ocean engineering [J]. Applied Ocean Research, 2021, 117: 102938.

    Article  Google Scholar 

  35. Zhang G., Hua T., Sun Z. et al. A SPH-SPIM coupled method for fluid-structure interaction problems [J]. Journal of Fluids and Structures, 201, 101: 103210.

  36. Monteleone A., Borino G., Napoli E. et al. Fluid-structure interaction approach with smoothed particle hydrodynamics and particle-spring systems [J]. Computer Methods in Applied Mechanics and Engineering, 2022, 392: 114728.

    Article  MathSciNet  MATH  Google Scholar 

  37. Xie F., Zhao W., Wan D. Numerical simulations of liquid-solid flows with free surface by coupling IMPS and DEM [J]. Applied Ocean Research, 2021, 114: 102771.

    Article  Google Scholar 

  38. Harada E., Ikari H., Tazaki T. et al. Numerical simulation for coastal morphodynamics using DEM-MPS method [J]. Applied Ocean Research, 2021, 117: 102905.

    Article  Google Scholar 

  39. Sizkow S. F., El Shamy U. SPH-DEM modeling of the seismic response of shallow foundations resting on liquefiable sand [J]. Soil Dynamics and Earthquake Engineering, 2022, 156: 107210.

    Article  Google Scholar 

  40. Yan G., Oterkus S. Fluid-elastic structure interaction simulation by using ordinary state-based peridynamics and peridynamic differential operator [J]. Engineering Analysis with Boundary Elements, 2020, 121: 126–142.

    Article  MathSciNet  MATH  Google Scholar 

  41. Rahimi M. N., Kolukisa D. C., Yildiz M. et al. A generalized hybrid smoothed particle hydrodynamics-peridynamics algorithm with a novel Lagrangian mapping for solution and failure analysis of fluid-structure interaction problems [J]. Computer Methods in Applied Mechanics and Engineering, 2022, 389: 114370.

    Article  MathSciNet  MATH  Google Scholar 

  42. Zhang C., Rezavand M., Zhu Y. et al. SPHinXsys: An open-source multi-physics and multi-resolution library based on smoothed particle hydrodynamics [J]. Computer Physics Communications, 2021, 267: 108066.

    Article  MathSciNet  Google Scholar 

  43. Zhang C., Rezavand M., Hu X. A multi-resolution SPH method for fluid-structure interactions [J]. Journal of Computational Physics, 2021, 429: 110028, 2021.

    Article  MathSciNet  MATH  Google Scholar 

  44. O’Connor J., Rogers B. D. A fluid-structure interaction model for free-surface flows and flexible structures using smoothed particle hydrodynamics on a GPU [J]. Journal of Fluids and Structures, 2021, 104: 103312.

    Article  Google Scholar 

  45. Yilmaz A., Kocaman S., Demirci M. Numerical analysis of hydroelasticity problems by coupling WCSPH with multibody dynamics [J]. Ocean Engineering, 2022, 243: 110205.

    Article  Google Scholar 

  46. Collins I., Hossain M., Dettmer W. et al. Flexible membrane structures for wave energy harvesting: A review of the developments, materials and computational modelling approaches [J]. Renewable and Sustainable Energy Reviews, 2021, 151: 111478.

    Article  Google Scholar 

  47. Du X., Du L., Cai X. et al. Dielectric elastomer wave energy harvester with self-bias voltage of an ancillary wind generator to power for intelligent buoys [J]. Energy Conversion and Management, 2022, 253: 115178.

    Article  Google Scholar 

  48. Jin S., Greaves D. Wave energy in the UK: Status review and future perspectives [J]. Renewable and Sustainable Energy Reviews, 2021, 143: 110932.

    Article  Google Scholar 

  49. Baghbani Kordmahale S., Do J., Chang K. A. et al. A hybrid structure of piezoelectric fibers and soft materials as a smart floatable open-water wave energy converter [J]. Micromachines (Basel), 2021, 12(10): 1269.

    Article  Google Scholar 

  50. Xu S., Guedes Soares C. Experimental investigation on short-term fatigue damage of slack and hybrid mooring for wave energy converters [J]. Ocean Engineering, 2020, 195: 106618.

    Article  Google Scholar 

  51. Srikanth N. Composites towards offshore renewable system needs (Comprehensive renewable energy) [M]. Second Edition, Rotterdam, The Netherlands: Elsevier Science, 2022, 8: 221–244.

    Google Scholar 

  52. Foias C., Manley O., Rosa R. et al. Navier-Stokes equations and turbulence [M]. Cambridge, UK: Cambridge University Press, 2001, 364.

    Book  MATH  Google Scholar 

  53. Khayyer A., Gotoh H., Shimizu Y. et al. On enhancement of energy conservation properties of projection-based particle methods [J]. European Journal of Mechanics-B/Fluids, 2017, 66: 20–37.

    Article  MathSciNet  MATH  Google Scholar 

  54. Khayyer A., Gotoh H., Shimizu Y. Comparative study on accuracy and conservation properties of two particle regularization schemes and proposal of an optimized particle shifting scheme in ISPH context [J]. Journal of Computational Physics, 2017, 332: 236–256.

    Article  MathSciNet  MATH  Google Scholar 

  55. Gotoh H., Khayyer A. On the state-of-the-art of particle methods for coastal and ocean engineering [J]. Coastal Engineering Journal, 2018, 60(1): 79–103.

    Article  Google Scholar 

  56. Qin Z., Batra R. C. Local slamming impact of sandwich composite hulls [J]. International Journal of Solids and Structures, 2009, 46(10): 2011–2035.

    Article  MATH  Google Scholar 

  57. Antoci C., Gallati M., Sibilla S. Numerical simulation of fluid-structure interaction by SPH [J]. Computers and Structures, 2007, 85(11–14): 879–890.

    Article  Google Scholar 

  58. Pioletti D. P., Rakotomanana L. R. Non-linear viscoelastic laws for soft biological tissues [J]. European Journal of Mechanics-A/Solids, 2000, 19(5): 749–759.

    Article  MATH  Google Scholar 

  59. Upadhyay K., Subhash G., Spearot D. Visco-hyperelastic constitutive modeling of strain rate sensitive soft materials [J]. Journal of the Mechanics and Physics of Solids, 2020, 135: 103777.

    Article  MathSciNet  Google Scholar 

  60. Matin Z., Moghimi Zand M., Salmani Tehrani M. et al. A visco-hyperelastic constitutive model of short- and long-term viscous effects on isotropic soft tissues [J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2020, 234(1): 3–17.

    Google Scholar 

  61. Vogel A., Rakotomanana L., Pioletti D. P. Viscohyperelastic strain energy function (Biomechanics of living organs) [M]. New York, USA: Academic Press, 2017, 59–78.

    Google Scholar 

  62. Zhang C., Zhu Y., Yu Y. et al. A simple artificial damping method for total Lagrangian smoothed particle hydrodynamics [R]. 2021, arXiv:2102.04898.

  63. Holzapfel G. A., Gasser T. C. A viscoelastic model for fiber-reinforced composites at finite strains: Continuum basis, computational aspects and applications [J]. Computer Methods in Applied Mechanics and Engineering, 2001, 190(34): 4379–4403.

    Article  Google Scholar 

  64. Garcia-Gonzalez D., Jérusalem A., Garzon-Hernandez S. et al. A continuum mechanics constitutive framework for transverse isotropic soft tissues [J]. Journal of the Mechanics and Physics of Solids, 2018, 112: 209–224.

    Article  MathSciNet  Google Scholar 

  65. Simo J. C., Hughes T. J. R. Computational Inelasticity [M]. New York, USA: Springer, 1998.

    MATH  Google Scholar 

  66. Pascon J. P. Large deformation analysis of functionally graded visco-hyperelastic materials [J]. Computers and Structures, 2018, 206: 90–108.

    Article  Google Scholar 

  67. Pawlikowski M. Non-linear approach in visco-hyperelastic constitutive modelling of polyurethane nanocomposite [J]. Mechanics of Time-Dependent Materials, 2014, 18(1): 1–20.

    Article  Google Scholar 

  68. Goh S. M., Charalambides M. N., Williams J. G. Determination of the constitutive constants of non-linear viscoelastic materials [J]. Mechanics of Time-Dependent Materials, 2004, 8(3): 255–268.

    Article  Google Scholar 

  69. Hossain M., Khoi V. D., Steinmann P. Experimental study and numerical modelling of VHB 4910 polymer [J]. Computational Materials Science, 2012, 59: 65–74.

    Article  Google Scholar 

  70. Hossain M., Navaratne R., Perića D. 3D printed elastomeric polyurethane: Viscoelastic experimental characterizations and constitutive modelling with nonlinear viscosity functions [J]. International Journal of Non-Linear Mechanics, 2020, 126: 103546.

    Article  Google Scholar 

  71. Petiteau J. C., Verron E., Othman R. et al. Large strain rate-dependent response of elastomers at different strain rates: convolution integral vs. internal variable formulations [J]. Mechanics of Time-Dependent Materials, 2013, 17: 349–367.

    Article  Google Scholar 

  72. Diani J. Free vibrations of linear viscoelastic polymer cantilever beams [J]. Comptes Rendus Mécanique, 2020, 348(10–11); 797–806.

    Google Scholar 

  73. Gray J. P., Monaghan J. J., Swift R. P. SPH elastic dynamics [J]. Computer Methods in Applied Mechanics and Engineering, 2001, 190(49–50): 6641–6662.

    Article  MATH  Google Scholar 

  74. Hashiguchi K. Multiplicative hyperelastic-based plasticity for finite elastoplastic deformation/sliding: A comprehensive review [J]. Archives of Computational Methods in Engineering, 2019, 26(3): 597–637.

    Article  MathSciNet  Google Scholar 

  75. Pascon J. P., Coda H. B. Large deformation analysis of elastoplastic homogeneous materials via high order tetrahedral finite elements author links open overlay panel [J]. Finite Elements in Analysis and Design, 2013, 76: 21–38.

    Article  MATH  Google Scholar 

  76. Menzel A., Steinmann P. A theoretical and computational framework for anisotropic continuum damage mechanics at large strains [J]. International Journal of Solids and Structures, 2001, 38(52): 9505–9523.

    Article  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to express their gratitude to Prof. De-cheng Wan at Shanghai Jiao Tong University for invitation for this vision paper. The first author, A. Khayyer, would like to express his sincere appreciation to Prof. Antonio J. Gil at Swansea University and Dr Chun Hean Lee at the University of Glasgow for discussions regarding viscoelastic and elastoplastic modelling. The authors appreciate the research grants by Japan Society for the Promotion of Science (JSPS) (Grant No. JP18K04368, JP21H01433 and JP21K14250).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abbas Khayyer.

Additional information

Biography

Abbas Khayyer, Male, Ph. D., Associate Professor

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khayyer, A., Gotoh, H. & Shimizu, Y. On systematic development of FSI solvers in the context of particle methods. J Hydrodyn 34, 395–407 (2022). https://doi.org/10.1007/s42241-022-0042-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42241-022-0042-3

Key words

Navigation