Skip to main content

Advertisement

Log in

A brief discussion on offshore wind turbine hydrodynamics problem

  • Special Column on the 32nd NCHD (Guest Editor Zheng Ma)
  • Published:
Journal of Hydrodynamics Aims and scope Submit manuscript

Abstract

Recently, offshore renewable energy has received significant attentions from most oceanic countries. Its multiple disciplinary nature appears as a hot research spot. Among those resources, offshore wind has been experiencing a rapid growth with strong industrial and governmental support. Among the research topics related to offshore wind turbine, those related to efficiency and safety issue receive most attentions, and they cover hydrodynamics, aerodynamics, structural dynamics, elasticity and so on. Hydrodynamics is considered as the key of these research for offshore wind turbine. This is not only because it is the fundamental of ocean engineering, but also it is similar to low speed aerodynamics which is the key of wind turbine rotor. In order to provide a comprehensive understanding of the important problems of offshore wind turbine hydrodynamics, we briefly review the evolution of offshore wind turbine and discuss the hydrodynamics problem associated with the research and development activities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Garanovic A. OES Annual report 2020: An overview of ocean energy activities in 2020 [R]. Paris, France: The Executive Committee of Ocean Energy Systems, 2021.

    Google Scholar 

  2. Díaz H., Soares C. G. Review of the current status, technology and future trends of offshore wind farms [J]. Ocean Engineering, 2020, 209, 107381.

    Article  Google Scholar 

  3. Musial W., Spitsen P., Beiter P. et al. Offshore wind market report [R]. Golden, USA: National Renewable Energy Laboratory, 2021.

    Google Scholar 

  4. Li Y., Yi J. H., Song H. et al. On the natural frequency of tidal current power systems—A discussion of sea testing [J]. Applied Physics Letters, 2014, 105(2): 023902.

    Article  Google Scholar 

  5. Bahaj A. S., Molland A. F., Chaplin J. R. et al. Power and thrust measurements of marine current turbines under various hydrodynamic flow conditions in a cavitation tunnel and a towing tank [J]. Renewable Energy, 2007, 32(3): 407–426.

    Article  Google Scholar 

  6. Zheng X., Chen G., Cao W. et al. On the energy conversion characteristics of a top-mounted pitching absorber by using smoothed particle hydrodynamics [J]. Energy Conversion and Management, 2021, 250: 114893.

    Article  Google Scholar 

  7. Xu Q. L., Li Y., Yu Y. H. et al. Experimental and numerical investigations of a two-body floating-point absorber wave energy converter in regular waves [J]. Journal of Fluids and Structures, 2019, 91: 102613.

    Article  Google Scholar 

  8. Zhang W., Li Y., Wu X. et al. Review of the applied mechanical problems in ocean thermal energy conversion [J]. Renewable and Sustainable Energy Reviews, 2018, 93: 231–244.

    Article  Google Scholar 

  9. Løvdal N., Neumann F. Internationalization as a strategy to overcome industry barriers—an assessment of the marine energy industry[J]. Energy Policy, 2011, 39(3): 1093–1100.

    Article  Google Scholar 

  10. GWEC. Global offshore wind report 2020 [R]. Brussels, Belgium: Global Wind Energy Council, 2021.

    Google Scholar 

  11. IRENA. Renewable energy statistics 2021 [R]. Abu Dhabi, United Arab Emirates: International Renewable Energy Agency, 2021.

    Google Scholar 

  12. Xu W., Li C. C., Huang S. X. et al. Aerodynamic performance improvement analysis of savonius vertical axis wind turbine utilizing plasma excitation flow control [J]. Energy, 2022, 239: 122133.

    Article  Google Scholar 

  13. Li S. T., Li Y., Yang C. X. et al. Experimental investigation of solidity and other characteristics on dual vertical axis wind turbines in an urban environment [J]. Energy Conversion and Management, 2021, 229: 113689.

    Article  Google Scholar 

  14. Hand B., Cashman A. A review on the historical development of the lift-type vertical axis wind turbine: From onshore to offshore floating application [J]. Sustainable Energy Technologies and Assessments, 2020, 38: 100646.

    Article  Google Scholar 

  15. Li Y., Calisal S. M. Estimating power output from a tidal current turbine farm with first order approximation of hydrodynamic interaction between devices [J]. International Journal of Green Energy, 2010, 7(2): 153–163.

    Article  Google Scholar 

  16. Dabiri J. O. Potential order-of-magnitude enhancement of wind farm power density via counter-rotating vertical-axis wind turbine arrays [J]. Journal of Renewable and Sustainable Energy, 2011, 3(4): 043104.

    Article  Google Scholar 

  17. Wang Q., Zhang P., Li Y. Structural dynamic analysis of a tidal current turbine using geometrically exact beam theory [J]. Journal of Offshore Mechanics and Arctic Engineering, 2018, 140(2): 021903.

    Article  Google Scholar 

  18. Xu W., Li Y., Li G. et al. High-resolution numerical simulation of the performance of vertical axis wind turbines in urban area: Part II, Array of vertical axis wind turbines between buildings [J]. Renewable Energy, 2021, 176: 25–39.

    Article  Google Scholar 

  19. Xu W., Li G., Li Y. et al. High-resolution numerical simulation of the performance of vertical axis wind turbines in urban area: Part I, Wind turbines on the side of single building [J]. Renewable Energy, 2021, 177: 461–474.

    Article  Google Scholar 

  20. IEA. World energy outlook special report: Offshore wind outlook 2019 [R]. Paris, France: International Energy Agency, 2019.

    Google Scholar 

  21. Li Y., Willman L. Feasibility analysis of offshore renewables penetrating local energy systems in remote oceanic areas—A case study of emissions from an electricity system with tidal power in southern Alaska [J]. Applied Energy, 2014, 117: 42–53.

    Article  Google Scholar 

  22. Agency D. E. Danish experiences from offshore wind development [R]. Copenhagen, Denmark: Danish Energy Agency, 2015.

    Google Scholar 

  23. Crome T., Norge T. Hywind demo-technip experience with offshore wind [C]. Underwater Technology Conference, Bergen, Norway, 2010.

  24. Yoshimoto H., Awashima Y., Kitakoji Y. et al. Development of floating offshore substation and wind turbine for Fukushima FORWARD [C]. Proceedings of the International Symposium on Marine and Offshore Renewable Energy, Tokyo, Japan, 2013, 28–30.

  25. Hill Joshua S. Hywind scotland, world’s first floating wind farm, performing better than expected [J]. Sustainable Enterprises Media, 2018, 16: 2020.

    Google Scholar 

  26. QFWE. 2022 floating wind energy projects of the world map [R]. Houston, USA: Quest Floating Wind Energy, 2022.

    Google Scholar 

  27. Lian J. J., Yu T. S., Zhang J. F. Wave force on composite bucket foundation of an offshore wind turbine [J]. Journal of Hydrodynamics, 2016, 28(1): 33–42.

    Article  Google Scholar 

  28. LaBonte A., O’Connor P., Fitzpatrick C. et al. Standardized cost and performance reporting for marine and hydrokinetic technologies [C]. Proceedings of the 1st Marine Energy Technology Symposium (METS13), Washington, DC, USA, 2013.

  29. Puterbaugh M., Beyene A. Parametric dependence of a morphing wind turbine blade on material elasticity [J]. Energy, 2011, 36(1): 466–474.

    Article  Google Scholar 

  30. Beam M. J., Kline B. L., Elbing B. R. et al. Marine hydrokinetic turbine power-take-off design for optimal performance and low impact on cost-of-energy [C]. 31st International Conference on Ocean Offshore and Arctic Engineering (OMAE), Rio de Janeiro, Brazil, 2012.

  31. Yi J., Yoon G., Li Y. Numerical investigation on effects of rotor control strategy and wind data on optimal wind turbine blade shape [J]. Wind and Structures, 2014, 18(2): 195–213.

    Article  Google Scholar 

  32. Liu Y., Xiao Q. Development of a fully coupled aero-hydro-mooring-elastic tool for floating offshore wind turbines [J]. Journal of Hydrodynamics, 2019, 31(1): 21–33.

    Article  MathSciNet  Google Scholar 

  33. Sale D., Aliseda A., Motley M. et al. Structural optimization of composite blades for wind and hydrodynamic turbine [C]. 1st Marine Energy Technology Symposium, Washington DC, USA, 2013.

  34. Jaen-Sola P., McDonald A. S., Oterkus E. Lightweight design of direct-drive wind turbine electrical generators: A comparison between steel and composite material structures [J]. Ocean Engineering, 2019, 181: 330–341.

    Article  Google Scholar 

  35. Chen X., Jiang Z., Li Q. et al. Extended environmental contour methods for long-term extreme response analysis of offshore wind turbines [J]. Journal of Offshore Mechanics and Arctic Engineerin, 2020, 142(5): 052003.

    Article  Google Scholar 

  36. Butterfield C. P., Scott G., Musial W. Comparison of wind tunnel airfoil performance data with wind turbine blade data [J]. Journal of Solar Energy Engineering, 1992, 114: 119–124.

    Article  Google Scholar 

  37. Liu X., Zhang X., Li G. et al. Dynamic response analysis of the rotating blade of horizontal axis wind turbine [J]. Wind Engineering, 2010, 34(5): 543–560.

    Article  Google Scholar 

  38. Xu B., Wang T., Yuan Y. et al. Unsteady aerodynamic analysis for offshore floating wind turbines under different wind conditions [J]. Philosophical Transactions of the Royal Society Mathematical Physical and Engineering Sciences, 2015, 373(2035): 20140080.

    Article  Google Scholar 

  39. Su K. Y., Bliss D. A novel hybrid free-wake model for wind turbine performance and wake evolution [J]. Renewable Energy, 2019, 131: 977–992.

    Article  Google Scholar 

  40. Zhong W., Shen W., Wang T. et al. A tip loss correction model for wind turbine aerodynamic performance prediction [J]. Renewable Energy, 2020, 147: 223–238.

    Article  Google Scholar 

  41. The J., Yu H. S. A critical review on the simulations of wind turbine aerodynamics focusing on hybrid rans-les methods [J]. Energy, 2017, 138: 257–289.

    Article  Google Scholar 

  42. Wang J. H., Zhao W. W., Wan D. C. Development of naoe-foam-sjtu solver based on openfoam for marine hydrodynamics [J]. Journal of Hydrodynamics, 2019, 31(1): 1–20.

    Article  Google Scholar 

  43. Stevens R. J. A. M., Meneveau C. Flow structure and turbulence in wind farms [J]. Annual Review of Fluid Mechanics, 2017, 49: 311–339.

    Article  MathSciNet  MATH  Google Scholar 

  44. Shen W., Zhu W., Sørensen J. N. Actuator line/Navier-Stokes computations for the mexico rotor: comparison with detailed measurements [J]. Wind Energy, 2012, 15(5): 811–825.

    Article  Google Scholar 

  45. Sørensen J. N., Mikkelsen R. F., Henningson D. S. et al. Simulation of wind turbine wakes using the actuator line technique [J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2015, 373(2035): 20140071.

    Article  Google Scholar 

  46. Churchfield M. J., Li Y., Moriarty P. J. A large-eddy simulation study of wake propagation and power production in an array of tidal-current turbines [J]. Philosophical Transactions of The Royal Society A Mathematical Physical and Engineering Sciences, 2013, 371(1985): 20120421.

    Article  MathSciNet  MATH  Google Scholar 

  47. Hu Q., Li Y., Di Y. et al. A large-eddy simulation study of horizontal axis tidal turbine in different inflow conditions [J]. Journal of Renewable and Sustainable Energy, 2017, 9(6): 064501.

    Article  Google Scholar 

  48. Gao Z. T., Li Y., Wang T. G. et al. Recent improvements of actuator line-large-eddy simulation method for wind turbine wakes [J]. Applied Mathematics and Mechanics (English Edition), 2021, 42(4): 511–526.

    Article  MathSciNet  Google Scholar 

  49. Xiao J., Wu J., Chen L. et al. Particle image velocimetry (PIV) measurements of tip vortex wake structure of wind turbine [J]. Applied Mathematics and Mechanics (English Edition), 2011, 32(6): 729–738.

    Article  MATH  Google Scholar 

  50. Barthelmie R. J., Larsen G. C., Frandsen S. T. et al. Comparison of wake model simulations with offshore wind turbine wake profiles measured by sodar [J]. Journal of Atmospheric and Oceanic Technology, 2006, 23(7): 888–901.

    Article  Google Scholar 

  51. Li D., Li Y., Li R. et al. Field experiment and analysis of the wake behind a horizontal-axis wind turbine [J]. Science China Physics, Mechanics Astronomy, 2016, 46(12): 124706(in Chinese).

    Article  Google Scholar 

  52. Li D., Guo T., Li Y. et al. Interaction between the atmospheric boundary layer and a standalone wind turbine in Gansu—Part I: Field measurement [J]. Science China Physics, Mechanics Astronomy, 2018, 61(9): 094711.

    Article  Google Scholar 

  53. Gao X., Chen Y., Xu S. et al. Comparative experimental investigation into wake characteristics of turbines in three wind farms areas with varying terrain complexity from lidar measurements [J]. Applied Energy, 2021, 307: 118182.

    Article  Google Scholar 

  54. Kang S., Yang X., Fotis S. On the onset of wake meandering for an axial flow turbine in a turbulent open channel flow [J]. Journal of Fluid Mechanics, 2014, 744: 376–403.

    Article  Google Scholar 

  55. Foti D., Yang X., Sotiropoulos F. Similarity of wake meandering for different wind turbine designs for different scales [J]. Journal of Fluid Mechanics, 2018, 842: 5–25.

    Article  MathSciNet  MATH  Google Scholar 

  56. Santoni C., Carrasquillo K., Arenas-Navarro I. et al. Effect of tower and nacelle on the flow past a wind turbine [J]. Wind energy, 2017, 20(12): 1927–1939.

    Article  Google Scholar 

  57. Castellani F., Vignaroli A. An application of the actuator disc model for wind turbine wakes calculations [J]. Applied Energy, 2013, 101: 432–440.

    Article  Google Scholar 

  58. Zheng Z., Gao Z., Li D. et al. Interaction between the atmospheric boundary layer and a stand-alone wind turbine in Gansu—Part II: Numerical analysis [J]. Science China Physics, Mechanics and Astronomy, 2018, 61(9): 94712.

    Article  Google Scholar 

  59. Stevens R. J., Martínez-Tossas L. A., Meneveau C. Comparison of wind farm large eddy simulations using actuator disk and actuator line models with wind tunnel experiments [J]. Renewable Energy, 2018, 116(A): 470–478.

    Article  Google Scholar 

  60. Gao Z., Li Y., Wang T. et al. Modelling the nacelle wake of a horizontal-axis wind turbine under different yaw conditions [J]. Renewable Energy, 2021, 172: 263–275.

    Article  Google Scholar 

  61. Krogstad P. A., Eriksen P. E. “Blind test” calculations of the performance and wake development for a model wind turbine [J]. Renewable Energy, 2013, 50: 325–333.

    Article  Google Scholar 

  62. Li Y., Colby J. A., Kelley N. et al. Inflow measurement in a tidal strait for deploying tidal current turbines: Lessons, opportunities and challenges [C]. 29th International Conference on Ocean, Offshore and Arctic Engineering, Shanghai, China. 2010, 569–576.

  63. Shu Z., Li Q., He Y. et al. Observations of offshore wind characteristics by dopplerlidar for wind energy applications [J]. Applied Energy, 2016, 169(C): 150–163.

    Article  Google Scholar 

  64. Sun H., Gao X., Yang H. Experimental study on wind speeds in a complex-terrain wind farm and analysis of wake effects [J]. Applied Energy, 2020, 272: 115215.

    Article  Google Scholar 

  65. Zhao F., Wang T., Gao X.. et al. Experimental study on wake interactions and performance of the turbines with different rotor-diameters in adjacent area of large-scale wind farm [J]. Energy, 2020, 199: 117416.

    Article  Google Scholar 

  66. Gao X., Li B., Wang T. et al. Investigation and validation of 3d wake model for horizontal-axis wind turbines based on filed measurements [J]. Applied Energy, 2020, 260: 114272.

    Article  Google Scholar 

  67. Abraham A., Hong J. Dynamic wake modulation induced by utility-scale wind turbine operation [J]. Applied Energy, 2020, 257: 114003.

    Article  Google Scholar 

  68. Abraham A., Dasari T., Hong J. Effect of turbine nacelle and tower on the near wake of a utility-scale wind turbine [J]. Journal of Wind Engineering and Industrial Aerodynamics, 2019, 193: 103981.

    Article  Google Scholar 

  69. Qian Y., Zhang Z., Wang T. Comparative study of the aerodynamic performance of the new mexico rotor under yaw conditions [J]. Energies, 2018, 11(4): 833.

    Article  Google Scholar 

  70. Guo T., Guo X., Gao Z. et al. Nacelle and tower effect on a stand-alone wind turbine energy output—a discussion on field measurements of a small wind turbine [J]. Applied Energy, 2021, 303: 117590.

    Article  Google Scholar 

  71. Dvorak M., Archer C., Jacobson M. California offshore wind energy potential [J]. Renewable Energy, 2009, 35(6): 1244–1254.

    Article  Google Scholar 

  72. Sheridan B., Baker S., Pearre N. et al. Calculating the offshore wind power resource: Robust assessment methods applied to the U.S. Atlantic Coast [J]. Renewable Energy, 2012, 43: 224–233.

    Article  Google Scholar 

  73. Gao X., Yang H., Lu L. Study on offshore wind power potential and wind farm optimization in Hong Kong [J]. Applied Energy, 2014, 130: 519–531.

    Article  Google Scholar 

  74. Gao X., Xia L., Lu L. et al. Analysis of Hong Kong’s wind energy power potential development constraints and experiences from other countries for local wind energy promotion strategies [J]. Sustainability, 2019, 11(3): 924.

    Article  Google Scholar 

  75. Archer C. L., Jacobson M. Z. Spatial and temporal distributions of U.S. winds and wind power at 80 m derived from measurements [J]. Journal of Geophysical Research, 2003, 108(D9): 1–20.

    Article  Google Scholar 

  76. Oh K. Y., Kim J. Y., Lee J. K. et al. An assessment of wind energy potential at the demonstration offshore wind farm in Korea [J]. Energy, 2012, 46(1): 555–563.

    Article  Google Scholar 

  77. Ucar A., Balo F. Assessment of wind power potential for turbine installation in coastal areas of Turkey [J]. Renewable and Sustainable Energy Reviews, 2010, 14(7): 1901–1912.

    Article  Google Scholar 

  78. Amirinia G., Mafi S., Mazaheri S. Offshore wind resource assessment of Persian Gulf using uncertainty analysis and GIS [J]. Renewable Energy, 2017, 113: 915–929.

    Article  Google Scholar 

  79. Shimada S., Ochsawa T. Accuracy and characteristics of offshore wind speeds simulated by WRF [J]. Scientific Online Letters on the Atmosphere, 2011, 7: 21–24.

    Google Scholar 

  80. Karagali I., Badger M., Hahmann A. N. et al. Spatial and temporal variability of winds in the Northern European Seas [J]. Renewable Energy, 2013, 57: 200–210.

    Article  Google Scholar 

  81. Tammelin B., Vihma T., Atlaskin E. et al. Production of the Finnish wind atlas [J]. Wind Energy, 2013, 16(1): 19–35.

    Article  Google Scholar 

  82. Carvalho D., Rocha A., Gómez-Gesteira M. et al. Offshore winds and wind energy production estimates derived from ASCAT, OSCAT, numerical weather prediction models and buoys—A comparative study for the Iberian Peninsula Atlantic coast [J]. Renewable Energy, 2017, 102: 433–444.

    Article  Google Scholar 

  83. Zheng C. W., Pan J. Assessment of the global ocean wind energy resource [J]. Renewable and Sustainable Energy Reviews, 2014, 33: 382–391.

    Article  Google Scholar 

  84. Jin S. L., Feng S. L., Wang B. et al. Assessment of offshore wind resource in China using CFSR data [J]. Advanced Materials Research, 2015, 1070–1072: 303–308.

    Google Scholar 

  85. Takvor S., Flora K., Panagiotis A. Satellite-based offshore wind resource assessment in the Mediterranean Sea [J]. IEEE Journal of Oceanic Engineering, 2017, 42(1): 73–86.

    Article  Google Scholar 

  86. Chang R., Zhu R., Badger M. et al. Offshore wind resources assessment from multiple satellite data and WRF modeling over South China Sea [J]. Remote Sensing, 2015, 7(1): 467–487.

    Article  Google Scholar 

  87. Hasager C. B., Mouche A., Badger M. et al. Offshore wind climatology based on synergetic use of Envisat ASAR, ASCAT and QuikSCAT [J]. Remote Sensing of Environment, 2015, 156: 247–263.

    Article  Google Scholar 

  88. Hasager C. B., Badger M., Peña A. et al. SAR-based wind resource statistics in the Baltic Sea [J]. Remote Sensing, 2011, 3(12): 117–144.

    Article  Google Scholar 

  89. Badger M., Badger J., Nielsen M. et al. Wind class sampling of satellite SAR imagery for offshore wind resource mapping [J]. Journal of Applied Meteorology and Climatology, 2010, 49(12): 2474–2491.

    Article  Google Scholar 

  90. Jiang D., Zhuang D., Huang Y. et al. Evaluating the spatio-temporal variation of China’s offshore wind resources based on remotely sensed wind field data [J]. Renewable and Sustainable Energy Reviews, 2013, 24: 142–148.

    Article  Google Scholar 

  91. Furevik B. R., Sempreviva A. M., Cavaleri L. et al. Eight years of wind measurements from scatterometer for wind resource mapping in the Mediterranean Sea [J]. Wind Energy, 2011, 14(3): 355–372.

    Article  Google Scholar 

  92. Kallehave D., Byrne B. W., LeBlanc Thilsted C. et al. Optimization of monopiles for offshore wind turbines [J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2015, 373(2035): 20140100.

    Article  Google Scholar 

  93. Krokstad J. R., Stansberg T. C. Ringing load models verified against experiments [C]. Proceedings of the 14th International Conference on Offshore Mechanics and Arctic Engineering, Copenhagen, Denmark, 1995, 223–234.

  94. Stansberg C. T. Comparing ringing loads from experiments with cylinders of different diameters—An empirical study [C]. International conference on the behaviour of offshore structures, Delft, The Netherlands, 1997, 95–112.

  95. Chaplin J. R., Rainey R. C. T., Yemm R. W. Ringing of a vertical cylinder in waves [J]. Journal of Fluid Mechanics, 1997, 350: 119–147.

    Article  MathSciNet  Google Scholar 

  96. Grue J., Huseby M. Higher-harmonic wave forces and ringing of vertical cylinders [J]. Applied Ocean Research, 2002, 24(4): 203–214.

    Article  Google Scholar 

  97. Riise B. H., Grue J., Jensen A., et al. A note on the secondary load cycle for a monopile in irregular deep water waves [J]. Journal of Fluid Mechanics, 2018, 849: R1.

    Article  MATH  Google Scholar 

  98. Kim M. H., Yue D. K. P. The complete second-order diffraction solution for an axisymmetric body Part 1. monochromatic incident waves [J]. Journal of Fluid Mechanics, 1989, 200: 235–264.

    Article  MathSciNet  MATH  Google Scholar 

  99. Chau F. P., Eatock Taylor R. Second-order wave diffraction by a vertical cylinder [J]. Journal of Fluid Mechanics, 1992, 240: 571–599.

    Article  MathSciNet  MATH  Google Scholar 

  100. Huang J. B., Eatock Taylor R. Semi-analytical solution for second-order wave diffraction by a truncated circular cylinder in monochromatic waves [J]. Journal of Fluid Mechanics, 1996, 319: 171–196.

    Article  MATH  Google Scholar 

  101. Newman J. N. The second-order wave force on a vertical cylinder [J]. Journal of Fluid Mechanics, 1996, 320: 417–443.

    Article  MATH  Google Scholar 

  102. Faltinsen O. M., Newman J. N., Vinje T. Nonlinear wave loads on a slender vertical cylinder [J]. Journal of Fluid Mechanics, 1995, 289: 179–198.

    Article  MATH  Google Scholar 

  103. Huseby M., Grue J. An experimental investigation of higher-harmonic wave forces on a vertical cylinder [J]. Journal of Fluid Mechanics, 2000, 414: 75–103.

    Article  MATH  Google Scholar 

  104. Chen L., Zang J., Taylor P. H. et al. An experimental decomposition of nonlinear forces on a surface-piercing column: Stokes-type expansions of the force harmonics [J]. Journal of Fluid Mechanics, 2018, 848: 42–77.

    Article  Google Scholar 

  105. Kristiansen T., Faltinsen O. M. Higher harmonic wave loads on a vertical cylinder in finite water depth [J]. Journal of Fluid Mechanics, 2017, 833: 773–805.

    Article  Google Scholar 

  106. Malenica S., Molin B. Third-order triple frequency wave forces on fixed vertical cylinders [C]. Proceedings of 9th International Workshop on Water Waves and Floating Bodies, Kyushu, Japan, 1994.

  107. Malenica S., Molin B. Third-harmonic wave diffraction by a vertical cylinder [J]. Journal of Fluid Mechanics, 1995, 302: 203–229.

    Article  MathSciNet  MATH  Google Scholar 

  108. Feng X., Taylor P., Dai S. et al. Experimental investigation of higher harmonic wave loads and moments on a vertical cylinder by a phase-manipulation method [J]. Coastal Engineering, 2020, 160: 103747.

    Article  Google Scholar 

  109. Pryor S. C., Barthelmie R. J., Shepherd T. J. Wind power production from very large offshore wind farms [J]. Joule, 2021, 5(10): 2663–2686.

    Article  Google Scholar 

  110. Fischereit J., Larsén X. G. Interactions of oceanic surface waves and offshore wind farm wakes [C]. Annual meeting 2019: European Conference for Applied Meteorology and Climatology, Copenhagen, Denmark, 2019, 195.

  111. Yang D., Meneveau C., Shen L. Effect of downwind swells on offshore wind energy harvesting—A large-eddy simulation study [J]. Renewable Energy, 2014, 70(S1): 11–23.

    Article  Google Scholar 

  112. AlSam A., Szasz R., Revstedt J. The influence of sea waves on offshore wind turbine aerodynamics[J]. Journal of Energy Resources Technology, 2015, 137(5): 051209.

    Article  Google Scholar 

  113. Kalvig S., Manger E., Hjertager B. H. et al. Wave influenced wind and the effect on offshore wind turbine performance [J]. Energy Procedia, 2014, 53: 202–213.

    Article  Google Scholar 

  114. Porchetta S., Temel O., Warner J. et al. Evaluation of a roughness length parametrization accounting for wind—wave alignment in a coupled atmosphere-wave model [J]. Quarterly Journal of the Royal Meteorological Society, 2021, 147(735): 825–846.

    Article  Google Scholar 

  115. Jacobson M. Z., Archer C. L., Kempton A. Taming hurricanes with arrays of offshore wind turbines [J]. Nature Climate Change, 2014, 4(3): 195–200.

    Article  Google Scholar 

  116. Hao X., Cao T., Yang Z. et al. Simulation-based study of wind-wave interaction [J]. Procedia IUTAM, 2018, 26: 162–173.

    Article  Google Scholar 

  117. Calderer A., Guo X., Shen L. et al. Fluid—structure interaction simulation of floating structures interacting with complex, large-scale ocean waves and atmospheric turbulence with application to floating offshore wind turbines [J]. Journal of Computational Physics, 2018, 355: 144–175.

    Article  MathSciNet  MATH  Google Scholar 

  118. Edson J., Crawford T., Crescenti J. et al. The coupled boundary layers and air-sea transfer experiment in low winds [J]. Bulletin of the American Meteorological Society, 2007, 88(3): 341–356.

    Article  Google Scholar 

  119. Sullivan P. P., McWilliams J. C. Dynamics of winds and currents coupled to surface waves [J]. Annual Review of Fluid Mechanics, 2010, 42: 19–42.

    Article  MATH  Google Scholar 

  120. Yang D., Meneveau C., Shen L. Large-eddy simulation of offshore wind farm [J]. Physics of Fluids, 2014, 26(2): 025101.

    Article  Google Scholar 

  121. Sullivan P. P., Mcwilliams J. C., Patton E. G. Large-eddy simulation of marine atmospheric boundary layers above a spectrum of moving waves [J]. Journal of the Atmospheric Sciences, 2014, 71(11): 4001–4027.

    Article  Google Scholar 

  122. Sullivan P. P., Edson J. B., Hristov T. et al. Large-eddy simulations and observations of atmospheric marine boundary layers above nonequilibrium surface waves [J]. Journal of the Atmospheric Sciences, 2008, 65(4): 1225–1245.

    Article  Google Scholar 

  123. Duan L., Li Y. Progress of recent research and development in floating offshore wind turbines [J]. Science China Physics, Mechanics and Astronomy, 2016, 46(12): 124703.

    Article  Google Scholar 

  124. Ma Y., Hu Z., Xiao L. Wind-wave induced dynamic response analysis for motions and mooring loads of a spar-type offshore floating wind turbine [J]. Journal of Hydrodynamics, 2014, 26(6): 865–874.

    Article  Google Scholar 

  125. Bagherian V., Salehi M., Mahzoon M. Rigid multibody dynamic modeling for a semisubmersible wind turbine [J]. Energy Conversion and Management, 2021, 244: 114399.

    Article  Google Scholar 

  126. Wang X., Zhou J. Numerical and experimental study of internal solitary wave loads on tension leg platforms [J]. Journal of Hydrodynamics, 2021, 33(1): 93–103.

    Article  Google Scholar 

  127. Mas-Soler J., Uzunoglu E., Bulian G. et al. An experimental study on transporting a free-float capable tension leg platform for a 10 mw wind turbine in waves [J]. Renewable Energy, 2021, 179: 2158–2173.

    Article  Google Scholar 

  128. Liu Y., Xiao Q., Incecik A. et al. Investigation of the effects of platform motion on the aerodynamics of a floating offshore wind turbine [J]. Journal of Hydrodynamics, 2016, 28(1): 95–101.

    Article  Google Scholar 

  129. Jonkman J., Musial W. Offshore code comparison collaboration (OC3) for IEA task 23 offshore wind technology and deployment [R]. Report NREL/TP-5000–48191, Golden, Greater Denver Area, CO, USA: National Renewable Energy Laboratory, 2021.

    Google Scholar 

  130. Verelst D. R., Hansen M. H., Pirrung G. R. Steady state comparisons HAWC2 v12.5 vs HAWCStab2 v2.14: Integrated and distributed aerodynamic performance [R]. Report DTU Wind Energy E-0172, Roskilde, Denmark: DTU Wind Energy, 2018.

    Google Scholar 

  131. Jonkman J. Dynamics modeling and loads analysis of an offshore floating wind turbine [R]. Report NREL/TP-500–41958, Golden, Greater Denver Area, CO, USA: National Renewable Energy Laboratory, 2007.

    Book  Google Scholar 

  132. Sclavounos P. D. Nonlinear impulse of ocean waves on floating bodies [J]. Journal of Fluid Mechanics, 2012, 697: 316–335.

    Article  MathSciNet  MATH  Google Scholar 

  133. Lin L., Vassalos D. Aerodynamic performance detecting for floating offshore wind turbine using RANS-BEMT approach [C]. IEEE 2016 Techno-Ocean (Techno-Ocean), Kobe, Japan, 2016., 80–89.

  134. Goupee A., Koo B., Kimball R. et al. Experimental comparison of three floating wind turbine concepts [J]. Journal of Offshore Mechanics and Arctic Engineering, 2014, 136(2): 020906.

    Article  Google Scholar 

  135. Martin H., Kimball R., Viselli A. et al. Methodology for wind/wave basin testing of floating offshore wind turbines [J]. Journal of Offshore Mechanics and Arctic Engineering, 2014, 136(2): 020905.

    Article  Google Scholar 

  136. Madsen F. J., Nielsen T. R. L., Kim, T. et al. Experimental analysis of the scaled DTU 10MW TLP floating wind turbine with different control strategies [J]. Renewable Energy, 2020, 155: 330–346.

    Article  Google Scholar 

  137. Hansen A., Laugesen R., Bredmose H. et al. Small scale experimental study of the dynamic response of a tension leg platform wind turbine [J]. Journal of Renewable and Sustainable Energy, 2014, 6(5): 053108.

    Article  Google Scholar 

  138. Bredmose H., Lemmer F., Borg M. et al. The triple spar campaign: Model tests of a 10mw floating wind turbine with waves, wind and pitch control [J]. Energy Procedia, 2017, 137: 58–76.

    Article  Google Scholar 

  139. Wen B., Tian X., Dong X. et al. On the power coefficient overshoot of an offshore floating wind turbine in surge oscillations [J]. Wind Energy, 2018, 21(11): 1076–1091.

    Article  Google Scholar 

  140. Azcona J., Bouchotrouch F., González M. et al. Aerodynamic thrust modelling in wave tank tests of offshore floating wind turbines using a ducted fan [J]. Journal of Physics: Conference Series, 2014, 524: 012089.

    Google Scholar 

  141. Bachynski E. E., Chabaud V., Sauder T. Real-time hybrid model testing of floating wind turbines: Sensitivity to limited actuation [J]. Energy Procedia, 2015, 80: 2–12.

    Article  Google Scholar 

  142. Hall M., Goupee A. J. Validation of a hybrid modeling approach to floating wind turbine basin testing [J]. Wind Energy, 2018, 21(6): 391–408.

    Article  Google Scholar 

  143. Jiang Z., Gao Z., Ren Z. et al. A parametric study on the final blade installation process for monopile wind turbines under rough environmental conditions [J]. Engineering Structures, 2018, 172: 1042–1056.

    Article  Google Scholar 

  144. Ren Z., Verma A. S., Li Y. et al. Offshore wind turbine maintenance: A state of the art review [J]. Renewable and Sustainable Energy Reviews, 2021, 144: 110886.

    Article  Google Scholar 

  145. Topham E., McMillan D., Bradley S. et al. Recycling offshore wind farms at decommissioning stage [J]. Energy Policy, 2019, 129: 698–709.

    Article  Google Scholar 

  146. Wu X., Hu Y., Li Y. et al. Foundations of offshore wind turbines: A review [J]. Renewable and Sustainable Energy Reviews, 2019, 104: 379–393.

    Article  Google Scholar 

  147. Li S., Li Y., Yang C. et al. Design and testing of a LUT airfoil for straight-bladed vertical axis wind turbines [J]. Applied Sciences, 2018, 8(11): 2266.

    Article  Google Scholar 

  148. Li S., Li Y., Yang C. et al. Experimental and numerical investigation of the influence of roughness and turbulence on LUT airfoil performance [J]. Acta Mechanica Sinica, 2019, 35(6): 1178–1190.

    Article  MathSciNet  Google Scholar 

  149. Myhr A., Bjerkseter C., Gotnes A. et al. Levelised cost of energy for offshore floating wind turbines in a life cycle perspective [J]. Renewable Energy, 2014, 66: 714–728.

    Article  Google Scholar 

  150. Shah K. A., Meng F., Li Y. et al. A synthesis of feasible control methods for floating offshore wind turbine system dynamics [J]. Renewable and Sustainable Energy Reviews, 2021, 151: 111525.

    Article  Google Scholar 

  151. Pan L., Xiong Y., Zhu Z. et al. Research on variable pitch control strategy of direct-driven offshore wind turbine using KELM wind speed soft sensor [J]. Renewable Energy, 2022, 184: 1002–1017.

    Article  Google Scholar 

  152. Shields M., Beiter P., Nunemaker J. et al. Impacts of turbine and plant upsizing on the levelized cost of energy for offshore wind [J]. Applied Energy, 2021, 298: 117189.

    Article  Google Scholar 

  153. Lei Y., Zheng X. Y., Li W. et al. Experimental study of the state-of-the-art offshore system integrating a floating offshore wind turbine with a steel fish farming cage [J]. Marine Structures, 2021, 80: 103076.

    Article  Google Scholar 

  154. Chen W., Gao F., Meng X. et al. W2p: A high-power integrated generation unit for offshore wind power and ocean wave energy [J]. Ocean Engineering, 2016, 128: 41–47.

    Article  Google Scholar 

  155. Astariz S., Iglesias G. Output power smoothing and reduced downtime period by combined wind and wave energy farms [J]. Energy, 2016, 97: 69–81.

    Article  Google Scholar 

  156. Lust E., Flack K., Luznik L. Survey of the near wake of an axial-flow hydrokinetic turbine in the presence of waves [J]. Renewable Energy, 2020, 146: 2199–2209.

    Article  Google Scholar 

  157. Onorato M., Osborne A. R., Serio M. et al. Freak waves in random oceanic sea states [J]. Physical Review Letters, 2001, 86(25): 5831–5834.

    Article  Google Scholar 

  158. Shemer L., Sergeeva A., Liberzon D. Effect of the initial spectrum on the spatial evolution of statistics of unidirectional nonlinear random waves [J]. Journal of Marine Research, 2010, 115: C12039.

    Google Scholar 

  159. Tang T., Xu W., Barratt D. et al. Spatial evolution of the kurtosis of steep unidirectional random waves [J]. Journal of Fluid Mechanics, 2020, 908: A3.

    Article  MathSciNet  MATH  Google Scholar 

  160. Guedes Soares C., Cherneva Z., Antão E. Characteristics of abnormal waves in north-sea storm sea states [J]. Applied Ocean Research, 2004, 25(6): 337–344.

    Article  Google Scholar 

  161. Lee J. H., Monty J. P. On the interaction between wind stress and waves: Wave growth and statistical properties of large waves [J]. Journal of Physical Oceanography, 2020, 50(2): 383–397.

    Article  Google Scholar 

  162. Hao X., Cao T., Shen L. Mechanistic study of shoaling effect on momentum transfer between turbulent flow and traveling wave using large-eddy simulation [J]. Physical Review Fluids, 2021, 6(5): 054608.

    Article  Google Scholar 

  163. Zheng Y., Lin Z., Li Y. et al. Fully nonlinear simulations of unidirectional extreme waves provoked by strong depth transitions: The effect of slope [J]. Physical Review Fluids, 2020, 5(6): 064804.

    Article  Google Scholar 

  164. Li Z., Ghia K., Li Y. et al. Unsteady Reynolds-averaged Navier-Stokes investigation of free surface wave impact on tidal turbine wake [J]. Proceedings of Royal Society A, 2021, 477(2246): 20200703.

    Article  MathSciNet  Google Scholar 

  165. Orszaghova J., Taylor P. H., Wolgamot H. A. et al. Wave- and drag-driven subharmonic responses of a floating wind turbine [J]. Journal of Fluid Mechanics, 2021, 929: A32.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgement

This work was supported by the Science and Technology on Underwater Test and Control Laboratory Foundation (Grant No. 61424070603).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ye Li.

Additional information

Project supported by the Ministry of Science and Technology of China (Grant No.2017YFE0132000), the National Natural Science Foundation of China (Grant No.11872248).

Biography

Zhi-teng Gao (1991-), Male, Ph. D.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, Zt., Feng, Xy., Zhang, Zt. et al. A brief discussion on offshore wind turbine hydrodynamics problem. J Hydrodyn 34, 15–30 (2022). https://doi.org/10.1007/s42241-022-0002-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42241-022-0002-y

Key words

Navigation