Skip to main content

Research progress on the hydrodynamic performance of water-air-bubble mixed flows around a ship

Abstract

The interaction between ship and surrounding fluids generates the water-air-bubble mixed flow laden with numerous droplets and bubbles. The water-air-bubble mixed flow is a complex multi-phase flow phenomenon, which involves intense air-water mixture, complex evolution of interface shape, interactions between multi-scale flow structures and strong turbulent fluctuations. Based on the field observations at sea, a large range of white water-air-bubble flow exists widely around a large-scale sailing ship, and directly affects the hydrodynamic performance of ship from various aspects. This paper reviews the research progress of water-air-bubble mixed flow around a ship. Current knowledge about the formation and evolution mechanism are introduced firstly. Then, the effects of the water-air-bubble mixed flow on ship performance are further reviewed, the main concerns are ship resistance, propulsion performance, slamming and maneuverability. Finally, the future research prospects are summarized.

This is a preview of subscription content, access via your institution.

References

  1. Delacroix S., Germain G., Gaurier B. et al. Experimental study of bubble sweep-down in wave and current circulating tank: Part I—Experimental set-up and observed phenomena [J]. Ocean Engineering, 2016, 120: 78–87.

    Article  Google Scholar 

  2. Delacroix S., Germain G., Gaurier B. et al. Experimental study of bubble sweep-down in wave and current circulating tank: Part II-Bubble clouds characterization [J]. Ocean Engineering, 2016, 120: 88–99.

    Article  Google Scholar 

  3. Mallat B., Germain G., Gaurier B. et al. Experimental study of the bubble sweep-down phenomenon on three bow designs [J]. Ocean Engineering, 2018, 148: 361–375.

    Article  Google Scholar 

  4. Wang W., Cai G. B., Pang Y. J. et al. Bubble sweep-down of research vessels based on the coupled Eulerian-Lagrangian method [J]. Journal of Marine Science and Engineering, 2020, 8(12): 1040.

    Article  Google Scholar 

  5. Dong R. R., Katz J., Huang T. T. On the structure of bow waves on a ship model [J]. Journal of Fluid Mechanics, 1997, 346: 77–115.

    MathSciNet  Article  Google Scholar 

  6. Roth G. I., Mascenik D. T., Katz J. Measurements of the flow structure and turbulence within a ship bow wave [J]. Physics of Fluids, 1999, 11(11): 3512–3523.

    MATH  Article  Google Scholar 

  7. Olivieri A., Pistani F., Wilson R. et al. Scars and vortices induced by ship bow and shoulder wave breaking [J]. Journal of Fluids Engineering, 2007, 129(11): 1445–1459.

    Article  Google Scholar 

  8. Wilson R. V., Carrica P. M., Stern F. URANS simulations for a high-speed transom stern ship with breaking waves [J]. International Journal of Computational Fluid Dynamics, 2006, 20(2): 105–125.

    MATH  Article  Google Scholar 

  9. Wang J., Wan D. Breaking wave simulations of highspeed surface combatant using OpenFOAM [C]. Proceedings of the Eighth International Conference on Computational Methods, Guilin, China, 2017.

  10. Carrica P. M., Wilson R. V., Stern F. Unsteady RANS simulation of the ship forward speed diffraction problem [J]. Computers and Fluids, 2006, 35(6): 545–570.

    MATH  Article  Google Scholar 

  11. Ren Z., Wang J., Wan D. Numerical study of the effects of grid scale on bow wave breaking [C]. Proceedings of the Twenty-eighth International Ocean and Polar Engineering Conference, Sapporo, Japan, 2018.

  12. Yu A., Wan D. RANS model for bow wave breaking of a KRISO Container Ship under different speeds [C]. Proceedings of the Eleventh International Workshop on Ship and Marine Hydrodynamics, Hamburg, Germany, 2019.

  13. Carrica P. M., Huang J., Noack R. et al. Large-scale DES computations of the forward speed diffraction and pitch and heave problems for a surface combatant [J]. Computers and Fluids, 2010, 39(7): 1095–1111.

    MATH  Article  Google Scholar 

  14. Broglia R., Durante D. Accurate prediction of complex free surface flow around a high speed craft using a single-phase level set method [J]. Computational Mechanics, 2018, 62(3): 421–437.

    MathSciNet  MATH  Article  Google Scholar 

  15. Wang J., Ren Z., Wan D. C. Study of a container ship with breaking waves at high Froude number using URANS and DDES methods [J]. Journal of Ship Research, 2020, 64(4): 346–356.

    Article  Google Scholar 

  16. Wu D., Wang J., Wan D. Delayed detached eddy simulation method for breaking bow waves of a surface combatant model with different trim angle [J]. Ocean Engineering, 2021, 242: 110177.

    Article  Google Scholar 

  17. Ren Z., Wang J., Wan D. Numerical simulation of ship bow wave breaking using DES and RANS [C]. Proceedings of the Ninth International Conference on Computational Methods, Rome, Italy, 2018.

  18. Hu Y., Liu C., Hu C. et al. Numerical investigation of flow structure and air entrainment of breaking bow wave generated by a rectangular plate [J]. Physics of Fluids, 2021, 33(12): 122113.

    Article  Google Scholar 

  19. Francis N., Gerard D., Michel G. et al. Simple analytical relations for ship bow waves [J]. Journal of Fluid Mechanics, 2008, 600: 105–132.

    MathSciNet  MATH  Article  Google Scholar 

  20. Francis N., Gerard D., Liu H. et al. Ship bow waves [J]. Journal of Hydrodynamics, 2013, 25(4): 491–501.

    Article  Google Scholar 

  21. Johansen J. P., Castro A. M., Carrica P. M. Full-scale two-phase flow measurements on Athena research vessel [J]. International Journal of Multiphase Flow, 2010, 36(9): 720–737.

    Article  Google Scholar 

  22. Perret M., Carrica P. M. Bubble-wall interaction and two-phase flow parameters on a full-scale boat boundary layer [J]. International Journal of Multiphase Flow, 2015, 73: 289–308.

    Article  Google Scholar 

  23. Ma J., Oberai A. A., Hyman M. C. et al. Two-fluid modeling of bubbly flows around surface ships using a phenomenological subgrid air entrainment model [J]. Computers and Fluids, 2011, 52: 50–57.

    MathSciNet  MATH  Article  Google Scholar 

  24. Castro A. M., Carrica P. M. Eulerian polydispersed modeling of bubbly flows around ships with application to Athena R/V [J]. International Shipbuilding Progress, 2013, 60(1–4): 403–433.

    Google Scholar 

  25. Peltzer R., Griffin O., Barger W. et al. High-resolution measurement of surface-active film redistribution in ship wakes [J]. Journal of Geophysical Research: Oceans, 1992, 97(C4): 5231–5252.

    Article  Google Scholar 

  26. Soloviev A., Maingot C., Agor M. et al. 3D sonar measurements in wakes of ships of opportunity [J]. Journal of Atmospheric and Oceanic Technology, 2012, 29(6): 880–886.

    Article  Google Scholar 

  27. Kouzoubov A., Wood S., Ellem R. Acoustic imaging of surface ship wakes [C]. Proceedings of the Forty-third International Congress on Noise Control Engineering: Improving the World Through Noise Control, Melbourne, Australia, 2014.

  28. Shen L., Zhang C., Yue D. K. P. Free-surface turbulent wake behind towed ship models: experimental measurements, stability analyses and direct numerical simulations [J]. Journal of Fluid Mechanics, 2002, 469: 89–120.

    MATH  Article  Google Scholar 

  29. Fu T. C., Fullerton A. M., Ratcliffe T. et al. A detailed study of transom breaking waves [R]. Hydromechanics Department Report, West Bethesda, USA: Carderock Division, Naval Surface Warfare Center, 2009.

    Book  Google Scholar 

  30. Fu T. C., Fullerton A. M., Drazen D. et al. A detailed study of transom breaking waves: Part II [R]. Hydromechanics Department Report, West Bethesda, USA: Carderock Division, Naval Surface Warfare Center, 2009.

    Book  Google Scholar 

  31. Li J. J., Martin J. E., Carrica P. M. Large-scale simulation of ship bubbly wake during a maneuver in stratified flow [J]. Ocean Engineering, 2019, 173: 643–658.

    Article  Google Scholar 

  32. Hendrickson K., Weymouth G., Yue D. K. P. et al. Wake behind a three-dimensional dry transom stern. Part 1: flow structure and large-scale air entrainment [J]. Journal of Fluid Mechanics, 2019, 875: 854–883.

    MathSciNet  MATH  Article  Google Scholar 

  33. Hendrickson K., Yue D. K. P. Wake behind a three-dimensional dry transom stern. Part 2. Analysis and modelling of incompressible highly variable density turbulence [J]. Journal of Fluid Mechanics, 2019, 875: 884–913.

    MathSciNet  MATH  Article  Google Scholar 

  34. Chanson H. Current knowledge in hydraulic jumps and related phenomena. A survey of experimental results [J]. European Journal of Mechanics-B/Fluids, 2009, 28(2): 191–210.

    MathSciNet  MATH  Article  Google Scholar 

  35. Chachereau Y., Chanson H. Free-surface fluctuations and turbulence in hydraulic jumps [J]. Experimental Thermal and Fluid Science, 2011, 35(6): 896–909.

    Article  Google Scholar 

  36. Xiang M., Cheung S. C. P., Tu J. Y. et al. A multi-fluid modelling approach for the air entrainment and internal bubbly flow region in hydraulic jumps [J]. Ocean Engineering, 2014, 91: 51–63.

    Article  Google Scholar 

  37. Mortazavi M., Le Chenadec V., Moin P. et al. Direct numerical simulation of a turbulent hydraulic jump: Turbulence statistics and air entrainment [J]. Journal of Fluid Mechanics, 2016, 797: 60–94.

    MathSciNet  MATH  Article  Google Scholar 

  38. Li Z., Liu C., Wan D. Numerical investigation on air entrainment behavior and energy evolution of hydraulic jump [C]. Proceedings of the Thirty-First International Ocean and Polar Engineering Conference, Rhodes, Greece, 2021.

  39. Witt A., Gulliver J., Shen L. Simulating air entrainment and vortex dynamics in a hydraulic jump [J]. International Journal of Multiphase Flow, 2015, 72: 165–180.

    MathSciNet  Article  Google Scholar 

  40. Witt A., Gulliver J. S., Shen L. Numerical investigation of vorticity and bubble clustering in an air entraining hydraulic jump [J]. Computers and Fluids, 2018, 172: 162–180.

    MathSciNet  MATH  Article  Google Scholar 

  41. Liu C., Hu C. Block-based adaptive mesh refinement for fluid-structure interactions in incompressible flows [J]. Computer Physics Communications, 2018, 232: 104–123.

    MathSciNet  Article  Google Scholar 

  42. Liu C., Hu C. An adaptive multi-moment FVM approach for incompressible flows [J]. Journal of Computational Physics, 2018, 359: 239–262.

    MathSciNet  MATH  Article  Google Scholar 

  43. Macneice P., Olson K. M., Mobarry C. et al. PARAMESH: A parallel adaptive mesh refinement community toolkit [J]. Computer physics communications, 2000, 126(3): 330–354.

    MATH  Article  Google Scholar 

  44. Yang X., Liu C., Wan D. et al. Numerical study of the shock wave and pressure induced by single bubble collapse near planar solid wall [J]. Physics of Fluids, 2021, 33(7): 073311.

    Article  Google Scholar 

  45. Shu C. W. High-order finite difference and finite volume WENO schemes and discontinuous Galerkin methods for CFD [J]. International Journal of Computational Fluid Dynamics, 2003, 17(2): 107–118.

    MathSciNet  MATH  Article  Google Scholar 

  46. Ghods S., Herrmann M. A consistent rescaled momentum transport method for simulating large density ratio incompressible multiphase flows using level set methods [J]. Physica Scripta, 2013, T155: 014050.

    Article  Google Scholar 

  47. Rudman M. A volume-tracking method for incompressible multifluid flows with large density variations [J]. International Journal for Numerical Methods in Fluids, 1998, 28(2): 357–378.

    MATH  Article  Google Scholar 

  48. Owkes M., Desjardins O. A mass and momentum conserving unsplit semi-Lagrangian framework for simulating multiphase flows [J]. Journal of Computational Physics, 2017, 332: 21–46.

    MathSciNet  MATH  Article  Google Scholar 

  49. Raessi M., Pitsch H. Consistent mass and momentum transport for simulating incompressible interfacial flows with large density ratios using the level set method [J]. Computers and Fluids, 2012, 63: 70–81.

    MathSciNet  MATH  Article  Google Scholar 

  50. Yang Y., Liu C., Wan D. Numerical study of bubbly wake flows around a transom stern [C]. Proceedings of the Thirty-First International Ocean and Polar Engineering Conference, Rhodes, Greece, 2021.

  51. Deane G. B., Stokes M. D. Scale dependence of bubble creation mechanisms in breaking waves [J]. Nature, 2002, 418(6900): 839–844.

    Article  Google Scholar 

  52. Garrett C., Li M., Farmer D. The connection between bubble size spectra and energy dissipation rates in the upper ocean [J]. Journal of Physical Oceanography, 2000, 30(9): 2163–2171.

    Article  Google Scholar 

  53. Mori N., Kakuno S. Aeration and bubble measurements of coastal breaking waves [J]. Fluid Dynamics Research, 2008, 40(7–8): 616.

    MATH  Article  Google Scholar 

  54. Tavakolinejad M. Air bubble entrainment by breaking bow waves simulated by a 2D+T technique [D]. Doctoral Thesis, Maryland, USA: University of Maryland, 2010.

    Google Scholar 

  55. Liu C., Wang J., Wan D. C. CFD computation of wave forces and motions of DTC ship in oblique waves [J]. International Journal of Offshore and Polar Engineering, 2018, 28(2): 154–163.

    Article  Google Scholar 

  56. Begovic E., Mancini S., Day A. et al. Applicability of CFD methods for roll damping determination of intact and damaged ship, high performance scientific computing using distributed infrastructures: Results and scientific applications derived from the Italian PON ReCaS project [M]. Sinaapore: World Scientific, 2017, 343–359.

    Google Scholar 

  57. Avci A. G., Barlas B. An experimental investigation of interceptors for a high speed hull [J]. International Journal of Naval Architecture and Ocean Engineering, 2019, 11(1): 256–273.

    Article  Google Scholar 

  58. Kiger K. T., Duncan J. H. Air-entrainment mechanisms in plunging jets and breaking waves [J]. Annual Review of Fluid Mechanics, 2012, 44: 563–596.

    MathSciNet  MATH  Article  Google Scholar 

  59. Deike L., Melville W. K., Popinet S. Air entrainment and bubble statistics in breaking waves [J]. Journal of Fluid Mechanics, 2016, 801: 91–129.

    MathSciNet  MATH  Article  Google Scholar 

  60. Metcalf B., Longo J., Ghosh S. et al. Unsteady freesurface wave-induced boundary-layer separation for a surface-piercing NACA 0024 foil: Towing tank experiments [J]. Journal of Fluids and Structures, 2006, 22(1): 77–98.

    Article  Google Scholar 

  61. Xing T., Kandasamy M., Stern F. Unsteady free-surface wave-induced separation: analysis of turbulent structures using detached eddy simulation and single-phase level set [J]. Journal of Turbulence, 2007, 8: N44.

    Article  Google Scholar 

  62. Fang Z., Xiao L., Wei H. et al. Severe wave run-ups on fixed surface-piercing square column under focused waves [J]. Physics of Fluids, 2020, 32(6): 063308.

    Article  Google Scholar 

  63. Pogozelski E., Katz J., Huang T. The flow structure around a surface piercing strut [J]. Physics of Fluids, 1997, 9(5): 1387–1399.

    Article  Google Scholar 

  64. Li Z., Liu C., Wan D. et al. High-fidelity simulation of a hydraulic jump around a surface-piercing hydrofoil [J]. Physics of Fluids, 2021, 33(12): 123304.

    Article  Google Scholar 

  65. Liu C., Hu Y., Li Z. et al. Recent advancement of experimental and numerical investigations for breaking waves [J]. Journal of Harbin Institute of Technology (New Series), 2019, 26(5): 1–16.

    Google Scholar 

  66. Wang Z., Yang J., Stern F. High-fidelity simulations of bubble, droplet and spray formation in breaking waves [J]. Journal of Fluid Mechanics, 2016, 792: 307–327.

    MathSciNet  MATH  Article  Google Scholar 

  67. Rapp R. J., Melville W. K. Laboratory measurements of deep-water breaking waves [J]. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 1990, 331(1622): 735–800.

    Google Scholar 

  68. Hoque A., Aoki S. Air entrainment by breaking waves: A theoretical study [J]. Indian Journal of Marine Sciences, 2006, 35(1): 17–23.

    Google Scholar 

  69. Zhang Y., Liu P., Qu Q. et al. Energy conversion during the crown evolution of the drop impact upon films [J]. International Journal of Multiphase Flow, 2019, 115: 40–61.

    Article  Google Scholar 

  70. Ma H., Liu C., Li X. et al. Deformation characteristics and energy conversion during droplet impact on a water surface [J]. Physics of Fluids, 2019, 31(6): 062108.

    Article  Google Scholar 

  71. Deike L., Popinet S., Melville W. K. Capillary effects on wave breaking [J]. Journal of Fluid Mechanics, 2015, 769: 541–569.

    MathSciNet  MATH  Article  Google Scholar 

  72. Chen G., Kharif C., Zaleski S. et al. Two-dimensional Navier-Stokes simulation of breaking waves [J]. Physics of Fluids, 1999, 11(1): 121–133.

    MATH  Article  Google Scholar 

  73. Iafrati A. Air-water interaction in breaking wave events: Quantitative estimates of drops and bubbles [C]. Proceedings of 28th Symposium on Naval Hydrodynamics, Pasadena, California, USA, 2010.

  74. Iafrati A. Energy dissipation mechanisms in wave breaking processes: Spilling and highly aerated plunging breaking events [J]. Journal of Geophysical Research: Oceans, 2011, 116(C7): C07024.

    Article  Google Scholar 

  75. Iafrati A. Numerical study of the effects of the breaking intensity on wave breaking flows [J]. Journal of Fluid Mechanics, 2009, 622: 371–411.

    MATH  Article  Google Scholar 

  76. Sadat-Hosseini H., Wu P. C., Carrica P. M. et al. CFD verification and validation of added resistance and motions of KVLCC2 with fixed and free surge in short and long head waves [J]. Ocean Engineering, 2013, 59: 240–273.

    Article  Google Scholar 

  77. He W., Diez M., Zou Z. et al. URANS study of Delft catamaran total/added resistance, motions and slamming loads in head sea including irregular wave and uncertainty quantification for variable regular wave and geometry [J]. Ocean Engineering, 2013, 74: 189–217.

    Article  Google Scholar 

  78. Shen Z., Wan D. RANS computations of added resistance and motions of a ship in head waves [J]. International Journal of Offshore and Polar Engineering, 2013, 23(4): 263–271.

    Google Scholar 

  79. Ebrahimi A., Razaghian A. H., Tootian A. et al. An experimental investigation of hydrodynamic performance, cavitation, and noise of a normal skew B-series marine propeller in the cavitation tunnel [J]. Ocean Engineering, 2021, 238: 109739.

    Article  Google Scholar 

  80. Zou D., Xu J., Zhang J. et al. The hydroelastic analysis of marine propellers considering the effect of the shaft: Theory and experiment [J]. Ocean Engineering, 2021, 221: 108547.

    Article  Google Scholar 

  81. Xu L., Wan D. Numerical research on hydrodynamic characteristics of propeller boss cap fins [J]. Chinese Journal of Ship Research, 2018, 13(S1): 15–21 (in Chinese).

    MathSciNet  Google Scholar 

  82. Pereira F., Salvatore F., Di Felice F. et al. Experimental investigation of a cavitating propeller in non-uniform inflow [C]. Proceedings of the 25th Symposium on Naval Hydrodynamics, St. John’s, Canada, 2004.

  83. Ge M., Svennberg U., Bensow R. E. Investigation on RANS prediction of propeller induced pressure pulses and sheet-tip cavitation interactions in behind hull condition [J]. Ocean Engineering, 2020, 209: 107503.

    Article  Google Scholar 

  84. Liu C., Wang J., Wan D. CFD simulations of selfpropulsion and turning circle maneuver up to 90 degrees of ship in waves [J]. Journal of Ship Research, 2021, 65(2): 139–152.

    Article  Google Scholar 

  85. Wang J. H., Wan D. C. CFD Investigations of ship maneuvering in waves using naoe-FOAM-SJTU solver [J]. Journal of Marine Science and Application, 2018, 17(3): 443–458.

    Article  Google Scholar 

  86. Kawabuchi M., Kawakita C., Mizokami S. et al. CFD predictions of bubbly flow around an energy-saving ship with Mitsubishi air lubrication system [J]. Mitsubishi Heavy Industries Technical Review, 2011, 48(1): 53–57.

    Google Scholar 

  87. Kawakita C. Study on marine propeller running in bubbly flow [C]. Proceedings of the Third International Symposium on Marine Propulsors, Launceston, Tasmania, Australia, 2013.

  88. Drazen D. A., Fullerton A. M., Fu T. C. et al. A comparison of model-scale experimental measurements and computational predictions for a large transom-stern wave [C]. Proceedings of the 28th Symposium on Naval Hydrodynamics, Pasadena, California, USA, 2010.

  89. Holl J. W., Carroll J. A. Observations of the various types of limited cavitation on axisymmetric bodies [J], Journal of Fluids Engineering, 1981, 103(3): 415–421.

    Article  Google Scholar 

  90. Hammitt F. G. Cavitation and multiphase flow phenomena [M]. New York, USA: McGraw-Hill, 1980.

    Google Scholar 

  91. Zhang F., Xu J., Xu J. et al. Overview and discussions on the advances in the mechanism studies of air entrainment against cavitation erosion [J]. Journal of Hydroelectric Engineering, 2010, 29(2): 7–10(in Chinese).

    Google Scholar 

  92. Liu D. Y. The speed of sound in two-phase flows under the condition of velocity-equilibrium between phases [J]. Acta Mechanica Sinica, 1990, 22(6): 660–669.

    Google Scholar 

  93. Shuai Q. H. Study of the speed of sound and compressibility on aerated flow and the critical air concentration for avoiding cavitation erosion damage [D]. Doctoral Thesis, Chengdu, China: Sichuan University, 1995(in Chinese).

    Google Scholar 

  94. Huang J., Li S., Ni H. G. The effect of air entrainment on the-collapsing pressure of a cavitation bubble in a liquid [J]. Journal of Hydraulic Engineering, 1985, (4): 10–17(in Chinese).

  95. Peterka A. J. The effect of entrained air on cavitation pitting [C]. Proceedings: Minnesota International Hydraulic Convention, Minnesotu, USA, 1953.

  96. Dias F., Ghidaglia J. M. Slamming: Recent progress in the evaluation of impact pressures [J]. Annual Review of Fluid Mechanics, 2018, 50: 243–273.

    MathSciNet  MATH  Article  Google Scholar 

  97. Barcellona M., Landrini M., Greco M. et al. An experimental investigation on bow water shipping [J]. Journal of Ship Research, 2003, 47(4): 327–346.

    Article  Google Scholar 

  98. Lafeber W., Bogaert H., Brosset L. Elementary loading processes (ELP) involved in breaking wave impacts: Findings from the Sloshel project [C]. Proceedings of the Twenty-second International Ocean and Polar Engineering Conference, Rhodes, Greece, 2012.

  99. Lafeber W., Bogaert H., Brosset L. Comparison of wave impact tests at large and full scale: Results from the sloshel project [C]. Proceedings of the Twenty-Second International Ocean and Polar Engineering Conference, Rhodes, Greece, 2012.

  100. Greco M. A. Two-dimensional study of green-water loading [D]. Doctoral Thesis, Trondheim, Norwegian: Norwegian University of Science and Technology, 2001.

    Google Scholar 

  101. Chuang S. L. Experiments on flat-bottom slamming [J]. Journal of Ship Research, 1966, 10(1): 10–17.

    Article  Google Scholar 

  102. Chuang S. L. Experiments on slamming of wedge-shaped bodies [J]. Journal of Ship Research, 1967, 11(3): 190–198.

    Article  Google Scholar 

  103. Chen Z., Xiao X. Simulation analysis on the role of air cushion in the slamming of a flat-bottom structure [J]. Journal of Shanghai Jiaotong University, 2005, 39(5): 670–673(in Chinese).

    Google Scholar 

  104. Bodaghkhani A., Dehghani S. R., Muzychka Y. S. et al. Understanding spray cloud formation by wave impact on marine objects [J]. Cold Regions Science and Technology, 2016, 129: 114–136.

    Article  Google Scholar 

  105. Bodaghkhani A., Colbourne B., Muzychka Y. S. Prediction of droplet size and velocity distribution for spray formation due to wave-body interactions [J]. Ocean Engineering, 2018, 155: 106–114.

    Article  Google Scholar 

  106. Bodaghkhani A., Dowdell J. R., Colbourne B. et al. Measurement of spray-cloud characteristics with bubble image velocimetry for braking wave impact [J]. Cold Regions Science and Technology, 2018, 145: 52–64.

    Article  Google Scholar 

  107. Bodaghkhani A., Muzychka Y. S., Colbourne B. An analytical model of final average droplet size prediction of wave spray cloud [J]. International Journal of Heat and Fluid Flow, 2018, 74: 110–117.

    Article  Google Scholar 

  108. Dehghani S. R., Muzychka Y. S., Naterer G. F. Droplet trajectories of wave-impact sea spray on a marine vessel [J]. Cold Regions Science and Technology, 2016, 127: 1–9.

    Article  Google Scholar 

  109. Dehghani S. R., Muzychka Y. S., Naterer G. F. Water breakup phenomena in wave-impact sea spray on a vessel [J]. Ocean Engineering, 2017, 134: 50–61.

    Article  Google Scholar 

  110. Ryerson C. C. Superstructure spray and ice accretion on a large US Coast Guard cutter [J]. Atmospheric research, 1995, 36(3–4): 321–337.

    Article  Google Scholar 

  111. Frihat M., Karimi M. R., Brosset L. et al. Variability of impact pressures induced by sloshing investigated through the concept of “singularization” [C]. Proceedings of the Twenty-Sixth International Ocean and Polar Engineering Conference, Rhodes, Greece, 2016.

  112. Frihat M., Brosset L., Ghidaglia J. M. Experimental study of surface tension effects on sloshing impact loads [C]. Proceedings of Thirty-Second International Workshop on Water and Floating Bodies, Dalian, China, 2017.

  113. Rafiee A., Dias F., Repalle N. Numerical simulations of 2D liquid impact benchmark problem using two-phase compressible and incompressible methods [C]. Proceedings of the Twenty-Third International Offshore and Polar Engineering Conference, Anchorage, Alaska, 2013.

  114. Rafiee A., Dutykh D., Dias F. Numerical simulation of wave impact on a rigid wall using a two-phase compressible SPH method [J]. Iutam Symposium on Particle Methods in Fluid Dynamics, 2015, 18: 123–137.

    Google Scholar 

  115. Elhimer M., Jacques N., Alaoui A. E. et al. The influence of aeration and compressibility on slamming loads during cone water entry [J]. Journal of Fluids and Structures, 2017, 70: 24–46.

    Article  Google Scholar 

  116. Mrabet A. Algorithmic acceleration for the numerical simulation of wave impacts. “Roofline” type models for processor performance, application to CFD [D]. Doctoral Thesis, Paris, France: ENS Paris-Saclay, 2018(in French).

    Google Scholar 

  117. Popinet S. An accurate adaptive solver for surfacetension-driven interfacial flows [J]. Journal of Computational Physics, 2009, 228(16): 5838–5866.

    MathSciNet  MATH  Article  Google Scholar 

  118. Popinet S. Gerris: A tree-based adaptive solver for the incompressible Euler equations in complex geometries [J]. Journal of Computational Physics, 2003, 190(2): 572–600.

    MathSciNet  MATH  Article  Google Scholar 

  119. Braeunig J. P., Desjardins B., Ghidaglia J. M. A totally Eulerian finite volume solver for multi-material fluid flows: Enhanced natural interface positioning (ENIP) [J]. European Journal of Mechanics-B/Fluids, 2009, 28(4): 475–485

    MathSciNet  MATH  Article  Google Scholar 

  120. Chen X., Wan D. GPU accelerated MPS method for large-scale 3-D violent free surface flows [J]. Ocean Engineering, 2019, 171: 677–694.

    Article  Google Scholar 

  121. Chen X., Wan D. Numerical simulation of three-dimensional violent free surface flows by GPU-Based MPS method [J]. International Journal of Computational Methods, 2019, 16(4): 1843012.

    MathSciNet  MATH  Article  Google Scholar 

  122. Zhang Y., Tang Z., Wan D. Numerical investigations of waves interacting with free rolling body by modified MPS method [J]. International Journal of Computational Methods, 2016, 13(4): 1641013.

    MathSciNet  MATH  Article  Google Scholar 

  123. Greenhow M., Lin W. M. Nonlinear-free surface effects: Experiments and theory [R]. Cambridge, USA: Massachusetts Institute of Technology, 1983.

    Google Scholar 

  124. Wang J., Zhao W., Wan D. Free maneuvering simulation of ONR Tumblehome using overset grid method in naoe-FOAM-SJTU solver [C]. Proceedings of the 31th Symposium on Naval Hydrodynamics, Monterey, USA, 2016.

  125. Dommermuth D. G., O’shea T. T., Wyatt D. C. et al. An application of cartesian-grid and volume-of-fluid methods to numerical ship hydrodynamics [C]. Proceedings of the Ninth International Conference on Numerical Ship Hydrodynamics, Ann Arbor, Michigan, USA, 2007.

  126. Brucker K., O’shea T., Dommermuth D. et al. Numerical simulations of breaking waves—weak spilling to strong plunging [C]. Proceedings of the 28th Symposium on Naval Hydrodynamics, Pasadena, California, USA, 2010.

  127. Castro A. M., Li J., Carrica P. M. A mechanistic model of bubble entrainment in turbulent free surface flows [J]. International Journal of Multiphase Flow, 2016, 86: 35–55.

    MathSciNet  Article  Google Scholar 

  128. Li J., Carrica P. M. An approach to couple velocity/pressure/void fraction in two-phase flows with incompressible liquid and compressible bubbles [J]. International Journal of Multiphase Flow, 2018, 102: 77–94.

    MathSciNet  Article  Google Scholar 

  129. Li J., Castro A. M., Carrica P. M. A pressure-velocity coupling approach for high void fraction free surface bubbly flows in overset curvilinear grids [J]. International Journal for Numerical Methods in Fluids, 2015, 79(7): 343–369.

    MathSciNet  MATH  Article  Google Scholar 

  130. Castro A. M., Carrica P. M. Bubble size distribution prediction for large-scale ship flows: Model evaluation and numerical issues [J]. International Journal of Multiphase Flow, 2013, 57: 131–150.

    Article  Google Scholar 

  131. Quang P. K., Van Duy V., Tung T. X. et al. Study on synchronous effects of free surface and propeller rotation on vessel rudder force [C]. IOP Conference Series: Earth and Environmental Science, 2020, 527(1): 012009.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to De-cheng Wan.

Additional information

Project supported by the National Natural Science Foundation of China (Grant Nos. 52131102, 51879159), the National Key Research and Development Program of China (Grant No. 2019YFB1704200).

Biography: Zheng Li (1995-), Male, Ph. D. Candidate

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Zhang, Xs. & Wan, Dc. Research progress on the hydrodynamic performance of water-air-bubble mixed flows around a ship. J Hydrodyn 34, 171–188 (2022). https://doi.org/10.1007/s42241-022-0026-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42241-022-0026-3

Key words

  • Water-air-bubble mixed flow
  • ship resistance
  • propulsion performance
  • ship slamming characteristics
  • maneuverability