Skip to main content
Log in

Experimental analysis of tip vortex cavitation mitigation by controlled surface roughness

  • Articles
  • Published:
Journal of Hydrodynamics Aims and scope Submit manuscript

Abstract

This study presents results of experiments where roughness applications are evaluated in delaying the tip vortex cavitation inception of an elliptical foil. High-speed video recordings and laser doppler velocimetry (LDV) measurements are employed to provide further details on the cavitation behavior and tip vortex flow properties in different roughness pattern configurations. The angular momentum measurements of the vortex core region at one chord length downstream of the tip indicate that roughness leads to a lower angular momentum compared with the smooth foil condition while the vortex core radius remains similar in the smooth and roughened conditions. The observations show that the cavitation number for tip vortex cavitation inception is reduced by 33% in the optimized roughness pattern compared with the smooth foil condition where the drag force increase is observed to be around 2%. During the tests, no obvious differences in the cavitation inception properties of uniform and non-uniform roughness distributions are observed. However, the drag force is found to be higher with a non-uniform roughness distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pennings P., Westerweel J., van Terwisga T. Flow field measurement around vortex cavitation [J]. Experiments in Fluids, 2015, 56(11): 206.

    Article  Google Scholar 

  2. Mukund R., Kumar A. Velocity field measurements in the wake of a propeller model [J]. Experiments in Fluids, 2016, 57(10): 154.

    Article  Google Scholar 

  3. Zhang L. X., Zhang N., Peng X. X. et al. A review of studies of mechanism and prediction of tip vortex cavitation inception [J]. Journal of Hydrodynamics, 2015, 27(4): 488–495.

    Article  Google Scholar 

  4. Chahine G., Frederick G., Bateman R. Propeller tip vortex cavitation suppression using selective polymer injection [J]. Journal of Fluids Engineering, 1993, 115(3): 497503.

    Article  Google Scholar 

  5. Rivetti A., Angulo M., Lucino C. et al. Implementation of pressurized air injection system in a Kaplan prototype for the reduction of vibration caused by tip vortex cavitation [C]. IOP Conference Series: Earth and Environmental Science, 2016, 49: 753–761.

    Google Scholar 

  6. Gim O., Lee G. Flow characteristics and tip vortex formation around a NACA0018 foil with an endplate [J]. Ocean Engineering, 2013, 60: 28–40.

    Article  Google Scholar 

  7. Amini A., Reclari M., Sano T. et al. Suppressing tip vortex cavitation by winglets [J]. Experiments in Fluids, 2019, 60(11): 159.

    Article  Google Scholar 

  8. Brown M., Schroeder S., Balaras E. Vortex structure characterization of tip loaded propellers [C]. Fourth International Symposium on Marine Propulsors, SMP15, Austin, Texas, USA, 2015.

    Google Scholar 

  9. Park S., Lee S., You G. et al. An experimental study on tip vortex cavitation suppression in a marine propeller [J]. Journal of Ship Research, 2014, 58(2): 157–167.

    Article  Google Scholar 

  10. Amini A., Seo J., Rhee S. et al. Mitigating tip vortex cavitation by a exible trailing thread [J]. Physics of Fluids, 2019, 31(12): 127103.

    Article  Google Scholar 

  11. Lee S., Shin J., Arndt R. et al. Attenuation of the tip vortex flow using a exible thread [J]. Experiments in Fluids, 2018, 59(23): 1–12.

    Google Scholar 

  12. Asnaghi A., Svennberg U., Bensow R. Numerical and experimental analysis of cavitation inception behaviour for high-skewed low-noise propellers [J]. Applied Ocean Research, 2018, 79: 197–214.

    Article  Google Scholar 

  13. Asnaghi A. Computational modelling for cavitation and tip vortex flows [D]. Doctoral Thesis, Gothenburg, Sweden: Chalmers University of Technology, 2018.

    Google Scholar 

  14. Shin K., Andersen P. CFD analysis of cloud cavitation on three tip-modified propellers with systematically varied tip geometry [J]. Journal of Physics: Conference Series, 2015, 656(1): 012139.

    Google Scholar 

  15. McCormick B. On cavitation produced by a vortex trailing from a lifting surface [J]. Journal of Fluids Engineering, 1962, 84(3): 369–378.

    MathSciNet  Google Scholar 

  16. Souders W. G., Platzer G. P. Tip vortex cavitation characteristics and delay of inception on a three dimensional hydrofoil [C]. Proceedings of the Navy Symposium on Aeroballistics (12th), Bethesda, USA, 1981.

    Google Scholar 

  17. Katz J., Galdo J. Effect of roughness on rollup of tip vortices on a rectangular hydrofoil [J]. Journal of Aircraft, 1989, 26(3): 247–253.

    Article  Google Scholar 

  18. Johnsson C. A., Ruttgerson O. Leading edge roughness: A way to improve propeller tip vortex cavitation [C]. Proceedings of the proepllers/Shafting’91 Symposium, Virginia Beach, USA, 1991.

    Google Scholar 

  19. Philipp O., Ninnemann P. Wirkung von uegelrauigkeiten auf kavitation und erregung [R]. Maritime Speech Day, Hamburg, Germany: Technical University of Hamburg, 2007.

    Google Scholar 

  20. Kruger C., Kornev N., Greitsch L. Inuence of propeller tip roughness on tip vortex strength and propeller performance [J]. Ship Technology Research, 2016, 63(2): 110–120.

    Article  Google Scholar 

  21. Park J., Seong W. Novel scaling law for estimating propeller tip vortex cavitation noise from model experiment [J]. Journal of Hydrodynamics, 2017, 29(6): 962–971.

    Article  Google Scholar 

  22. Arndt R. Vortex cavitation (Green S. I. Fluid vortices) [B]. New York, USA: Springer, 1995.

    Google Scholar 

  23. Arndt R. Cavitation in vortical flows [J]. Annual Review of Fluid Mechanics, 2002, 34: 143–175.

    Article  MathSciNet  MATH  Google Scholar 

  24. Pennings P. Dynamics of vortex cavitation [D]. Doctoral Thesis, Delft, The Netherlands: Delft University of Technology, 2016.

    Google Scholar 

  25. Asnaghi A., Feymark A., Bensow R. Computational analysis of cavitating marine propeller performance using OpenFOAM [C]. Fourth International Symposium on Marine Propulsors, Austin, Texas, USA, 2015.

    Google Scholar 

  26. Peng X. X., Xu L. H., Liu Y. W. et al. Experimental measurement of tip vortex flow field with/without cavitation in an elliptic hydrofoil [J]. Journal of Hydrodynamics, 2017, 29(6): 939–953.

    Article  Google Scholar 

  27. Pennings P., Bosschers J., Westerweel J. et al. Dynamics of isolated vortex cavitation [J]. Journal of Fluid Mechanics, 2015, 778: 288–313.

    Article  MathSciNet  MATH  Google Scholar 

  28. Asnaghi A., Svennberg U., Gustafsson R. et al. Roughness effects on the tip vortex strength and cavitation inception [C]. Proceedings of Sixth International Symposium on Marine Propulsion, SMP2019, Rome, Italy, 2019.

    Google Scholar 

  29. Asnaghi A., Svennberg U., Gustafsson R. et al. Investigations of tip vortex mitigation by using roughness [J]. Physics of Fluids, 2020, 32(6): 065111.

    Article  Google Scholar 

  30. Arndt R., Keller A. Water quality effects on cavitation inception in a trailing vortex [J]. Journal of Fluids Engineering, 1992, 114(3): 430–438.

    Article  Google Scholar 

  31. Arndt R., Arakeri V., Higuchi H. Some observations of tip-vortex cavitation [J]. Journal of Fluids Mechanics, 1991, 229: 269–289.

    Article  Google Scholar 

  32. Amini A., Reclari M., Sano T. et al. On the physical mechanism of tip vortex cavitation hysteresis [J]. Experiments in Fluids, 2019, 60(7): 118–133.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the VINNOVA through the RoughProp project (Grant No. 2018-04085). The experimental measurements are conducted in the free surface cavitation tunnel at the Kongsberg Hydrodynamic Research Center, Kristinehamn, Sweden.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rickard E. Bensow.

Additional information

Biography: Urban Svennberg (1967-), Male, Ph. D.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Svennberg, U., Asnaghi, A., Gustafsson, R. et al. Experimental analysis of tip vortex cavitation mitigation by controlled surface roughness. J Hydrodyn 32, 1059–1070 (2020). https://doi.org/10.1007/s42241-020-0073-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42241-020-0073-6

Key words

Navigation