Skip to main content
Log in

Numerical simulations of propeller cavitation flows based on OpenFOAM

  • Articles
  • Published:
Journal of Hydrodynamics Aims and scope Submit manuscript

Abstract

In order to study the cavitation and hydrodynamic characteristics of propeller under uniform and non-uniform flows, numerical investigations are performed using interPhaseChangeDyMFoam in the open source computational fluid dynamics (CFD) software platform OpenFOAM with Schnerr-Sauer cavitation model. The simulation results can be used as a reference to evaluate the working ability of a propeller in case of actual navigation. A new grid encryption method is adopted in the research to better capture the existence of vortex cavitation at the propeller tip. The method of function input is carried out in the study to simulate the condition of non-uniform flow and reduce the calculation amount. Typical unsteady dynamics are predicted by the Reynolds-averaged Navier-Stokes (RANS) method with a modified shear stress transport (SST) kω turbulence model. The numerical results of the propeller such as cavitation shape and pressure distribution under uniform and non-uniform flow are analyzed and compared with each other.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Katz J. Cavitation phenomena within regions of flow separation [J]. Journal of Fluid Mechanics, 2006, 140: 397–436.

    Article  Google Scholar 

  2. Duttweiler M. E., Brennen C. E. Surge instability on a cavitating propeller [J]. Journal of Fluid Mechanics, 2001, 458: 133–152.

    Article  Google Scholar 

  3. Ji B., Luo X., Peng X. et al. Numerical analysis of cavitation evolution and excited pressure fluctuation around a propeller in non-uniform wake [J]. International Journal of Multiphase Flow, 2012, 43: 13–21.

    Article  Google Scholar 

  4. Zhang L. X., Chen M., Deng J. et al. Experimental and numerical studies on the cavitation over flat hydrofoils with and without obstacle [J]. Journal of Hydrodynamics, 2019, 31(4): 708–716.

    Article  Google Scholar 

  5. Wang C. C., Hunag B., Wang G. Y. et al. Numerical simulation of transient turbulent cavitating flows with special emphasis on shock wave dynamics considering the water/vapor compressibility [J]. Journal of Hydrodynamics, 2018, 30(4): 573–591.

    Article  Google Scholar 

  6. Ji B., Luo X., Wu Y. et al. Numerical analysis of unsteady cavitating turbulent flow and shedding horse-shoe vortex structure around a twisted hydrofoil [J]. International Journal of Multiphase Flow, 2013, 51: 33–43.

    Article  Google Scholar 

  7. Liang S., Li Y., Wan D. C. Numerical simulation of cavitation around Clark-Y hydrofoil based on adaptive mesh refinement [J]. Chinese Journal of Hydrodynamics, 2020, 35(1): 1–8(in Chinese).

    Google Scholar 

  8. Wang Z. Y., Huang X. Y., Cheng H. Y. et al. Some notes on numerical simulation of the turbulent cavitating flow with a dynamic cubic nonlinear sub-grid scale model in OpenFOAM [J]. Journal of Hydrodynamics, 2020, 32(4): 790–794.

    Article  Google Scholar 

  9. Peng X. X., Zhang L. X., Wang B. L. et al. Study of tip vortex cavitation inception and vortex singing [J]. Journal of Hydrodynamics, 2019, 31(6): 1170–1177.

    Article  Google Scholar 

  10. Li L. M., Hu D. Q., Liu Y. C. et al. Large eddy simulation of cavitating flows with dynamic adaptive mesh refinement using OpenFOAM [J]. Journal of Hydrodynamics, 2020, 32(2): 398–409.

    Article  Google Scholar 

  11. Maiga M. A., Coutier-Delgosha O., Buisine D. Cavitation in a hydraulic system: The influence of the distributor geometry on cavitation inception and study of the interactions between bubbles [J]. International Journal of Engine Research, 2016, 17(5): 543–555.

    Article  Google Scholar 

  12. Karabelas S. J., Markatos N. C. Water vapor condensation in forced convection flow over an airfoil [J]. Aerospace Science and Technology, 2008, 12(2): 150–158.

    Article  Google Scholar 

  13. Rodi W. Comparison of LES and RANS calculations of the flow around bluff bodies [J]. Journal of Wind Engineering and Industrial Aerodynamics, 1997, 69–71: 55–75.

    Article  Google Scholar 

  14. Yang J., Zhou L. J., Wang Zheng-wei et al. Numerical investigation of the cavitation dynamic parameters in a Francis turbine draft tube with columnar vortex rope [J]. Journal of Hydrodynamics, 2019, 31(5): 931–939.

    Article  Google Scholar 

  15. Liu Y., Wang J., Wan D. Numerical simulations of cavitation flows around Clark-Y hydrofoil [J]. Journal of Applied Mathematics and Physics, 2019, 7(8): 1660–1676.

    Article  Google Scholar 

  16. Huang B., Wang G. Y. A modified density based cavitation model for time dependent turbulent cavitating flow computations [J]. Chinese Science Bulletin, 2011, 56(19): 1985–1992.

    Article  Google Scholar 

  17. Passandideh-Fard M., Zahiri A. P., Roohi E. Numerical simulation of cavitation around a two-dimensional hydrofoil using VOF method and LES turbulence modelm [J]. Applied mathematical modelling, 2013, 37(9): 6469–648.

    Article  MathSciNet  Google Scholar 

  18. Ji B., Long Y., Long X. P. et al. Large eddy simulation of turbulent attached cavitating flow with special emphasis on large scale structures of the hydrofoil wake and turbulence-cavitation interactions [J]. Journal of Hydrodynamics, 2017, 29(1): 27–39.

    Article  Google Scholar 

  19. Cheng H., Long X., Ji B. et al. A new Euler-Lagrangian cavitation model for tip-vortex cavitation with the effect of non-condensable gas [J]. International Journal of Multiphase Flow, 2021, 134: 103441.

    Article  MathSciNet  Google Scholar 

  20. Hou L., Hu A. Theoretical investigation about the hydrodynamic performance of propeller in oblique flow [J]. International Journal of Naval Architecture and Ocean Engineering, 2019, 11(1):119–130.

    Article  Google Scholar 

  21. Kinnas S., Hsin C. Y., Keenan D. A. Potential based panel method for the unsteady flow around open and ducted propellers [C]. Proceedings of the 8th Symposium on Naval Hydrodynamics, Ann Arbor, Michigan, USA, 1990.

  22. Ji B., Luo X., Wang X. et al. Unsteady numerical simulation of cavitating turbulent flow around a highly skewed model marine propeller [J]. Journal of Fluids Engineering, 2011,133(1): 011102.

    Article  Google Scholar 

  23. Funeno I. Analysis of unsteady viscous flows around a highly skewed propeller [J]. Journal of the Kansai Society of Naval Architects, Japan, 2002, 237: 39–45.

    Google Scholar 

  24. Cai R. Q., Cheng F. M., Feng X. M. Calculation and analysis of the open water performance of propeller by CFD software Fluent [J]. Journal of Ship Mechanics, 2006, 10(5): 41–48.

    Google Scholar 

  25. Reboud J. L., Stutz B., Coutier-Delgosha O. Two phase flow structure of cavitation experiment and modeling of unsteady effects [C]. Proceedings of the 3rd International Symposium on Cavitation, Grenoble, France, 1998.

  26. Liu D. The numerical simulation of propeller sheet cavitation with a new cavitation model [J]. Procedia Engineering, 2015, 126: 310–314.

    Article  Google Scholar 

  27. Francesco S., Claudio T., Luca G. A viscous/inviscid coupled formulation for unsteady sheet cavitation modeling of marine propeller [C]. Fifth International Symposium on Cavitation, Osaka, Japan, 2003.

  28. Zhao M., Wan D. C., Chen G. Comparison of SST k-ω and Smagorinsky model in cavitation simulation around NACA0012 [C]. Proceedings of the Twenty-Ninth International Ocean and Polar Engineering Conference, Honolulu, Hawaii, USA, 2019.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to De-cheng Wan.

Additional information

Project supported by the National Natural Science Foundation of China (Grant Nos. 51879159, 51809169 and 51909160), the National Key Research and Development Program of China (Grant Nos. 2019YFB1704200, 2019YFC0312400), the Chang Jiang Scholars Program (Grant No. T2014099) and the Innovative Special Project of Numerical Tank of Ministry of Industry and Information Technology of China (Grant No. 2016-23/09).

Biography: Min-sheng Zhao (1994-), Male, Ph. D. Candidate

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Ms., Zhao, Ww. & Wan, Dc. Numerical simulations of propeller cavitation flows based on OpenFOAM. J Hydrodyn 32, 1071–1079 (2020). https://doi.org/10.1007/s42241-020-0071-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42241-020-0071-8

Key words

Navigation