de Graaf I. E. M., Gleeson T., van Beek L. P. H. R. et al. Environmental flow limits to global groundwater pumping [J]. Nature, 2019, 574(7776): 90–94.
Article
Google Scholar
Bear J. Dynamics of fluids in porous media [M]. New York, USA: Elsevier, 1972.
MATH
Google Scholar
Soni J. P., Islam N., Basak P. An experimental evaluation of non-Darcian flow in porous media [J]. Journal of Hydrology, 1978, 38(3–4): 231–241.
Article
Google Scholar
Zimmerman R. W., Al-Yaarubi A., Pain C. C. et al. Nonlinear regimes of fluid flow in rock fractures [J]. International Journal of Rock Mechanics and Mining Sciences, 2004, 41(3): 164–169.
Google Scholar
Cardenas M. B., Slottke D. T., Ketcham R. A. et al. Effects of inertia and directionality on flow and transport in a rough asymmetric fracture [J]. Journal of Geophysical Research, 2009, 114(B6): B06204.
Article
Google Scholar
Quinn P. M., Cherry J. A., Parker B. L. Relationship between the critical Reynolds number and aperture for flow through single fractures: Evidence from published laboratory studies [J]. Journal of Hydrology, 2019, 581: 124384.
Article
Google Scholar
Hölting B., Coldewey W. G. Hydrogeology [M]. Berlin, Germany: Springer, 2019.
Book
Google Scholar
Darcy H. Les fontaines publiques de la ville de Dijon [M]. Paris, France: Victor Dalmont, 1856.
Google Scholar
Hubbert M. K. Darcy’s law and the field equations of the flow of underground fluids [J]. International Association of Scientific Hydrology, 1957, 2(1): 23–59.
Article
Google Scholar
Jr. Fetter C. W. Applied hydrogeology [M]. Fourth edition, London, UK: Pearson, 2014.
Google Scholar
Reynolds O. An experimental investigation of the circumstances which determine whether the motion of water shall be direct or sinuous, and of the law of resistance in parallel channels [J]. Proceedings of the Royal Society of London, 1883, 35(224–226): 84–99.
MATH
Google Scholar
Chaudhary K., Cardenas M. B., Den W. et al. Pore geometry effects on intrapore viscous to inertial flows and on effective hydraulic parameters [J]. Water Resources Research, 2013, 49(2): 1149–1162.
Article
Google Scholar
Dejam M., Hassanzadeh, H., Chen Z. Pre-Darcy flow in porous media [J]. Water Resources Research, 2017, 53(10): 8187–8210.
Article
Google Scholar
Luo Q., Yang Y., Qian J. et al. Spring protection and sustainable management of groundwater resources in a spring field [J]. Journal of Hydrology, 2020, 582: 124498.
Article
Google Scholar
Qian J., Zhan H., Chen Z. et al. Experimental study of solute transport under non-Darcian flow in a single fracture [J]. Journal of Hydrology, 2011, 399(3–4): 246–254.
Article
Google Scholar
Sedghi-Asl M., Ansari I. Adoption of extended Dupuit-Fichheimer assumptions to non-Darcy flow problems [J]. Transport in Porous Media, 2016, 113(3): 457–469.
MathSciNet
Article
Google Scholar
Siddiqui F., Soliman M. Y., House W. et al. Pre-darcy flow revisited under experimental investigation [J]. Journal of Analytical Science and Technology, 2016, 7: 2.
Article
Google Scholar
Zhou J. Q., Li C., Wang L. et al. Effect of slippery boundary on solute transport in rough walled rock fractures under different flow regimes [J]. Journal of Hydrology, 2021, 598: 126456.
Article
Google Scholar
Zeng Z., Grigg R. A criterion for non-Darcy flow in porous media [J]. Transport In Porous Media, 2006, 63(1): 57–69.
Article
Google Scholar
Javadi M., Sharifzadeh M., Shahriar K. et al. Critical Reynolds number for nonlinear flow through rough-walled fractures: The role of shear processes [J]. Water Resources Research, 2014, 50(2): 1789–1804.
Article
Google Scholar
Zhou J. Q., Hu S. H., Fang S. et al. Nonlinear flow behavior at low Reynolds numbers through rough-walled fractures subjected to normal compressive loading [J]. International Journal of Rock Mechanics and Mining Sciences, 2015, 80: 202–218.
Article
Google Scholar
Wheatcraft S. W., Meerschaert M. M. Fractional conservation of mass [J]. Advances in Water Resources, 2008, 31(10): 1377–1381.
Article
Google Scholar
Moutsopoulos K. N., Papaspyros I. N. E., Tsihrintzis V. A. Experimental investigation of inertial flow processes in porous media [J]. Journal of Hydrology, 2009, 374(3–4): 242–254.
Article
Google Scholar
Edelen D. G. B. Nonlocal field theories (Eringen A. C. Continuum physics) [M]. New York, USA: Academic Press, 1976, 75–204.
Google Scholar
Zhang Y., Benson D. A., Reeves D. M. Time and space nonlocalities underlying fractional derivative models: Distinction and literature review of applications [J]. Advances in Water Resources, 2009, 32(4): 561–581.
Article
Google Scholar
Mueller E. V., Gallagher M. R., Skowronski N. et al. Approaches to modeling bed drag in pine forest litter for wildland fire applications [J]. Transport In Porous Media, 2021, 138: 637–660.
Article
Google Scholar
Qian J. Z., Chen Z., Zhan H. B. et al. Solute transport in a filled single fracture under non-Darcian flow [J]. International Journal of Rock Mechanics and Mining Sciences, 2011, 48(1): 132–140.
Article
Google Scholar
Zhou J. Q., Chen Y., Wang L. et al. Universal relationship between viscous and inertial permeability of geologic porous media [J]. Journal of Geophysical Research, 2019, 46(3): 1441–1448.
Google Scholar
Sivanesapillai R., Steeb H., Hartmaier A. Transition of effective hydraulic properties from low to high Reynolds number flow in porous media [J]. Geophysical Research Letters, 2014, 41(14): 4920–4928.
Article
Google Scholar