Skip to main content
Log in

Impact loads generated by tandem cavitation bubble on solid wall

  • Articles
  • Published:
Journal of Hydrodynamics Aims and scope Submit manuscript

Abstract

Experiments on two cavitation bubbles, which are generated at the same instant, with three different sizes near solid wall are conducted and their impulses on the boundary are registered by polyvinylidene fluoride (PVDF) sensor. Due to being near the boundary, bubble interactions and deformed features are in contrast with those in infinite fluid medium. In this paper, five morphologies of bubble deformation during growth and collapse phases are observed by high-speed camera. These profiles are strongly influenced by inter-bubble distance (η), stand-off distance from boundary (γ), and bubble size differences. Analysis of photographs coupled with sensor measurements enabled qualitative investigation of two bubble interactions on the boundary. From sensor data acquisition, it is confirmed that lower bigger bubble with upper smaller bubble configuration produces highest impulses on the boundary compared with other vertical arrangements of the tandem cavitation bubble employed in this study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Okada T., Yoshiro I., Shuji H. et al. Relation between impact load and the damage produced by cavitation bubble collapse [J]. Wear, 1995, 184(2): 231–239.

    Article  Google Scholar 

  2. Franc J. P., Michel J. M. Fundamentals of cavitation [M]. Dordrecht, The Netherlands: Kluwer Academic Publishers, 2004.

    MATH  Google Scholar 

  3. Tzanakis I., Hadfield M., Garland N. Cavitation damage incubation with typical fluids applied to a scroll expander system [J] Tribology International, 2011, 44(12): 1668–1678.

    Article  Google Scholar 

  4. Franc J. P., Karimi A., Chahine G. L. Impact load measurements in an erosive cavitating flow [J] Journal of Fluids Engineering, 2011, 133(12): 121301.

    Article  Google Scholar 

  5. Dular M., Požar T., Zevnik J. et al. High speed observation of damage created by a collapse of a single cavitation bubble [J] Wear, 2019, 418–419: 13–23.

    Article  Google Scholar 

  6. Sankin G. N., Yuan F., Zhong P. Pulsating tandem microbubble for localized and directional single-cell membrane poration [J]. Physical Review Letters, 2010, 105(7): 078101.

    Article  Google Scholar 

  7. Brennen C. E. Cavitation in medicine [J]. Interface Focus, 2015, 5(5): 20150022.

    Article  Google Scholar 

  8. Cui P., Zhang A. M., Wang S. et al. Ice breaking by a collapsing bubble [J]. Journal of Fluid Mechanics, 2018, 841: 287–309.

    Article  Google Scholar 

  9. Schovanec P., Darina J., Michal K. Sterilization of biofilm in foam using a single cavitation bubble [C] MATEC Web of Conferences, 2020, 328: 05003.

    Article  Google Scholar 

  10. Soyama H. Laser cavitation peening and its application for improving the fatigue strength of welded parts [J] Metals, 2021, 11(4): 531.

    Article  Google Scholar 

  11. Tomita Y., Shima A. Mechanisms of impulsive pressure generation and damage pit formation by bubble collapse [J] Journal of Fluid Mechanics, 1986, 169: 535–564.

    Article  Google Scholar 

  12. Lindau O., Lauterborn W. Cinematographic observation of the collapse and rebound of a laser-produced cavitation bubble near a wall [J]. Journal of Fluid Mechanics, 2003, 479: 327–348.

    Article  Google Scholar 

  13. Hung C. F., Hwangfu J. J. Experimental study of the behaviour of mini-charge underwater explosion bubbles near different boundaries [J] Journal of Fluid Mechanics, 2010, 651: 55–80.

    Article  Google Scholar 

  14. Goh B. H. T., Oh Y. D. A., Klaseboer E. et al. A low-voltage spark-discharge method for generation of consistent oscillating bubbles [J]. Review of Scientific Instruments, 2013, 84: 014705.

    Article  Google Scholar 

  15. Zhang S., Wang S. P., Zhang A. M. Experimental study on the interaction between bubble and free surface using a high-voltage spark generator [J]. Physics of Fluids, 2016, 28(3): 032109.

    Article  Google Scholar 

  16. Vogel A., Lauterborn W., Timm R. Optical and acoustic investigations of the dynamics of laser-produced cavitation bubbles near a solid boundary [J] Journal of Fluid Mechanics, 1989, 206: 299–338.

    Article  Google Scholar 

  17. Wang Y. C., Huang C. H., Lee Y. C. et al. Development of a PVDF sensor array for measurement of the impulsive pressure generated by cavitation bubble collapse [J]. Experiments in Fluids, 2006, 41: 365–373.

    Article  Google Scholar 

  18. Wang Y. C., Chen Y. W. Application of piezoelectric PVDF film to the measurement of impulsive forces generated by cavitation bubble collapse near a solid boundary [J]. Experimental Thermal and Fluid Science, 2007, 32(2): 403–414.

    Article  Google Scholar 

  19. Brujan E. A., Keen G. S., Vogel A. et al. The final stage of the collapse of a cavitation bubble close to a rigid boundary [J]. Physics of Fluids, 2002, 14(1): 85–92.

    Article  Google Scholar 

  20. Shaw S. J., Schiffers W. P., Emmony D. C. Experimental observations of the stress experienced by a solid surface when a laser-created bubble oscillates in its vicinity [J]. Journal of the Acoustical Society of America, 2001, 110(4): 1822–1827.

    Article  Google Scholar 

  21. Yao X., Cui X., Guo K. et al. An experimental approach to the measurement of wall pressure generated by an underwater spark-generated bubble by a hopkinson bar [J]. Shock and Vibration, 2019, 5341317.

  22. Gonzalez-Avila, S. R. Denner F., Ohl C. D. The acoustic pressure generated by the cavitation bubble expansion and collapse near a rigid wall [J]. Physics of Fluids, 2021, 33(3): 032118.

    Article  Google Scholar 

  23. Brujan E. A., Noda T., Ishigami A. et al. Dynamics of laser induced cavitation bubbles near two perpendicular rigid walls [J]. Journal of Fluid Mechanics, 2018, 841: 28–49.

    Article  Google Scholar 

  24. Cui J., Chen Z. P., Wang Q. et al. Experimental studies of bubble dynamics inside a corner [J]. Ultrasonics Sonochemistry, 2020, 64: 104951.

    Article  Google Scholar 

  25. Zhang Y., Qiu X., Zhang X. et al. Collapsing dynamics of a laser-induced cavitation bubble near the edge of a rigid wall [J]. Ultrasonics Sonochemistry, 2020, 67: 10157.

    Google Scholar 

  26. Li S., Khoo B. C., Zhang A. M. et al. Bubble-sphere interaction beneath a free surface [J] Ocean Engineering, 2018, 169: 469–483.

    Article  Google Scholar 

  27. Zhang C., Yin Z., Tu C. et al. Dynamic behavior of the cavitation bubbles collapsing between a rigid wall and an elastic wall [J]. AIP Advances, 2021, 11(6): 065025.

    Article  Google Scholar 

  28. Ma C., Shi D., Li C. et al. Experimental research on the electric spark bubble load characteristics under the oblique 45 degree curved surface boundary [J]. Journal of Marine Science and Engineering, 2021, 9 (1): 1–25.

    Google Scholar 

  29. Tong R. P., Schiffers W. P., Shaw S. J. et al. The role of “splashing” in the collapse of a laser generated cavity near a rigid boundary [J]. Journal of Fluid Mechanics, 1999, 380: 339–361.

    Article  Google Scholar 

  30. Blake J. R., Robinson P. B., Shima A. et al. Interaction of two cavitation bubbles with a rigid boundary [J]. Journal of Fluid Mechanics, 1993, 255: 707–721.

    Article  Google Scholar 

  31. Fong S. W., Adhikari D., Klaseboer E. et al. Interactions of multiple spark-generated bubbles with phase differences [J]. Experiments in Fluids, 2009, 46(4): 705–724.

    Article  Google Scholar 

  32. Chew L. W., Klaseboer E., Ohl S. W. et al. Interaction of two differently sized oscillating bubbles in a free field [J]. Physica Review E, 2011, 84(6): 66307.

    Article  Google Scholar 

  33. Han B., Köhler K., Jungnickel K. et al. Dynamics of laser induced bubble pairs [J] Journal of Fluid Mechanics, 2015, 771: 706–742.

    Article  Google Scholar 

  34. Tomita Y., Sato K. Pulsed jets driven by two interacting cavitation bubbles produced at different times [J] Journal of Fluid Mechanics, 2017, 819: 465–493.

    Article  Google Scholar 

  35. Bremond N., Arora M., Dammer S. M. et al. Interaction of cavitation bubbles on a wall [J]. Physics of Fluids, 2006, 18(12): 121505.

    Article  Google Scholar 

  36. Hujer J., Müller M. Calibration of PVDF film transducers for the cavitation impact measurement [C]. EPJ Web of Conferences, 2018, 180: 02036.

    Article  Google Scholar 

  37. Philipp A., Lauterborn W. Cavitation erosion by single laser-produced bubbles [J]. Journal of Fluid Mechanics, 1998, 361: 75–116.

    Article  Google Scholar 

  38. Beig S. A., Aboulhasanzadeh B., Johnsen E. Temperatures produced by inertially collapsing bubbles near rigid surfaces [J]. Journal of Fluid Mechanics, 2018, 852: 105–125.

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgement

The author acknowledges the encouragement that Prof. Hyung Taek Ahn of the Adv Comp Eng Lab in University of Ulsan has given continuously to this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rho-Taek Jung.

Additional information

Biography: Nyo Me Thet Naing (1993-), Female, Ph. D. Candidate

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naing, N.M.T., Park, J., Hyun, SH. et al. Impact loads generated by tandem cavitation bubble on solid wall. J Hydrodyn 34, 467–482 (2022). https://doi.org/10.1007/s42241-022-0040-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42241-022-0040-5

Key words

Navigation