Skip to main content
Log in

Flow dynamics and sediment transport in vegetated rivers: A review

  • Review Article
  • Published:
Journal of Hydrodynamics Aims and scope Submit manuscript

Abstract

The significance of riparian vegetation on river flow and material transport is not in dispute. Conveyance laws, sediment erosion and deposition, and element cycling must all be adjusted from their canonical rough-wall boundary layer to accommodate the presence of aquatic plants. In turn, the growth and colonization of riparian vegetation are affected by fluvial processes and river morphology on longer time scales. These interactions and feedbacks at multiple time scales are now drawing significant attention within the research community given their relevance to river restoration. For this reason, a review summarizing methods, general laws, qualitative cognition, and quantitative models regarding the interplay between aquatic plants, flow dynamics, and sediment transport in vegetated rivers is in order. Shortcomings, pitfalls, knowledge gaps, and daunting challenges to the current state of knowledge are also covered. As a multidisciplinary research topic, a future research agenda and opportunities pertinent to river management and enhancement of ecosystem services are also highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Wang C., Zheng S. S., Wang P. F. et al. Interactions between vegetation, water flow and sediment transport: A review [J]. Journal of Hydrodynamics, 2015, 27(1): 24–37.

    Article  Google Scholar 

  2. Vandenbruwaene W., Temmerman S., Bouma T. J. et al. Flow interaction with dynamic vegetation patches: Implications for biogeomorphic evolution of a tidal landscape [J]. Journal of Geophysical Research: Earth Surface, 2011, 116: F1008.

    Article  Google Scholar 

  3. Cotton J. A., Wharton G., Bass J. A. B. et al. The effects of seasonal changes to in-stream vegetation cover on patterns of flow and accumulation of sediment [J]. Geomorphology, 2006, 77(3–4): 320–334.

    Article  Google Scholar 

  4. Vastila K., Jarvela J., Koivusalo H. Flow-vegetation-sediment interaction in a cohesive compound channel [J]. Journal of Hydraulic Engineering, ASCE, 2016, 142(1): 4015034.

    Article  Google Scholar 

  5. Yamasaki T. N., de Lima P. H. S., Silva D. F. et al. From patch to channel scale: The evolution of emergent vegetation in a channel [J]. Advances in Water Resources, 2019, 129: 131–145.

    Article  Google Scholar 

  6. Scheer A., Kruppke H., Heib R. River, coastal and estuarine morphodynamics [M]. Berlin Heidelberg, Germany: Springer, 2001.

    Google Scholar 

  7. Leopold L. B., Wolman M. G. River channel patterns-braided, meandering, and straight [J]. The Professional Geographer, 1957, 9: 39–85.

    Google Scholar 

  8. Camporeale C., Perucca E., Ridolfi L. et al. Modeling the interactions between river morphodynamics and riparian vegetation [J]. Reviews of Geophysics, 2013, 51(3): 379–414.

    Article  Google Scholar 

  9. Curran J. C., Hession W. C. Vegetative impacts on hydraulics and sediment processes across the fluvial system [J]. Journal of Hydrology, 2013, 505: 364–376.

    Article  Google Scholar 

  10. Poggi D., Porporato A., Ridolfi L. et al. The effect of vegetation density on canopy sub-layer turbulence [J]. Boundary-Layer Meteorology, 2004, 111(3): 565–587.

    Article  Google Scholar 

  11. Katul G., Wiberg P., Albertson J. et al. A mixing layer theory for flow resistance in shallow streams [J]. Water Resources Research, 2002, 38(11): 31–32.

    Article  Google Scholar 

  12. Gioia G., Bombardelli F. A. Scaling and similarity in rough channel flows [J]. Physical Review Letters, 2001, 88(1): 14501.

    Article  Google Scholar 

  13. Bonetti S., Manoli G., Manes C. et al. Manning’s formula and Strickler’s scaling explained by a co-spectral budget model [J]. Journal of Fluid Mechanics, 2017, 812: 1189.

    Article  MathSciNet  MATH  Google Scholar 

  14. Crompton O., Katul G. G., Thompson S. Resistance formulations in shallow overland flow along a hillslope covered with patchy vegetation [J]. Water Resources Research, 2020, 56(5): e2020WR27194.

    Article  Google Scholar 

  15. Martyushev L. M. Some interesting consequences of the maximum entropy production principle [J]. Journal of Experimental and Theoretical Physics, 2007, 104(4): 651–654.

    Article  Google Scholar 

  16. Wu Y. J., Jing H. F., Li C. G. et al. Flow characteristics in open channels with aquatic rigid vegetation [J]. Journal of Hydrodynamics, 2020, 32(6): 1100–1108.

    Article  Google Scholar 

  17. Wang W. J., Peng W. Q., Huai W. X. et al. Roughness height of submerged vegetation in flow based on spatial structure [J]. Journal of Hydrodynamics, 2018, 30(4): 754–757.

    Article  Google Scholar 

  18. Wang W. J., Cui X. Y., Dong F. et al. Predictions of bulk velocity for open channel flow through submerged vegetation [J]. Journal of Hydrodynamics, 2020, 32(4): 795–799.

    Article  Google Scholar 

  19. Wooding R. A., Bradley E. F., Marshall J. K. Drag due to regular arrays of roughness elements of varying geometry [J]. Boundary-Layer Meteorology, 1973, 5(3): 285–308.

    Article  Google Scholar 

  20. Melis M., Poggi D., Fasanella G. et al. Resistance to flow on a sloping channel covered by dense vegetation following a dam break [J]. Water Resources Research, 2019, 55(2): 1040–1058.

    Article  Google Scholar 

  21. Tanino Y., Nepf H. M. Laboratory investigation of mean drag in a random array of rigid, emergent cylinders [J]. Journal of Hydraulic Engineering, ASCE, 2008, 134(1): 34–41.

    Article  Google Scholar 

  22. Liu M., Huai W., Yang Z. et al. A genetic programming-based model for drag coefficient of emergent vegetation in open channel flows [J]. Advances in Water Resources, 2020, 140: 103582.

    Article  Google Scholar 

  23. Nepf H. M. Drag, turbulence, and diffusion in flow through emergent vegetation [J]. Water Resources Research, 1999, 35(2): 479–489.

    Article  Google Scholar 

  24. D’Ippolito A., Calomino F., Alfonsi G. et al. Flow resistance in open channel due to vegetation at reach scale: A review [J]. Water, 2021, 13(2): 116.

    Article  Google Scholar 

  25. Koch D. L., Ladd A. J. C. Moderate Reynolds number flows through periodic and random arrays of aligned cylinders [J]. Journal of Fluid Mechanics, 1997, 349: 31–66.

    Article  MathSciNet  MATH  Google Scholar 

  26. Etminan V., Lowe R. J., Ghisalberti M. A new model for predicting the drag exerted by vegetation canopies [J]. Water Resources Research, 2017, 53(4): 3179–3196.

    Article  Google Scholar 

  27. Nepf H. M. Hydrodynamics of vegetated channels [J]. Journal of Hydraulic Research, 2012, 50(3): 262–279.

    Article  Google Scholar 

  28. Katul G. G., Poggi D., Ridolfi L. A flow resistance model for assessing the impact of vegetation on flood routing mechanics [J]. Water Resources Research, 2011, 47: W8533.

    Article  Google Scholar 

  29. Konings A. G., Katul G. G., Thompson S. E. A phenomenological model for the flow resistance over submerged vegetation [J]. Water Resources Research, 2012, 48: W2522.

    Article  Google Scholar 

  30. Luhar M., Nepf H. M. From the blade scale to the reach scale: A characterization of aquatic vegetative drag [J]. Advances in Water Resources, 2013, 51: 305–316.

    Article  Google Scholar 

  31. Poggi D., Krug C., Katul G. G. Hydraulic resistance of submerged rigid vegetation derived from first-order closure models [J]. Water Resources Research, 2009, 45: W10442.

    Article  Google Scholar 

  32. Chanson H. Hydraulics of open channel flow [M]. Rotterdam, The Netherlands: Elsevier, 2004.

    Google Scholar 

  33. Li S., Huai W. United formula for the friction factor in the turbulent region of pipe flow [J]. PloS one, 2016, 11(5): e154408.

    Google Scholar 

  34. Li S. L., Shi H. R., Xue W. Y. et al. United friction resistance in open channel flows [J]. Journal of Hydrodynamics, 2015, 27(3): 469–472.

    Article  Google Scholar 

  35. Cheng N. S., Nguyen H. T. Hydraulic radius for evaluating resistance induced by simulated emergent vegetation in open-channel flows [J]. Journal of Hydraulic Engineering, ASCE, 2011, 137(9): 995–1004.

    Article  Google Scholar 

  36. van Rooijen A., Lowe R., Ghisalberti M. et al. Predicting current-induced drag in emergent and submerged aquatic vegetation canopies [J]. Frontiers in Marine Science, 2018, 5: 449.

    Article  Google Scholar 

  37. Cheng N. S. Representative roughness height of submerged vegetation [J]. Water Resources Research, 2011, 47: W08517.

    Article  Google Scholar 

  38. Li S., Shi H., Xiong Z. et al. New formulation for the effective relative roughness height of open channel flows with submerged vegetation [J]. Advances in Water Resources, 2015, 86: 46–57.

    Article  Google Scholar 

  39. Yang F., Huai W., Zeng Y. New dynamic two-layer model for predicting depth-averaged velocity in open channel flows with rigid submerged canopies of different densities [J]. Advances in Water Resources, 2020, 138: 103553.

    Article  Google Scholar 

  40. Tang H., Tian Z., Yan J. et al. Determining drag coefficients and their application in modelling of turbulent flow with submerged vegetation [J]. Advances in Water Resources, 2014, 69: 134–145.

    Article  Google Scholar 

  41. Liu C., Nepf H. M. Sediment deposition within and around a finite patch of model vegetation over a range of channel velocity [J]. Water Resources Research, 2016, 52: 600–612.

    Article  Google Scholar 

  42. Tanino Y., Nepf H. M. Lateral dispersion in random cylinder arrays at high Reynolds number [J]. Journal of Fluid Mechanics, 2008, 600: 339–371.

    Article  MATH  Google Scholar 

  43. Raupach M. R., Shaw R. H. Averaging procedures for flow within vegetation canopies [J]. Boundary-Layer Meteorology, 1982, 22(1): 79–90.

    Article  Google Scholar 

  44. Chang K, Constantinescu G. Numerical investigation of flow and turbulence structure through and around a circular array of rigid cylinders [J]. Journal of Fluid Mechanics, 2015, 776: 161–199.

    Article  Google Scholar 

  45. Poggi D., Katul G. G., Albertson J. D. A note on the contribution of dispersive fluxes to momentum transfer within canopies [J]. Boundary-Layer Meteorology, 2004, 111(3): 615–621.

    Article  Google Scholar 

  46. Poggi D., Katul G. G. The effect of canopy roughness density on the constitutive components of the dispersive stresses [J]. Experiments in Fluids, 2008, 45(1): 111–121.

    Article  Google Scholar 

  47. Huthoff F., Augustijn D. C., Hulscher S. J. Analytical solution of the depth-averaged flow velocity in case of submerged rigid cylindrical vegetation [J]. Water Resources Research, 2007, 43(6): 6413.

    Article  Google Scholar 

  48. Liu D., Diplas P., Fairbanks J. D. et al. An experimental study of flow through rigid vegetation [J]. Journal of Geophysical Research: Earth Surface, 2008, 113(F4): F04015.

    Article  Google Scholar 

  49. Stoesser T., Kim S. J., Diplas P. Turbulent flow through idealized emergent vegetation [J]. Journal of Hydraulic Engineering, ASCE, 2010, 136(12): 1003–1017.

    Article  Google Scholar 

  50. Raupach M. R., Finnigan J. J., Brunei Y. Coherent eddies and turbulence in vegetation canopies: The mixing-layer analogy [J]. Boundary Layer Meteorology, 1996, 78(3–4): 351–382.

    Article  Google Scholar 

  51. Huai W. X., Zhang J., Katul G. G. et al. The structure of turbulent flow through submerged flexible vegetation [J]. Journal of Hydrodynamics, 2019, 31(2): 274–292.

    Article  Google Scholar 

  52. Chen Z., Jiang C., Nepf H. Flow adjustment at the leading edge of a submerged aquatic canopy [J]. Water Resources Research, 2013, 49(9): 5537–5551.

    Article  Google Scholar 

  53. Ghisalberti M., Nepf H. M. The limited growth of vegetated shear layers [J]. Water Resources Research, 2004, 40(7): W07502.

    Article  Google Scholar 

  54. Tang X. Evaluating two-layer models for velocity profiles in open-channels with submerged vegetation [J]. Journal of Geoscience and Environment Protection, 2019, 7(1): 68–80.

    Article  Google Scholar 

  55. Okamoto T. A., Nezu I. Large eddy simulation of 3-D flow structure and mass transport in open-channel flows with submerged vegetations [J]. Journal of Hydro-Environment Research, 2010, 4(3): 185–197.

    Article  Google Scholar 

  56. Stoesser T., Salvador G. P., Rodi W. et al. Large eddy simulation of turbulent flow through submerged vegetation [J]. Transport in Porous Media, 2009, 78: 347–365.

    Article  Google Scholar 

  57. Stoesser T., Liang C. C., Rodi W. et al. Large eddy simulation of fully-developed turbulent flow through submerged vegetation (Alves E. C. T. L., Cardoso A. H., Leal J. G. A. B. et al. River flow) [M]. New York, USA: Taylor and Francis, 2006, 227–234.

    Google Scholar 

  58. Wang Y. Q., Yu H. D., Zhao W. W. et al. Liutex-based vortex control with implications for cavitation suppression [J]. Journal of Hydrodynamics, 2021, 33(1): 74–85.

    Article  Google Scholar 

  59. Zhao W. W., Wang Y. Q., Chen S. T. et al. Parametric study of Liutex-based force field models [J]. Journal of Hydrodynamics, 2021, 33(1): 86–92.

    Article  Google Scholar 

  60. Winant C. D., Browand F. K. Vortex pairing: The mechanism of turbulent mixing-layer growth at moderate Reynolds number [J]. Journal of Fluid Mechanics, 1974, 63: 237–255.

    Article  Google Scholar 

  61. Nepf H., Ghisalberti M., White B. et al. Retention time and dispersion associated with submerged aquatic canopies [J]. Water Resources Research, 2007, 43(4): W04422.

    Article  Google Scholar 

  62. Okamoto T. A., Nezu I. Spatial evolution of coherent motions in finite-length vegetation patch flow [J]. Environmental Fluid Mechanics, 2013, 13(5): 417–434.

    Article  Google Scholar 

  63. Nepf H. M., Vivoni E. R. Flow structure in depth-limited, vegetated flow [J]. Journal of Geophysical Research Oceans, 2000, 105(C12): 28547–28557.

    Article  Google Scholar 

  64. Okamoto T. A., Nezu I. Turbulence structure and “Monami” phenomena in flexible vegetated open-channel flows [J]. Journal of Hydraulic Research, 2009, 47(6): 798–810.

    Article  Google Scholar 

  65. Belcher S. E., Jerram N., Hunt J. C. R. Adjustment of a turbulent boundary layer to a canopy of roughness elements [J]. Journal of Fluid Mechanics, 2003, 488: 369–398.

    Article  MATH  Google Scholar 

  66. Huai W. X., Zeng Y. H., Xu Z. G. et al. Three-layer model for vertical velocity distribution in open channel flow with submerged rigid vegetation [J]. Advances in Water Resources, 2009, 32(4): 487–492.

    Article  Google Scholar 

  67. Cheng N. S., Nguyen H. T., Tan S. K. et al. Scaling of velocity profiles for depth-limited open channel flows over simulated rigid vegetation [J]. Journal of Hydraulic Engineering, ASCE, 2012, 138(8): 673–683.

    Article  Google Scholar 

  68. Huai W., Wang W., Hu Y. et al. Analytical model of the mean velocity distribution in an open channel with double-layered rigid vegetation [J]. Advances in Water Resources, 2014, 69: 106–113.

    Article  Google Scholar 

  69. Huai W. X., Chen Z. B., Han J. et al. Mathematical model for the flow with submerged and emerged rigid vegetation [J]. Journal of Hydrodynamics, 2009, 21(5): 722–729.

    Article  Google Scholar 

  70. Nepf H. M. Flow and transport in regions with aquatic vegetation [J]. Annual Review of Fluid Mechanics, 2012, 44: 123–142.

    Article  MathSciNet  MATH  Google Scholar 

  71. Afzal M., Arslan M., Müller J. A. et al. Floating treatment wetlands as a suitable option for large-scale wastewater treatment [J]. Nature Sustainability, 2019, 2(9): 863–871.

    Article  Google Scholar 

  72. Li S., Katul G. Contaminant removal efficiency of floating treatment wetlands [J]. Environmental Research Letters, 2020, 15(10): 1040b7.

    Article  Google Scholar 

  73. Wang H., Li S., Zhu Z. et al. Analyzing solute transport in modeled wetland flows under surface wind and bed absorption conditions [J]. International Journal of Heat and Mass Transfer, 2020, 150: 119319.

    Article  Google Scholar 

  74. Ai Y. D., Liu M. Y., Huai W. X. Numerical investigation of flow with floating vegetation island [J]. Journal of Hydrodynamics, 2020, 32(1): 31–43.

    Article  Google Scholar 

  75. Fu X., Wang F., Liu M. et al. Analysis of turbulent flow structures in the straight rectangular open channel with floating vegetated islands [J]. Environmental Science and Pollution Research, 2020, 27: 26856–26867.

    Article  Google Scholar 

  76. Plew D. R. Depth-averaged drag coefficient for modeling flow through suspended canopies [J]. Journal of Hydraulic Engineering, ASCE, 2011, 137(2): 234–247.

    Article  Google Scholar 

  77. Cheng W., Sun Z., Liang S. Numerical simulation of flow through suspended and submerged canopy [J]. Advances in Water Resources, 2019, 127: 109–119.

    Article  Google Scholar 

  78. Li S., Katul G., Huai W. Mean velocity and shear stress distribution in floating treatment wetlands: An analytical study [J]. Water Resources Research, 2019, 55(8): 6436–6449.

    Article  Google Scholar 

  79. Huai W., Hu Y., Zeng Y. et al. Velocity distribution for open channel flows with suspended vegetation [J]. Advances in Water Resources, 2012, 49: 56–61.

    Article  Google Scholar 

  80. Li Q., Zeng Y. H., Bai Y. Mean flow and turbulence structure of open channel flow with suspended vegetation [J]. Journal of Hydrodynamics, 2020, 32(2): 314–325.

    Article  Google Scholar 

  81. Yu W. Y., Jiang C. B., Shi Y. et al. Experimental study of the impact of the floating-vegetation island on mean and turbulence structure [J]. Journal of Hydrodynamics, 2019, 31(5): 922–930.

    Article  Google Scholar 

  82. Zhao F., Huai W., Li D. Numerical modeling of open channel flow with suspended canopy [J]. Advances in Water Resources, 2017, 105: 132–143.

    Article  Google Scholar 

  83. Cheng N. S., Hui C. L., Chen X. Estimate of drag coefficient for a finite patch of rigid cylinders [J]. Journal of Hydraulic Engineering, ASCE, 2019, 145(2): 6018019.

    Article  Google Scholar 

  84. Gong Y., Stoesser T., Mao J. et al. LES of flow through and around a finite patch of thin plates [J]. Water Resources Research, 2019, 55(9): 7587–7605.

    Article  Google Scholar 

  85. Zhang J., Liang D., Fan X. et al. Detached eddy simulation of flow through a circular patch of free-surface-piercing cylinders [J]. Advances in Water Resources, 2019, 123(800): 96–108.

    Article  Google Scholar 

  86. Li W. Q., Wang D., Jiao J. L. et al. Effects of vegetation patch density on flow velocity characteristics in an open channel [J]. Journal of Hydrodynamics, 2019, 31(5): 1052–1059.

    Article  Google Scholar 

  87. Gu J., Shan Y., Liu C. et al. Feedbacks of flow and bed morphology from a submerged dense vegetation patch without upstream sediment supply [J]. Environmental Fluid Mechanics, 2019, 19(2): 475–493.

    Article  Google Scholar 

  88. Chang K., Constantinescu G., Park S. 2-D eddy resolving simulations of flow past a circular array of cylindrical plant stems [J]. Journal of Hydrodynamics, 2018, 30(2): 317–335.

    Article  Google Scholar 

  89. Taddei S., Manes C., Ganapathisubramani B. Characterisation of drag and wake properties of canopy patches immersed in turbulent boundary layers [J]. Journal of Fluid Mechanics, 2016, 798: 27–49.

    Article  MathSciNet  MATH  Google Scholar 

  90. Ortiz A. C., Ashton A., Nepf H. Mean and turbulent velocity fields near rigid and flexible plants and the implications for deposition [J]. Journal of Geophysical Research: Earth Surface, 2013, 118(4): 2585–2599.

    Article  Google Scholar 

  91. Tanaka N., Yagisawa J. Flow structures and sedimentation characteristics around clump-type vegetation [J]. Journal of Hydro-environment Research, 2010, 4: 15–25.

    Article  Google Scholar 

  92. Zong L., Nepf H. Vortex development behind a finite porous obstruction in a channel [J]. Journal of Fluid Mechanics, 2012, 691: 368–391.

    Article  MATH  Google Scholar 

  93. Nicolle A., Eames I. Numerical study of flow through and around a circular array of cylinders [J]. Journal of Fluid Mechanics, 2011, 679: 1–31.

    Article  MATH  Google Scholar 

  94. Chang W. Y., Constantinescu G., Tsai W. F. Effect of array submergence on flow and coherent structures through and around a circular array of rigid vertical cylinders [J]. Physics of Fluids, 2020, 32(3): 35110.

    Article  Google Scholar 

  95. Nicolai C., Taddei S., Manes C. et al. Wakes of wall-bounded turbulent flows past patches of circular cylinders [J]. Journal of Fluid Mechanics, 2020, 892: A37.

    Article  MathSciNet  MATH  Google Scholar 

  96. Liu M., Huai W., Ji B. Characteristics of the flow structures through and around a submerged canopy patch [J]. Physics of Fluids, 2021, 33(3): 35144.

    Article  Google Scholar 

  97. Chang W. Y., Constantinescu G., Tsai W. F. On the flow and coherent structures generated by a circular array of rigid emerged cylinders placed in an open channel with flat and deformed bed [J]. Journal of Fluid Mechanics, 2017, 831: 1–40.

    Article  MathSciNet  MATH  Google Scholar 

  98. Follett E. M., Nepf H. M. Sediment patterns near a model patch of reedy emergent vegetation [J]. Geomorphology, 2012, 179: 141–151.

    Article  Google Scholar 

  99. Chien N., Wan Z. Mechanics of sediment transport [M]. Reston, USA: American Society of Civil Engineers, 1999.

    Book  Google Scholar 

  100. Leonard L. A., Luther M. E. Flow hydrodynamics in tidal marsh canopies [J]. Limnol Oceanogr, 1995, 40(8): 1474–1484.

    Article  Google Scholar 

  101. Shi Z., Pethick J. S., Pye K. Flow structure in and above the various heights of a saltmarsh canopy: A laboratory flume study [J]. Journal of Coastal Research, 1995, 11(4): 1204–1209.

    Google Scholar 

  102. Cheng N., Wei M., Lu Y. Critical flow velocity for incipient sediment motion in open channel flow with rigid emergent vegetation [J]. Journal of Engineering Mechanics, 2020, 146(11): 4020123.

    Article  Google Scholar 

  103. Bouma T. J., van Duren L. A., Temmerman S. et al. Spatial flow and sedimentation patterns within patches of epibenthic structures: Combining field, flume and modelling experiments [J]. Continental Shelf Research, 2007, 27(8): 1020–1045.

    Article  Google Scholar 

  104. Tang H. W., Wang H., Liang D. F. et al. Incipient motion of sediment in the presence of emergent rigid vegetation [J]. Journal of Hydro-Environment Research, 2013, 7(3): 202–208.

    Article  Google Scholar 

  105. Wang H., Tang H. W., Zhao H. Q. et al. Incipient motion of sediment in presence of submerged flexible vegetation [J]. Water Science and Engineering, 2015, 8(1): 63–67.

    Article  Google Scholar 

  106. Xue W., Wu S., Wu X. et al. Sediment incipient motion on movable bed in rigid vegetation environment [J]. Advances in Water Science, 2017, 28(6): 849–857.

    Google Scholar 

  107. Shahmohammadi R., Afzalimehr H., Sui J. Impacts of turbulent flow over a channel bed with a vegetation patch on the incipient motion of sediment [J]. Canadian Journal of Civil Engineering, 2018, 45(9): 803–816.

    Article  Google Scholar 

  108. Watanabe K., Nagy H. M., Noguchi H. Flow structure and bed-load transport in vegetation flow [C]. Advances in Hydraulics and Water Engineering-Proceedings of the 13th IAHR-APD Congress, Singapore, 2002.

  109. Raupach M. R. Drag and drag partition on rough surfaces [J]. Boundary-Layer Meteorology, 1992, 60(4): 375–395.

    Article  Google Scholar 

  110. Jordanova A. A., James C. S. Experimental study of bed load transport through emergent vegetation [J]. Journal of Hydraulic Engineering, ASCE, 2003, 129(6): 474–478.

    Article  Google Scholar 

  111. Kothyari U. C., Hashimoto H., Hayashi K. Effect of tall vegetation on sediment transport by channel flows [J]. Journal of Hydraulic Research, 2009, 47(6): 700–710.

    Article  Google Scholar 

  112. Yang J. Q., Chung H., Nepf H. M. The onset of sediment transport in vegetated channels predicted by turbulent kinetic energy [J]. Geophysical Research Letters, 2016, 43(21): 112261–11268.

    Article  Google Scholar 

  113. Ali S. Z., Dey S. Origin of the scaling laws of sediment transport [J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2017, 473(2197): 20160785.

    Article  MathSciNet  MATH  Google Scholar 

  114. Li S., Katul G. Cospectral budget model describes incipient sediment motion in turbulent flows [J]. Physical Review Fluids, 2019, 4(9): 93801.

    Article  Google Scholar 

  115. Wang X., Huai W., Cao Z. An improved formula for incipient sediment motion in vegetated open channel flows [J]. International Journal of Sediment Research, 2021(in Press).

  116. Zhang Y., Lai X., Zhang L. et al. The influence of aquatic vegetation on flow structure and sediment deposition: A field study in Dongting Lake, China [J]. Journal of Hydrology, 2020, 584: 124644.

    Article  Google Scholar 

  117. Yang S. L. The role of scirpus marsh in attenuation of hydrodynamics and retention of fine sediment in the Yangtze Estuary [J]. Estuarine, Coastal and Shelf Science, 1998, 47(2): 227–233.

    Article  Google Scholar 

  118. Gruber R. K., Kemp W. M. Feedback effects in a coastal canopy-forming submersed plant bed [J]. Limnology and Oceanography, 2010, 55(6): 2285–2298.

    Article  Google Scholar 

  119. Huai W. X., Wang X., Guo Y. et al. Investigation of the sediment transport capacity in vegetated open channel flow [J]. Journal of Hydrodynamics, 2021, 33(2): 386–389.

    Article  Google Scholar 

  120. Richter D., Chamecki M. Inertial effects on the vertical transport of suspended particles in a turbulent boundary layer [J]. Boundary-Layer Meteorology, 2018, 167(2): 235–256.

    Article  Google Scholar 

  121. Lv S. Q. Experimental study on distribution law of suspended sediment in water flow of rigid plants [D]. Nanjing, China: Hohai University, 2008 (in Chinese).

    Google Scholar 

  122. Yang W., Choi S. A two-layer approach for depth-limited open-channel flows with submerged vegetation [J]. Journal of Hydraulic Research, 2010, 48(4): 466–475.

    Article  Google Scholar 

  123. Li D., Yang Z., Sun Z. et al. Theoretical model of suspended sediment concentration in a flow with submerged vegetation [J]. Water, 2018, 10(11): 1656.

    Article  Google Scholar 

  124. Li Y., Xie L., Su T. Vertical distribution of suspended sediments above dense plants in water flow [J]. Water, 2020, 12(1): 12.

    Article  Google Scholar 

  125. Li Y., Xie L., Su T. C. Profile of suspended sediment concentration in submerged vegetated shallow water flow [J]. Water Resources Research, 2020, 56(4): e2019WR025551.

    Article  Google Scholar 

  126. Yuuki W., Okabe T. Hydrodynamic mechanism of suspended load on riverbeds vegetated by woody plants [J]. Proceeding of Hydraulic Engineering, 2002, 46: 701–706.

    Article  Google Scholar 

  127. Huai W., Yang L., Wang W. J. et al. Predicting the vertical low suspended sediment concentration in vegetated flow using a random displacement model [J]. Journal of Hydrology, 2019, 578: 124101.

    Article  Google Scholar 

  128. Absi R. Concentration profiles for fine and coarse sediments suspended by waves over ripples: An analytical study with the 1-DV gradient diffusion model [J]. Advances in Water Resources, 2010, 33(4): 411–418.

    Article  Google Scholar 

  129. Huai W., Yang L, Guo Y. Analytical solution of suspended sediment concentration profile: relevance of dispersive flow term in vegetated channels [J]. Water Resources Research, 2020, 56(7): e2019WR027012.

    Article  Google Scholar 

  130. Einstein H. A. The bed-load function for sediment transportation in open channel flows [M]. Washington DC, USA: US Department of Agriculture, 1950.

    Google Scholar 

  131. Wu W., He Z. Effects of vegetation on flow conveyance and sediment transport capacity [J]. International Journal of Sediment Research, 2009, 24(3): 247–259.

    Article  Google Scholar 

  132. Le Bouteiller C., Venditti J. G. Sediment transport and shear stress partitioning in a vegetated flow [J]. Water Resources Research, 2015, 51(4): 2901–2922.

    Article  Google Scholar 

  133. Tinoco R. O., Coco G. A laboratory study on sediment resuspension within arrays of rigid cylinders [J]. Advances in Water Resources, 2016, 92: 1–9.

    Article  Google Scholar 

  134. Yang J. Q., Nepf H M. A Turbulence-based bed-load transport model for bare and vegetated channels [J]. Geophysical Research Letters, 2018, 45(19): 10410–428436.

    Article  Google Scholar 

  135. Yang J. Q., Nepf H. M. Impact of vegetation on bed load transport rate and bedform characteristics [J]. Water Resources Research, 2019, 55(7): 6109–6124.

    Article  Google Scholar 

  136. Chen S., Chan H., Li Y. Observations on flow and local scour around submerged flexible vegetation [J]. Advances in Water Resources, 2012, 43: 28–37.

    Article  Google Scholar 

  137. Zhang J., Lei J., Huai W. et al. Turbulence and particle deposition under steady flow along a submerged seagrass meadow [J]. Journal of Geophysical Research: Oceans, 2020,125(5): e2019JC015985.

    Google Scholar 

  138. Follett E., Nepf H. Particle retention in a submerged meadow and its variation near the leading edge [J]. Estuaries and Coasts, 2018, 41(3): 724–733.

    Article  Google Scholar 

  139. Västilä K., Järvelä J. Characterizing natural riparian vegetation for modeling of flow and suspended sediment transport [J]. Journal of Soils and Sediments, 2018, 18(10): 3114–3130.

    Article  Google Scholar 

  140. Box W., Västilä K., Järvelä J. The interplay between flow field, suspended sediment concentration, and net deposition in a channel with flexible bank vegetation [J]. Water, 2019, 11(11): 2250.

    Article  Google Scholar 

  141. Kim H. S., Kimura I., Shimizu Y. Experiment and computation of morphological response to a vegetation patch in open-channel flows with erodible banks [J]. Water, 2019, 11(11): 2255.

    Article  Google Scholar 

  142. Zong L., Nepf H. Flow and deposition in and around a finite patch of vegetation [J]. Geomorphology, 2010, 116(3–4): 363–372.

    Article  Google Scholar 

  143. Fonseca M. S., Zieman J. C., Thayer G. W. et al. The role of current velocity in structuring eelgrass (Zostera marina L.) meadowsa [J]. Estuarine, Coastal and Shelf Science, 1983, 17(4): 367–380.

    Article  Google Scholar 

  144. Naden P., Rameshwaran P., Mountford O. et al. The influence of macrophyte growth, typical of eutrophic conditions, on river flow velocities and turbulence production [J]. Hydrological Processes, 2006, 20(18): 3915–3938.

    Article  Google Scholar 

  145. van Katwijk M. M., Bos A. R., Hermus D. C. R. et al. Sediment modification by seagrass beds: Muddification and sandification induced by plant cover and environmental conditions [J]. Estuarine, Coastal and Shelf Science, 2010, 89(2): 175–181.

    Article  Google Scholar 

  146. Tsujimoto T. Fluvial processes in streams with vegetation [J]. Journal of Hydraulic Research, 1999, 37(6): 789–803.

    Article  Google Scholar 

  147. Takemura T., Tanaka N. Flow structures and drag characteristics of a colony-type emergent roughness model mounted on a flat plate in uniform flow [J]. Fluid Dynamics Research, 2007, 39(9–10): 694–710.

    Article  MATH  Google Scholar 

  148. Shi Y., Jiang B., Nepf H. M. Influence of particle size and density, and channel velocity on the deposition patterns around a circular patch of model emergent vegetation [J]. Water Resources Research, 2016, 52(2): 1044–1055.

    Article  Google Scholar 

  149. Hu Z., Lei J., Liu C. et al. Wake structure and sediment deposition behind models of submerged vegetation with and without flexible leaves [J]. Advances in Water Resources, 2018, 118: 28–38.

    Article  Google Scholar 

  150. Liu C., Hu Z., Lei J. et al. Vortex structure and sediment deposition in the wake behind a finite patch of model submerged vegetation [J]. Journal of Hydraulic Engineering, ASCE, 2018, 144(2): 4017065.

    Article  Google Scholar 

  151. Phillips J. D. Biogeomorphology and landscape evolution: The problem of scale [J]. Geomorphology, 1995, 13(1–4): 337–347.

    Article  Google Scholar 

  152. Gibling M. R., Davies N. S. Palaeozoic landscapes shaped by plant evolution [J]. Nature Geoscience, 2012, 5(2): 99–105.

    Article  Google Scholar 

  153. Politti E., Bertoldi W., Gurnell A. et al. Feedbacks between the riparian Salicaceae and hydrogeomorphic processes: A quantitative review [J]. Earth-Science Reviews, 2018, 176: 147–165.

    Article  Google Scholar 

  154. Thorne C. R. Channel types and morphological classification (Applied fluvial geomorphology for river engineering and management) [M]. New York, USA: John Wiley and Sons, 1997.

    Google Scholar 

  155. Allmendinger N. E., Pizzuto J. E., Potter N. et al. The influence of riparian vegetation on stream width, eastern Pennsylvania, USA [J]. Bulletin of the Geological Society of America, 2005, 117(1–2): 229–243.

    Article  Google Scholar 

  156. Millar R. G. Influence of bank vegetation on alluvial channel patterns [J]. Water Resources Research, 2000, 36(4): 1109–1118.

    Article  Google Scholar 

  157. Murray B. A., Paola C. Modelling the effect of vegetation on channel pattern in bedload rivers [J]. Earth Surface Processes and Landforms, 2003, 28(2): 131–143.

    Article  Google Scholar 

  158. Pollen N., Simon A., Collison A. et al. Advances in assessing the mechanical and hydrologic effects of riparian vegetation on streambank stability: Riparian Vegetation and Fluvial Geomorphology, 2004 [M]. Washington DC, USA: American Geophysical Union, 2004.

    Book  Google Scholar 

  159. Yu G. A., Li Z., Yang H. et al. Effects of riparian plant roots on the unconsolidated bank stability of meandering channels in the Tarim River, China [J]. Geomorphology, 2020, 351: 106958.

    Article  Google Scholar 

  160. Trimble S. W. Stream channel erosion and change resulting from riparian forests [J]. Geology, 1997, 25(5): 467–469.

    Article  Google Scholar 

  161. Simon A., Collison A. J. C. Quantifying the mechanical and hydrologic effects of riparian vegetation on streambank stability [J]. Earth Surface Processes and Landforms, 2002, 27(5): 527–546.

    Article  Google Scholar 

  162. Nicholas A. P., Mitchell C. A. Numerical simulation of overbank processes in topographically complex floodplain environments [J]. Hydrological Processes, 2003, 17(4): 727–746.

    Article  Google Scholar 

  163. Steiger J., Gurnell A. M., Ergenzinger P. et al. Sedimentation in the riparian zone of an incising river [J]. Earth Surface Processes and Landforms: The Journal of the British Geomorphological Research Group, 2001, 26(1): 91–108.

    Article  Google Scholar 

  164. Croissant T., Lague D., Davy P. Channel widening downstream of valley gorges influenced by flood frequency and floodplain roughness [J]. Journal of Geophysical Research: Earth Surface, 2019, 124(1): 154–174.

    Article  Google Scholar 

  165. Nanson G. C., Beach H. F. Forest succession and sedimentation on a meandering-river floodplain, northeast British Columbia, Canada [J]. Journal of Biogeography, 1977, 4(3): 229–251.

    Article  Google Scholar 

  166. Collins D. B. G., Bras R. L., Tucker G. E. Modeling the effects of vegetation-erosion coupling on landscape evolution [J]. Journal of Geophysical Research-Earth Surface, 2004, 109(F3): F03004.

    Article  Google Scholar 

  167. D’Alpaos A., Lanzoni S. Evoluzione morfodinamica a lungo termine della sezione trasversale di canali a marea [C]. XXX Convegno di Idraulica e Costruzioni Idrauliche, Roma, Italy, 2006.

  168. Palmer M. R., Nepf H. M., Pettersson T. J. R. et al. Observations of particle capture on a cylindrical collector: Implications for particle accumulation and removal in aquatic systems [J]. Limnology and Oceanography, 2004, 49(1): 76–85.

    Article  Google Scholar 

  169. Ikeda S., Izumi N., Ito R. Effects of pile dikes on flow retardation and sediment transport [J]. Journal of Hydraulic Engineering, ASCE, 1991, 117(11): 1459–1478.

    Article  Google Scholar 

  170. James C. S. Sediment transfer to overbank sections [J]. Journal of Hydraulic Research, 1985, 23(5): 435–452.

    Article  Google Scholar 

  171. Elliott A. H. Settling of fine sediment in a channel with emergent vegetation [J]. Journal of Hydraulic Engineering, ASCE, 2000, 126(8): 570–577.

    Article  Google Scholar 

  172. Kang T., Kimura I., Shimizu Y. Responses of bed morphology to vegetation growth and flood discharge at a sharp river bend [J]. Water, 2018, 10(2): 223.

    Article  Google Scholar 

  173. Yang S., Bai Y., Xu H. Experimental analysis of river evolution with riparian vegetation [J]. Water, 2018, 10(11): 1500.

    Article  Google Scholar 

  174. Zen S., Perona P. Biomorphodynamics of river banks in vegetated channels with self-formed width [J]. Advances in Water Resources, 2020, 135: 103488.

    Article  Google Scholar 

  175. Andrews E. D. Bed-material entrainment and hydraulic geometry of gravel-bed rivers in Colorado [J]. Geological Society America Bulletin, 1984, 95: 371–378.

    Article  Google Scholar 

  176. Hey R. D., Thorne C. R. Stable channels with mobile gravel beds [J]. Journal of Hydraulic Engineering, ASCE, 1986, 112(8): 671–689.

    Article  Google Scholar 

  177. Huang H. Q., Nanson G. C. Vegetation and channel variation; a case study of four small streams in southeastern Australia [J]. Geomorphology, 1997, 18(3–4): 237–249.

    Article  Google Scholar 

  178. Ikeda S., Izumi N. Width and depth of self-formed straight gravel rivers with bank vegetation [J]. Water Resources Research, 1990, 26(10): 2353–2364.

    Article  Google Scholar 

  179. Bertoldi W., Gurnell A. M., Drake N. A. The topographic signature of vegetation development along a braided river: Results of a combined analysis of airborne lidar, color air photographs, and ground measurements [J]. Water Resources Research, 2011, 47(6): 1–13.

    Article  Google Scholar 

  180. Jang C. L., Shimizu Y. Vegetation effects on the morphological behavior of alluvial channels [J]. Journal of Hydraulic Research, 2007,45(6): 763–772.

    Article  Google Scholar 

  181. Kujanová K., Matoušková M., Hošek Z. The relationship between river types and land cover in riparian zones [J]. Limnologica, 2018, 71: 29–43.

    Article  Google Scholar 

  182. Mackin J. H. Cause of braiding by a graded river [J]. Geological Society of America Bulletin, 1956, 67(12): 1717–1718.

    Google Scholar 

  183. Gurnell A. M., Bertoldi W., Corenblit D. Changing river channels: The roles of hydrological processes, plants and pioneer fluvial landforms in humid temperate, mixed load, gravel bed rivers [J]. Earth-Science Reviews, 2012, 111(1–2): 129–141.

    Article  Google Scholar 

  184. Page K., Frazier P., Pietsch T. et al. Channel change following European settlement: Gilmore Creek, southeastern Australia [J]. Earth Surface Processes and Landforms, 2007, 32(9): 1398–1411.

    Article  Google Scholar 

  185. Naiman R. J., Decamps H., McClain M. E. Riparia [M]. Rotterdam, The Netherlands: Elsevier, 2005.

    Google Scholar 

  186. Mahoney J. M., Rood S. B. Streamflow requirements for cottonwood seedling recruitment-An integrative model [J]. Wetlands, 1998, 18(4): 634–645.

    Article  Google Scholar 

  187. Amlin N. A., Rood S. B. Inundation tolerances of riparian willows and cottonwoods [J]. Journal of the American Water Resources Association, 2001, 37(6): 1709–1720.

    Article  Google Scholar 

  188. Amlin N. M., Rood S. B. Comparative tolerances of riparian willows and cottonwoods to water-table decline [J]. Wetlands, 2002, 22(2): 338–346.

    Article  Google Scholar 

  189. Bhattacharjee J., Taylor Jr J. P., Smith L. M. et al. The importance of soil characteristics in determining survival of first-year cottonwood seedlings in altered riparian habitats [J]. Restoration Ecology, 2008, 16(4): 563–571.

    Article  Google Scholar 

  190. Braatne J. H., Jamieson R., Gill K. M. et al. Instream flows and the decline of riparian cottonwoods along the Yakima River, Washington, USA [J]. River Research and Applications, 2007, 23(3): 247–267.

    Article  Google Scholar 

  191. Dixon M. D., Turner M. G. Simulated recruitment of riparian trees and shrubs under natural and regulated flow regimes on the Wisconsin River, USA [J]. River Research and Applications, 2006, 22(10): 1057–1083.

    Article  Google Scholar 

  192. Greet J., Webb J A., Cousens R. D. The importance of seasonal flow timing for riparian vegetation dynamics: A systematic review using causal criteria analysis [J]. Freshwater Biology, 2011, 56(7): 1231–1247.

    Article  Google Scholar 

  193. Bradley C. E., Smith D. G. Plains cottonwood recruitment and survival on a prairie meandering river floodplain, Milk River, southern Alberta and northern Montana [J]. Canadian Journal of Botany, 1986, 64(7): 1433–1442.

    Article  Google Scholar 

  194. Moggridge H. L., Gurnell A. M. Controls on the sexual and asexual regeneration of Salicaceae along a highly dynamic, braided river system [J]. Aquatic Sciences, 2009, 71(3): 305–317.

    Article  Google Scholar 

  195. Solari L., van Oorschot M., Belletti B. et al. Advances on modelling riparian vegetation-hydromorphology interactions [J]. River Research and Applications, 2016, 32(2): 164–178.

    Article  Google Scholar 

  196. Benjankar R., Egger G., Jorde K. et al. Dynamic flood-plain vegetation model development for the Kootenai River, USA [J]. Journal of Environmental Management, 2011, 92(12): 3058–3070.

    Article  Google Scholar 

  197. Coulthard T. J., Hicks D. M., Van De Wiel M. J. Cellular modelling of river catchments and reaches: Advantages, limitations and prospects [J]. Geomorphology, 2007, 90(3–4): 192–207.

    Article  Google Scholar 

  198. Hooke J. M., Brookes C. J., Duane W. et al. A simulation model of morphological, vegetation and sediment changes in ephemeral streams [J]. Earth Surface Processes and Landforms, 2005, 30(7): 845–866.

    Article  Google Scholar 

  199. Camporeale C., Perona P., Porporato A. et al. Hierarchy of models for meandering rivers and related morphodynamic processes [J]. Reviews of Geophysics, 2007, 45: 446–447.

    Article  Google Scholar 

  200. Imran J., Parker G., Pirmez C. A nonlinear model of flow in meandering submarine and subaerial channels [J]. Journal of Fluid Mechanics, 1999, 400: 295–331.

    Article  MATH  Google Scholar 

  201. Zolezzi G., Seminara G. Downstream and upstream influence in river meandering. Part 1. General theory and application to overdeepening [J]. Journal of Fluid Mechanics, 2001, 438: 183–211.

    Article  MathSciNet  MATH  Google Scholar 

  202. Seminara G., Zolezzi G., Tubino M. et al. Downstream and upstream influence in river meandering. Part 2. Planimetric development [J]. Journal of Fluid Mechanics, 2001, 438: 213–230.

    Article  MathSciNet  MATH  Google Scholar 

  203. Van De Wiel M. J., Darby S. E., Bennett S. A. S. Numerical modeling of bed topography and bank erosion along tree-lined meandering rivers: Riparian vegetation and fluvial geomorphology [M]. Washington, DC, USA: American Geophysical Union, 2004, 267–282.

    Google Scholar 

  204. Baptist M. J., van den Bosch L. V., Dijkstra J. T. et al. Modelling the effects of vegetation on flow and morphology in rivers [J]. Large Rivers, 2003, 15(1–4): 339–357.

    Article  Google Scholar 

  205. Baptist M. J., Penning W. E., Duel H. et al. Assessment of the effects of cyclic floodplain rejuvenation on flood levels and biodiversity along the Rhine river [J]. River Research and Applications, 2004, 20(3): 285–297.

    Article  Google Scholar 

  206. Crosato A., Saleh M. S. Numerical study on the effects of floodplain vegetation on river planform style [J]. Earth Surface Processes and Landforms, 2011, 36(6): 711–720.

    Article  Google Scholar 

  207. Perucca E., Camporeale C., Ridolfi L. Influence of river meandering dynamics on riparian vegetation pattern formation [J]. Journal of Geophysical Research: Biogeosciences, 2006, 111(G1): G01001.

    Article  Google Scholar 

  208. Perucca E., Camporeale C., Ridolfi L. Significance of the riparian vegetation dynamics on meandering river morphodynamics [J]. Water Resources Research, 2007, 43(3): W03430.

    Article  Google Scholar 

  209. Camporeale C., Ridolfi L. Interplay among river meandering, discharge stochasticity and riparian vegetation [J]. Journal of Hydrology, 2010, 382(1–4): 138–144.

    Article  Google Scholar 

  210. Muneepeerakul R., Rinaldo A., Rodriguez-Iturbe I. Effects of river flow scaling properties on riparian width and vegetation biomass [J]. Water Resources Research, 2007, 43(12): W12406.

    Article  Google Scholar 

  211. Perona P., Molnar P., Savina M. et al. An observation-based stochastic model for sediment and vegetation dynamics in the floodplain of an Alpine braided river [J]. Water Resources Research, 2009, 45(9): W09418.

    Article  Google Scholar 

  212. Poggi D., Katul G. G. Turbulent flows on forested hilly terrain: The recirculation region [J]. Quarterly Journal of the Royal Meteorological Society, 2007, 133(625): 1027–1039.

    Article  Google Scholar 

  213. Poggi D., Katul G. G. An experimental investigation of the mean momentum budget inside dense canopies on narrow gentle hilly terrain [J]. Agricultural and Forest Meteorology, 2007, 144(1–2): 1–13.

    Article  Google Scholar 

  214. Poggi D., Katul G. G., Finnigan J. J. et al. Analytical models for the mean flow inside dense canopies on gentle hilly terrain [J]. Quarterly Journal of the Royal Meteorological Society, 2008, 134(634): 1095–1112.

    Article  Google Scholar 

  215. Poggi D., Katul G. G., Albertson J. D. et al. An experimental investigation of turbulent flows over a hilly surface [J]. Physics of Fluids, 2007, 19(3): 36601.

    Article  MATH  Google Scholar 

  216. Poggi D., Katul G. The ejection-sweep cycle over bare and forested gentle hills: A laboratory experiment [J]. Boundary-Layer Meteorology, 2007, 122(3): 493–515.

    Article  Google Scholar 

  217. Katul G. G., Poggi D. The effects of gentle topographic variation on dispersal kernels of inertial particles [J]. Geophysical Research Letters, 2012, 39(3): L03401.

    Article  Google Scholar 

  218. Beven K. A manifesto for the equifinality thesis [J]. Journal of Hydrology, 2006, 320(1–2): 18–36.

    Article  Google Scholar 

  219. Julien P. Y. Erosion and sedimentation [M]. Cambridge, UK: Cambridge University Press, 1995.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhong-hua Yang.

Additional information

Projects supported by the National Natural Science Foundation of China (Grant Nos. 52020105006, 11872285), the U.S. National Science Foundation (Grant Nos. NSF-AGS-1644382, NSF-AGS-2028633 and NSF-IOS-1754893).

Biography: Wen-xin Huai (1963-), Male, Ph. D., Professor

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huai, Wx., Li, S., Katul, G.G. et al. Flow dynamics and sediment transport in vegetated rivers: A review. J Hydrodyn 33, 400–420 (2021). https://doi.org/10.1007/s42241-021-0043-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42241-021-0043-7

Key words

Navigation