Skip to main content

Advertisement

Log in

A review on flow-induced vibration of offshore circular cylinders

  • Review Article
  • Published:
Journal of Hydrodynamics Aims and scope Submit manuscript

Abstract

As a fundamental fluid-structure interaction (FSI) phenomenon, vortex-induced vibrations (VIVs) of circular cylinders have been the center of the FSI research in the past several decades. Apart from its scientific significance in rich physics, VIVs are paid great attentions by offshore engineers, as they are encountered in many ocean engineering applications. Recently, with the development of research and application, wake-induced vibration (WIV) for multiple cylinders and galloping for VIV suppression attachments are attracting a growing research interest. All these phenomena are connected with the flow-induced vibration (FIV). In this paper, we review and give some discussions on the FIV of offshore circular cylinders, including the research progress on the basic VIV mechanism of an isolated rigid or flexible cylinder, interference of multiple cylinders concerning WIV of multiple cylinders, practical VIV suppression and unwanted galloping for cylinder of attachments. Finally, we draw concluding remarks, give some comments and propose future research prospects, especially on the major challenges as well as potentials in the offline/online modelling and prediction of real-scale offshore structures with high-fidelity CFD methods, new experimental facilities and applications of artificial intelligence tools.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. He J. W., Low Y. M. An approach for estimating the probability of collision between marine risers [J]. Applied Ocean Research, 2012, 35: 68–76.

    Google Scholar 

  2. Williamson C. H. K. Vortex dynamics in the cylinder wake [J]. Annual Review of Fluid Mechanics, 1996, 28: 477–539.

    MathSciNet  Google Scholar 

  3. Vandiver J. K. Dimensionless parameters important to the prediction of vortex-induced vibration of long, flexible cylinders in ocean currents [J]. Journal of Fluids and Structures, 1993, 7(5): 423–455.

    Google Scholar 

  4. Fan D., Wang Z., Triantafyllou M. S. et al. Mapping the properties of the vortex-induced vibrations of flexible cylinders in uniform oncoming flow [J]. Journal of Fluid Mechanics, 2019, 881: 815–858.

    MathSciNet  MATH  Google Scholar 

  5. Cornut S. F. A., Vandive J. K. Offshore VIV monitoring at Schiehallion-analysis of riser VIV response [C]. Proceedings of ETCE/OMAE 2000 Joint Conference: Energy for the New Millenium, New York, USA, 2000.

  6. Wang J., Zhan L., Wang C. et al. Three dimensional numerical simulation of vortex induced vibration for a 500-m-long marine riser [C]. Proceedings of the 22nd International Offshore and Polar Engineering Conference, Rhodes, Greece, 2012, 551–558.

  7. Wang J., Lin K., Zhou J. et al. Three dimensional numerical simulation of vortex induced vibration for an 800-m-long drilling riser [C]. Proceedings of the Twenty-seventh (2017) International Ocean and Polar Engineering Conference, San Francisco, CA, USA, 2017, 1251–1256.

  8. Wang J., Zhan L., Jiang S. et al. Numerical simulation of VIV for a marine riser in uniform and linearly sheared currents [C]. The Twenty-third International Offshore and Polar Engineering Conference, ISPOE, Anchorage, Alaska, USA, 2013, 501–507.

  9. Sarpkaya T. A critical review of the intrinsic nature of vortex-induced vibrations [J]. Journal of Fluids and Structures, 2004, 19(4): 389–447.

    Google Scholar 

  10. Williamson C. H. K., Govardhan R. A brief review of recent results in vortex-induced vibrations [J]. Journal of Wind Engineering and Industrial Aerodynamics, 2008, 96(6–7): 713–735.

    Google Scholar 

  11. Bearman P. W. Circular cylinder wakes and vortex-induced vibrations [J]. Journal of Fluids and Structures, 2011, 27(5–6): 648–658.

    Google Scholar 

  12. Wu X., Ge F., Hong Y. A review of recent studies on vortex-induced vibrations of long slender cylinders [J]. Journal of Fluids and Structures, 2012, 28: 292–308.

    Google Scholar 

  13. Gabbai R. D., Benaroya H. An overview of modeling and experiments of vortex-induced vibration of circular cylinders [J]. Journal of Sound and Vibration, 2005, 282(3–5): 575–616.

    Google Scholar 

  14. Sumner D. Two circular cylinders in cross-flow: A review [J]. Journal of Fluids and Structures, 2010, 26(6): 849–899.

    Google Scholar 

  15. Zhou Y., Alam M. M. Wake of two interacting circular cylinders: A review [J]. International Journal of Heat and Fluid Flow, 2016, 62: 510–537.

    Google Scholar 

  16. Carberry J., Sheridan J., Rockwell D. Controlled oscillations of a cylinder: Forces and wake modes [J]. Journal of Fluid Mechanics, 2005, 538: 31–69.

    MATH  Google Scholar 

  17. Chen Y., Fu S., Xu Y. et al. High order force components of a near-wall circular cylinder oscillating in transverse direction in a steady current [J]. Ocean Engineering, 2013, 74: 37–47.

    Google Scholar 

  18. Fan D., Wu B., Bachina D. et al. Vortex-induced vibration of a piggyback pipeline half buried in the seabed [J]. Journal of Sound and Vibration, 2019, 449: 182–195.

    Google Scholar 

  19. Williamson C. H. K., Govardhan R. Vortex-induced vibrations [J]. Annual Review of Fluid Mechanics, 2004, 36: 413–455.

    MathSciNet  MATH  Google Scholar 

  20. Khalak A., Williamson C. H. K. Motions, forces and mode transitions in vortex-induced vibrations at low mass-damping [J]. Journal of Fluids and Structures, 1999, 13(7–8): 813–851.

    Google Scholar 

  21. Williamson C. H. K., Roshko A. Vortex formation in the wake of an oscillating cylinder [J]. Journal of Fluids and Structures, 1988, 2(4): 355–381.

    Google Scholar 

  22. Bearman P. W. Vortex shedding from oscillating bluff bodies [J]. Annual Review of Fluid Mechanics, 1984, 16: 195–222.

    MATH  Google Scholar 

  23. Govardhan R., Williamson C. H. K. Modes of vortex formation and frequency response of a freely vibrating cylinder [J]. Journal of Fluid Mechanics, 2000, 420: 85–130.

    MathSciNet  MATH  Google Scholar 

  24. Jauvtis N., Williamson C. H. K. Vortex-induced vibration of a cylinder with two degrees of freedom [J]. Journal of Fluids and Structures, 2003, 17(7): 1035–1042.

    Google Scholar 

  25. Dahl J. M., Hover F. S., Triantafyllou M. S. Two-degree-of-freedom vortex-induced vibrations using a force assisted apparatus [J]. Journal of Fluids and Structures, 2006, 22(6–7): 807–818.

    Google Scholar 

  26. Dahl J. M., Hover F. S., Triantafyllou M. S. et al. Dual resonance in vortex-induced vibrations at subcritical and supercritical Reynolds numbers [J]. Journal of Fluid Mechanics, 2010, 643: 395–424.

    MATH  Google Scholar 

  27. Jauvtis N., Williamson C. H. K. The effect of two degrees of freedom on vortex-induced vibration at low mass and damping [J]. Journal of Fluid Mechancis, 2004, 509: 23–62.

    MATH  Google Scholar 

  28. Dahl J. M. Vortex-induced vibration of a circular cylinder with combined in-line and cross-flow motion [D]. Doctoral Thesis, Cambridge, MA, USA: Massachusetts Institute of Technology, 2008.

    Google Scholar 

  29. Dahl J. M., Hover F. S., Triantafyllou M. S. et al. Resonant vibrations of bluff bodies cause multivortex shedding and high frequency forces [J]. Physical Review Letters, 2007, 99(14): 144503.

    Google Scholar 

  30. Williamson C. H. K., Jauvtis N. A high-amplitude 2T mode of vortex-induced vibration for a light body in XY motion [J]. European Journal of Mechanics-B/Fluids, 2004, 23(1): 107–114.

    MATH  Google Scholar 

  31. Yu C. X., Wang J. S., Zheng H. X. A two-dimensional forced oscillation vibration simulation using high-resolution TVD-FVM method [J]. Chinese Journal of Hydrodynamics, 2018, 33(5): 593–600(in Chinese).

    Google Scholar 

  32. Gopalkrishnan R. Vortex-induced forces on oscillating bluff cylinders [D]. Doctoral Thesis, Cambridge, MA, USA: Massachusetts Institute of Technology, 1993.

    Google Scholar 

  33. Roveri F. E., Vandiver J. K. Slenderex: Using Shear 7 for assessment of fatigue damage caused by current induced vibrations [C]. Proceedings of the 20th International Conference on Offshore Mechanics and Arctic Engineering, Rio de Janeiro, Brazil, 2001, 3–8.

  34. Triantafyllou M., Triantafyllou G., Tein Y. S. et al. Pragmatic riser VIV analysis [C]. Offshore Technology Conference1999, Houston, Texas, USA, 1999.

  35. Larsen C. M. et al. VIV and Theory Manual Version 3.7 [R]. Trondheim, Norway: MARINTEK, 2009.

    Google Scholar 

  36. Zheng H. N. The influence of high harmonic force on fatigue life and its prediction via coupled inline-crossflow VIV modeling [D]. Doctoral Thesis, Cambridge, MA, USA: Massachusetts Institute of Technology, 2014.

    Google Scholar 

  37. Chaplin J. R., Bearman P. W., Huarte F. J. H. et al. Laboratory measurements of vortex-induced vibrations of a vertical tension riser in a stepped current [J]. Journal of Fluids and Structures, 2005, 21(1): 3–24.

    Google Scholar 

  38. Ji C., Peng Z., Alam M. M. et al. Vortex-induced vibration of a long flexible cylinder in uniform cross-flow [J]. Wind and Structures, 2018, 26(5): 267–277.

    Google Scholar 

  39. Wang C. G., Wang J. S., Tian Z. X. et al. Three dimensional numerical simulation of VIV on marine riser [J]. Chinese Journal of Hydrodynamics, 2011, 6(4): 437–443(in Chinese).

    Google Scholar 

  40. Zheng H. X. Two dimensional and three dimensional numerical research on flow field around marine risers and riser VIV responses [D]. Doctoral Thesis, Shanghai Jiao Tong University, 2017(in Chinese).

  41. Lin K., Wang J. Numerical simulation of vortex-induced vibration of long flexible risers using a SDVM-FEM coupled method [J]. Ocean Engineering, 2019, 172: 468–486.

    Google Scholar 

  42. Huera-Huarte F. J., Bearman P. W. Wake structures and vortex-induced vibrations of a long flexible cylinder Part 1: Dynamic response [J]. Journal of Fluids and Structures, 2009, 25(6): 969–990.

    Google Scholar 

  43. Modarres-Sadeghi Y., Chasparis F., Triantafyllou M. S. et al. Chaotic response is a generic feature of vortex-induced vibrations of flexible risers [J]. Journal of Sound and Vibration, 2011, 330(11): 2565–2579.

    Google Scholar 

  44. Vandiver J. K. Drag coefficients of long flexible cylinders [C]. Offshore Technology Conference 1983, Houston, Texas, USA, 1983.

  45. Sun Y., Li M., Liao H. Nonlinear approach of vortex-induced vibration for line-like structures [J]. Journal of Wind Engineering and Industrial Aerodynamics, 2014, 124: 1–6.

    Google Scholar 

  46. Huarte F. J. H., Bearman P. W., Chaplin J. R. On the force distribution along the axis of a flexible circular cylinder undergoing multi-mode vortex-induced vibrations [J]. Journal of Fluids and Structures, 2006, 22(6–7): 897–903.

    Google Scholar 

  47. Wu J. Hydrodynamic force identification from stochastic vortex induced vibration experiments with slender beams [D]. Doctoral Thesis, Trondheim, Norway: Norwegian University of Science and Technology.

  48. Song L., Fu S., Cao J. et al. An investigation into the hydrodynamics of a flexible riser undergoing vortex-induced vibration [J]. Journal of Fluids and Structures, 2016, 63: 325–350.

    Google Scholar 

  49. Fu S., Wang J., Baarholm R. et al. Features of vortex-induced vibration in oscillatory flow [J]. Journal of Offshore Mechanics and Arctic Engineering, 2014, 136(1): 011801.

    Google Scholar 

  50. Yang H. Z., Li H. J. Sensitivity analysis of fatigue life prediction for deepwater steel lazy wave catenary risers [J]. Science China Technological Sciences, 2011, 54(7): 1881–1887.

    Google Scholar 

  51. Kim Y. H., Vandiver J. K., Holle R. Vortex-induced vibration and drag coefficients of long cables subjected to sheared flows [J]. Journal of Energy Resources Technology, 1986, 108(1): 77–83.

    Google Scholar 

  52. Tognarelli M. A., Slocum S. T., Frank W. R. et al. VIV response of a long flexible cylinder in uniform and linearly sheared currents [C]. Offshore Technology Conference 2004, Houston, Texas, 2004.

  53. Bourguet R., Karniadakis G. E., Triantafyllou M. S. Vortex-induced vibrations of a long flexible cylinder in shear flow [J]. Journal of Fluid Mechanics, 2011, 677: 342–382.

    MathSciNet  MATH  Google Scholar 

  54. Bourguet R., Karniadakis G. E., Triantafyllou M. S. Distributed lock-in drives broadband vortex-induced vibrations of a long flexible cylinder in shear flow [J]. Journal of Fluid Mechanics, 2013, 717: 361–375.

    MATH  Google Scholar 

  55. Bourguet R., Karniadakis G. E., Triantafyllou M. S. Multifrequency vortex- induced vibrations of a long tensioned beam in linear and exponential shear flows [J]. Journal of Fluid Mechanics, 2013, 41: 33–42.

    Google Scholar 

  56. Zhu H., Zhou D., Bao Y. et al. Wake characteristics of stationary catenary risers with different incoming flow directions [J]. Ocean Engineering, 2018, 167: 142–155.

    Google Scholar 

  57. Han Q., Ma Y., Xu W. et al. Dynamic characteristic of an inclined flexible cylinder undergoing vortex-induced vibrations [J]. Journal of Sound and Vibration, 2017, 394: 306–320.

    Google Scholar 

  58. Xu W., Ma Y., Ji C. et al. Laboratory measurements of vortex-induced vibrations of an inclined flexible cylinder at different yaw angles [J]. Ocean Engineering, 2018, 154: 27–42.

    Google Scholar 

  59. Han Q., Ma Y., Xu W. et al. Hydrodynamic characteristics of an inclined slender flexible cylinder subjected to vortex-induced vibration [J]. International Journal of Mechanical Sciences, 2018, 148: 352–365.

    Google Scholar 

  60. Bourgue R., Karniadakis G. E., Triantafyllou M. S. On the validity of the independence principle applied to the vortex-induced vibrations of a flexible cylinder inclined at 60° [J]. Journal of Fluids and Structures, 2015, 53: 58–69.

    Google Scholar 

  61. Zhu H., Lin P., Yao J. An experimental investigation of vortex-induced vibration of a curved flexible pipe in shear flows [J]. Ocean Engineering, 2016, 121: 62–75.

    Google Scholar 

  62. Zhu H. J., Lin P. Z. Numerical simulation of the vortex-induced vibration of a curved flexible riser in shear flow [J]. China Ocean Engineering, 2018, 32(3): 301–311.

    Google Scholar 

  63. Zhu H., Lin P., Gao Y. Vortex-induced vibration and mode transition of a curved flexible free-hanging cylinder in exponential shear flows [J]. Journal of Fluids and Structures, 2019, 84: 56–76.

    Google Scholar 

  64. Zhu H., Gao Y., Zhao H. Coupling vibration response of a curved flexible riser under the combination of internal slug flow and external shear current [J]. Journal of Fluids and Structures, 2019, 91: 102724.

    Google Scholar 

  65. Zdravkovich M. M. The effects of interference between circular cylinders in cross flow [J]. Journal of Fluids and Structures, 1987, 1(2): 239–261.

    Google Scholar 

  66. Zdravkovich M. M. Review of interference-induced oscillations in flow past two parallel circular cylinders in various arrangements [J]. Journal of Wind Engineering and Industrial Aerodynamics, 1988, 28(1–3): 183–199.

    Google Scholar 

  67. Igarashi T. Characteristics of the flow around two circular cylinders arranged in tandem: 1st report [J]. Bulletin of JSME, 1981, 24(188): 323–331.

    Google Scholar 

  68. Wang Z. J., Zhou Y. Vortex interactions in a two side-by-side cylinder near-wake [J]. International Journal of Heat and Fluid Flow, 2005, 26(3): 362–377.

    Google Scholar 

  69. Sumner D., Price S. J., Paidoussis M. P. Flow-pattern identification for two staggered circular cylinders in cross-flow [J]. Journal of Fluid Mechanics, 2000, 411: 263–303.

    MATH  Google Scholar 

  70. Hu J. C., Zhou Y. Flow structure behind two staggered circular cylinders. Part 1. Downstream evolution and classification [J]. Journal of Fluid Mechanics, 2008, 607: 51–80.

    MATH  Google Scholar 

  71. Alam M. M., Meyer J. P. Two interacting cylinders in cross flow [J]. Physical Review E, 2011, 84(5): 056304.

    Google Scholar 

  72. Zhou Y., Alam M. M. Wake of two interacting circular cylinders: A review [J]. International Journal of Heat and Fluid Flow, 2016, 62: 510–537.

    Google Scholar 

  73. Bokaian A., Geoola F. Wake-induced galloping of two interfering circular cylinders [J]. Journal of Fluid Mechanics, 1984, 146: 383–415.

    Google Scholar 

  74. Brika D., Laneville A. The flow interaction between a stationary cylinder and a downstream flexible cylinder [J]. Journal of Fluids and Structures, 1999, 13(5): 579–606.

    Google Scholar 

  75. Hover F. S., Triantafyllou M. S. Galloping response of a cylinder with upstream wake interference [J]. Journal of Fluids and Structures, 2001, 15(3–4): 503–512.

    Google Scholar 

  76. Assi G. R. S., Bearman P. W., Meneghini J. R. On the wake-induced vibration of tandem circular cylinders: the vortex interaction excitation mechanism [J]. Journal of Fluid Mechanics, 2010, 661: 365–401.

    MATH  Google Scholar 

  77. Assi G. R. S., Bearman P. W., Carmo B. S. et al. The role of wake stiffness on the wake-induced vibration of the downstream cylinder of a tandem pair [J]. Journal of Fluid Mechanics, 2013, 718: 210–245.

    MATH  Google Scholar 

  78. Hu Z., Wang J., Sun Y. Flow-induced vibration of one-fixed-one-free tandem arrangement cylinders with different mass-damping ratio using wind tunnel experiment [J]. Journal of Fluids and Structures, 2020, 96(6): 103019.

    Google Scholar 

  79. Assi G. R. S. Wake-induced vibration of tandem and staggered cylinders with two degrees of freedom [J]. Journal of Fluids and Structures, 2014, 50: 340–357.

    Google Scholar 

  80. Zdravkovich M. M. Review of flow interference between two circular cylinders in various arrangements [J]. Journal of Fluids Engineering, 1977, 99(4): 618–33.

    Google Scholar 

  81. Lin K., Fan D., Wang J. Dynamic response and hydrodynamic coefficients of a cylinder oscillating in crossflow with an upstream wake interference [J]. Ocean Engineering, 2020, 209: 107520.

    Google Scholar 

  82. Song H., Huang W., Chang S. Empirical model for wake induced vibrations frequency response of cylinder with low mass ratio [J]. Ocean Engineering, 2020, 195: 106746.

    Google Scholar 

  83. Bokaian A., Geoola F. Proximity-induced galloping of two interfering circular cylinders [J]. Journal of Fluid Mechanics, 1984, 146: 417–449.

    Google Scholar 

  84. Borazjani I., Sotiropoulos F. Vortex-induced vibrations of two cylinders in tandem arrangement in the proximity-wake interference region [J]. Journal of Fluid Mechanics, 2009, 621: 321–364.

    MathSciNet  MATH  Google Scholar 

  85. Kim S., Alam M. M., Sakamoto H. et al. Flow-induced vibrations of two circular cylinders in tandem arrangement. Part 1: Characteristics of vibration [J]. Journal of Wind Engineering and Industrial Aerodynamics, 2009, 97(5–6): 304–311.

    Google Scholar 

  86. Xu W., Ji C., Sun H. et al. Flow-induced vibration of two elastically mounted tandem cylinders in cross-flow at subcritical Reynolds numbers [J]. Ocean Engineering, 2019, 173: 375–387.

    Google Scholar 

  87. Armin M., Khorasanchi M., Day S. Wake interference of two identical oscillating cylinders in tandem: An experimental study [J]. Ocean Engineering, 2018, 166: 311–323.

    Google Scholar 

  88. Prasanth T. K., Mittal S. Flow-induced oscillation of two circular cylinders in tandem arrangement at low Re [J]. Journal of Fluids and Structures, 2009, 25(6): 1029–1048.

    Google Scholar 

  89. Papaioannou G. V., Yue D. K. P., Triantafyllou M. S. et al. On the effect of spacing on the vortex-induced vibrations of two tandem cylinders [J]. Journal of Fluids and Structures, 2008, 24(6): 833–854.

    Google Scholar 

  90. Lam K. M., To A. P. Interference effect of an upstream larger cylinder on the lock-in vibration of a flexibly mounted circular cylinder [J]. Journal of Fluids and Structures, 2003, 17(8): 1059–1078.

    Google Scholar 

  91. Qin B., Alam M. M., Zhou Y. Two tandem cylinders of different diameters in cross-flow: Flow-induced vibration [J]. Journal of Fluid Mechanics, 2017, 829: 621–658.

    MATH  Google Scholar 

  92. Huera-Huarte F. J., Jiménez-González J. I. Effect of diameter ratio on the flow-induced vibrations of two rigidly coupled circular cylinders in tandem [J]. Journal of Fluids and Structures, 2019, 89: 96–107.

    Google Scholar 

  93. Qin B., Alam M. M., Ji C. N. et al. Flow-induced vibrations of two cylinders of different natural frequencies [J]. Ocean Engineering, 2018, 155: 189–200.

    Google Scholar 

  94. Lin K., Wang J., Zheng H. et al. Numerical investigation of flow-induced vibrations of two cylinders in tandem arrangement with full wake interference [J]. Physics of Fluids, 2020, 32(1): 015112.

    Google Scholar 

  95. Bao Y., Huang C., Zhou D. et al. Two-degree-of-freedom flow-induced vibrations on isolated and tandem cylinders with varying natural frequency ratios [J]. Journal of Fluids and Structures, 2012, 35: 50–75.

    Google Scholar 

  96. Zhao M. Flow induced vibration of two rigidly coupled circular cylinders in tandem and side-by-side arrangements at a low Reynolds number of 150 [J]. Physics of Fluids, 2013, 25(12): 123601.

    Google Scholar 

  97. Liu H. Z., Wang F., Jiang G. S. et al. Laboratory measurements of vortex-and wake-induced vibrations of a tandem arrangement of two flexible risers [J]. China Ocean Engineering, 2016, 30(1): 47–56.

    Google Scholar 

  98. Xu W., Ma Y., Cheng A. et al. Experimental investigation on multi-mode flow-induced vibrations of two long flexible cylinders in a tandem arrangement [J]. International Journal of Mechanical Sciences, 2018, 135: 261–278.

    Google Scholar 

  99. King R., Johns D. J. Wake interaction experiments with two flexible circular cylinders in flowing water [J]. Journal of Sound and Vibration, 1976, 45(2): 259–283.

    Google Scholar 

  100. Huera-Huarte F. J., Bangash Z. A., Gonzalez L. M. Multi-mode vortex and wake-induced vibrations of a flexible cylinder in tandem arrangement [J]. Journal of Fluids and Structures, 2016, 66: 571–588.

    Google Scholar 

  101. Huera-Huarte F. J., Bearman P. W. Vortex and wake-induced vibrations of a tandem arrangement of two flexible circular cylinders with near wake interference [J]. Journal of Fluids and Structures, 2011, 27(2): 193–211.

    Google Scholar 

  102. Huera-Huarte F. J., Gharib M. Vortex-and wake-induced vibrations of a tandem arrangement of two flexible circular cylinders with far wake interference [J]. Journal of Fluids and Structures, 2011, 27(5–6): 824–828.

    Google Scholar 

  103. Huera-Huarte F. J., Gharib M. Flow-induced vibrations of a side-by-side arrangement of two flexible circular cylinders [J]. Journal of Fluids and Structures, 2011, 27(3): 354–366.

    Google Scholar 

  104. Munir A., Zhao M., Wu H. et al. Effects of gap ratio on flow-induced vibration of two rigidly coupled side-by-side cylinders [J]. Journal of Fluids and Structures, 2019, 91: 102726.

    Google Scholar 

  105. Kim S., Alam M. M. Characteristics and suppression of flow-induced vibrations of two side-by-side circular cylinders [J]. Journal of Fluids and Structures, 2015, 54: 629–642.

    Google Scholar 

  106. Chen W., Ji C., Xu D. et al. Wake patterns of freely vibrating side-by-side circular cylinders in laminar flows [J]. Journal of Fluids and Structures, 2019, 89: 82–95.

    Google Scholar 

  107. Xu W., Cheng A., Ma Y. et al. Multi-mode flow-induced vibrations of two side-by-side slender flexible cylinders in a uniform flow [J]. Marine Structures, 2018, 57: 219–236.

    Google Scholar 

  108. Sanaati B., Kato N. A study on the proximity interference and synchronization between two side-by-side flexible cylinders [J]. Ocean engineering, 2014, 85: 65–79.

    Google Scholar 

  109. Bao Y., Zhou D., Tu J. Flow characteristics of two inphase oscillating cylinders in side-by-side arrangement [J]. Computers and Fluids, 2013, 71: 124–145.

    MathSciNet  MATH  Google Scholar 

  110. Zhou Y., Wang Z. J., So R. M. C. et al. Free vibrations of two side-by-side cylinders in a cross-flow [J]. Journal of Fluid Mechanics, 2001, 443: 197–229.

    MATH  Google Scholar 

  111. Zhao M., Cheng L. Numerical simulation of vortex-induced vibration of four circular cylinders in a square configuration [J]. Journal of Fluids and Structures, 2012, 31: 125–140.

    Google Scholar 

  112. Han Z., Zhou D., He T. et al. Flow-induced vibrations of four circular cylinders with square arrangement at low Reynolds numbers [J]. Ocean Engineering, 2015, 96: 21–33.

    Google Scholar 

  113. Gao Y., Yang K., Zhang B. et al. Numerical investigation on vortex-induced vibrations of four circular cylinders in a square configuration [J]. Ocean Engineering, 2019, 175: 223–240.

    Google Scholar 

  114. Chen W., Ji C., Alam M. M. et al. Numerical simulations of flow past three circular cylinders in equilateral-triangular arrangements [J]. Journal of Fluid Mechanics, 2020, 891: A14.

    MathSciNet  MATH  Google Scholar 

  115. Korkischko I., Meneghini J. R. Experimental investigation of flow-induced vibration on isolated and tandem circular cylinders fitted with strakes [J]. Journal of Fluids and Structures, 2010, 26(4): 611–625.

    Google Scholar 

  116. Xu W., Yu Y., Wang E. et al. Flow-induced vibration (FIV) suppression of two tandem long flexible cylinders attached with helical strakes [J]. Ocean Engineering, 2018, 169: 49–69.

    Google Scholar 

  117. Assi G. R. S., Bearman P. W., Kitney N. et al. Suppression of wake-induced vibration of tandem cylinders with free-to-rotate control plates [J]. Journal of Fluids and Structures, 2010, 26(7–8): 1045–1057.

    Google Scholar 

  118. Kim S., Alam M. M., Sakamoto H. et al. Flow-induced vibration of two circular cylinders in tandem arrangement. Part 2: Suppression of vibrations [J]. Journal of Wind Engineering and Industrial Aerodynamics, 2009, 97(5–6): 312–319.

    Google Scholar 

  119. Zdravkovich M. M. Review and classification of various aerodynamic and hydrodynamic means for suppressing vortex shedding [J]. Journal of Wind Engineering and Industrial Aerodynamics, 1980, 7(2): 145–189.

    Google Scholar 

  120. Shukla S., Scruton C., Walshe D. E. J. A Means for avoiding wind-excited oscillations of structures with circular or nearly circular cross-section [R]. London, UK: National Physics Laboratory, 1957.

    Google Scholar 

  121. Gao Y., Fu S., Ma N. et al. Experimental investigation of the response performance of VIV on a flexible riser with helical strakes [J]. Ships and Offshore Structures, 2016, 11(2): 113–128.

    Google Scholar 

  122. Sui J., Wang J., Liang S. et al. VIV suppression for a large mass-damping cylinder attached with helical strakes [J]. Journal of Fluids and Structures, 2016, 62: 125–146.

    Google Scholar 

  123. Baarholm G. S., Larsen C. M., Lie H. Reduction of VIV using suppression devices-An empirical approach [J]. Marine Structures, 2005, 18(7–8): 489–510.

    Google Scholar 

  124. Baarholm G. S., Larsen C. M., Lie H. Reduction of VIV using suppression devices-An empirical approach [J]. Marine Structures, 2005, 18(7–8): 489–510.

    Google Scholar 

  125. Quen L. K., Abu A., Kato N. et al. Investigation on the effectiveness of helical strakes in suppressing VIV of flexible riser [J]. Applied Ocean Research, 2014, 44: 82–91.

    Google Scholar 

  126. Trim A. D., Braaten H., Lie H. et al. Experimental investigation of vortex-induced vibration of long marine risers [J]. Journal of Fluids and Structures, 2005, 21(3): 335–361.

    Google Scholar 

  127. Korkischko I., Meneghini J. R., Gioria R. S. An experimental investigation of the flow around staked cylinders [C]. OMAE 2007 26th International Conference on Offshore Mechanics and Arctic Engineering, San Diego, California, USA, 2007, 641–647.

  128. Xu W., Luan Y., Liu L. et al. Influences of the helical strake cross-section shape on vortex-induced vibrations suppression for a long flexible cylinder [J]. China Ocean Engineering, 2017, 31(4): 438–446.

    Google Scholar 

  129. Frank W. R., Tognarelli M. A., Slocum S. T. et al. Flow-induced vibration of a long flexible straked cylinder in uniform and linearly sheared currents [C]. Offshore Technology Conference 2004, Houston, Texas, USA, 2004.

  130. Triantafyllou M. S., Bourguet R., Dahl J. et al. Vortex induced vibration (Springer Handbook of Ocean Engineering) [M]. New York, USA: Springer, 2016, 819–850.

    Google Scholar 

  131. Allen D. W., Henning D. L., Lee L. High Reynolds number flow tests of flexible cylinders with helical strakes [C]. 25th International Conference on Offshore Mechanics and Arctic Engineering, Hamburg, Germany, 2006, 359–367.

  132. Zhou T., Razali S. F. M., Hao Z. et al. On the study of vortex-induced vibration of a cylinder with helical strakes [J]. Journal of Fluids and Structures, 2011, 27: 903–917.

    Google Scholar 

  133. Bearman P., Brankovic M. Experimental studies of passive control of vortex-induced vibration [J]. European Journal of Mechanics B/Fluids, 2004, 23(1): 9–15.

    MATH  Google Scholar 

  134. Korkischko I., Meneghini J. R. Volumetric reconstruction of the mean flow around circular cylinders fitted with strakes [J]. Experiments in Fluids, 2011, 51(4): 1109–1122.

    Google Scholar 

  135. Carmo B. S., Gioria R. S., Korkischko I., et al. Two- and three-dimensional simulations of the flow around a cylinder fitted with strake [C]. ASME 2012 31st International Conference on Ocean, Offshore and Arctic Engineering, Riode Janeiro, Brazil, 2012, 781–790.

  136. Huang S., Sworn A. Hydrodynamic coefficients of two fixed circular cylinders fitted with helical strakes at various staggered and tandem arrangements [J]. Applied Ocean Research, 2013, 43: 21–26.

    Google Scholar 

  137. Pinto A., Broglia R., Ciappi E. et al. Vortex suppression efficiency of discontinuous helicoidal fins [C]. ASME 2007 26th International Conference on Offshore Mechanics and Arctic Engineering, SanDiego, California, USA, 2007, 813–820.

  138. Cowdrey C. F., Lawes J. A. Drag measurements at high Reynolds numbers of a circular cylinder fitted with three helical strakes [M]. London, UK: National Physical Laboratory, 1959, AeroRep 384.

    Google Scholar 

  139. Fang S., Niedzwecki J. M., Fu S. et al. VIV response of a flexible cylinder with varied coverage by buoyancy elements and helical strakes [J]. Marine Structures, 2014, 39: 70–89.

    Google Scholar 

  140. Allen D. W., Henning D. L. Comparisons of various fairing geometries for vortex suppression at high Reynolds numbers [C]. Offshore Technology Conference 2007, Houston, Texas, USA, 2007.

  141. Allen D. W., Henning D. L. Ultrashort fairings for suppressing vortex-induced-vibration [P]. U.S. Patent No. 6223672, 2001.

  142. Allen D. W., Henning D. L., Lee L. Drilling riser fairing tests at prototype Reynolds numbers [C]. ASME 2007 26th International Conference on Offshore Mechanics and Arctic Engineering, San Diego, California, USA, 2007, 793–802.

  143. Ramamurti V., Rajarajan S., Rao G. V. Effect of cylinder height of a typical payload fairing on the displacement response due to separation force [J]. Communications in Numerical Methods in Engineering, 2000, 16(1): 21–35.

    MATH  Google Scholar 

  144. Coakley D. B., Knutson R. K. Inflatable vibration reducing fairing [P]. U.S. Patent No. 6517289, 2003.

  145. Wang J., Zheng H., Tian Z. Numerical simulation with a TVD-FVM method for circular cylinder wake control by a fairing [J]. Journal of Fluid and Structures, 2015, 57: 15–31.

    Google Scholar 

  146. Wang J. S., Gu F. A kind of VIV suppression device with imitation rotatable fish-tail fairing for marine riser [P]. Chinese Patent of No. Zl2010619503.9, 2013.1.9(in Chinese).

  147. Liang S. P., Wang J. S. Wind tunnel experimental study on a VIV suppression device with imitation rotatable fish-tail fairing [C]. 18th National Conference of Chinese Ocean Engineering, Zhoushan, China, 2017, 237–239(in Chinese).

  148. Assi G. R., Bearman P. W., Tognarelli M. A. et al. The effect of rotational friction on the stability of short-tailed fairings suppressing vortex-induced vibrations [C]. ASME 2011 30th International Conference on Ocean, Offshore and Arctic Engineering, Rotterdam, The Netherlands, 2011.

  149. Gu F., Wang J. S., Zhao Z. M. Pressure distribution and aerodynamics of circular cylinder with freely rotating fairings [J]. Journal of Experimental Mechanics, 2012, 27(3): 368–376 (in Chinese).

    Google Scholar 

  150. Roshko A. On the development of turbulent wakes from vortex streets [R]. NACA Technical Note, 1954, 1191.

  151. Apelt C. J., West G. S. The effects of wake splitter plates on bluff-body flow in the range 104< R< 5 × 104. Part 2 [J]. Journal of Fluid Mechanics, 1975, 71: 145–160.

    Google Scholar 

  152. Akilli H., Sahin B., Tumen N. F. Suppression of vortex shedding of circular cylinder in shallow water by a splitter plate [J]. Flow Measurement and Instrumentation, 2005, 16(4): 211–219.

    Google Scholar 

  153. Gu F., Wang J. S., Qiao X. Q. et al. Pressure distribution, fluctuating forces and vortex shedding behavior of circular cylinder with rotatable splitter plates [J]. Journal of Fluids and Structures, 2012, 28: 263–278.

    Google Scholar 

  154. Assi G. R., Bearman P. W., Kitney N. Low drag solutions for suppressing vortex-induced vibration of circular cylinders [J]. Journal of Fluids and Structures, 2009, 25(4): 666–675.

    Google Scholar 

  155. Xu B. H., Wang J. S., Liang S. P. Wind tunnel experiment of VIV control on circular cylinder with flexible splitter plate [J]. Chinese Journal of Hydrodynamics, 2017, 32(4): 470–476(in Chinese).

    Google Scholar 

  156. Huera-Huarte F. J. On splitter plate coverage for suppression of vortex-induced vibrations of flexible cylinders [J]. Applied Ocean Research, 2014, 48: 244–249.

    Google Scholar 

  157. Cimbala J. M., Garg S. Flow in the wake of a freely rotatable cylinder with splitter plate [J]. AIAA Journal, 1991, 29(6): 1001–1003.

    Google Scholar 

  158. Shukla S., Govardhan R. N., Arakeri J. H. Flow over a cylinder with a hinged-splitter plate [J]. Journal of Fluids and Structures, 2009, 25(4): 713–720.

    Google Scholar 

  159. Xu F., Chen W. N., Xiao Y. Q. et al. Numerical study on the suppression of the vortex-induced vibration of an elastically mounted cylinder by a traveling wave wall [J]. Journal of Fluids and Structures, 2014, 44: 145–165.

    Google Scholar 

  160. Wu W., Wang J., Jiang S. et al. Flow and flow control modeling for a drilling riser system with auxiliary lines [J]. Ocean Engineering, 2016, 123: 204–222.

    Google Scholar 

  161. Kong T. T., Wang J. S., Wu W. B. et al. Two-dimensional numerical simulation of VIV for an actual drilling riser system considering auxiliary lines [J]. Journal of Vibration and Shock(in Chinese, accepted).

  162. Zhao Z. M., Wang J. S., Gu F. The flow control of vortex-induced vibration for drilling riser by affiliated pipelines [J]. Chinese Journal of Hydrodynamics, 2012, 27(4): 401–408(in Chinese).

    Google Scholar 

  163. Huang X. L., Wang J. S. Numerical simulation of flow control of a riser attached with axial-rod shrouds using discrete vortex method [J]. Journal of Shanghai Jiao Tong University, 2014, 48(12): 1760–1765(in Chinese)

    MathSciNet  Google Scholar 

  164. Wu H., Sun D., Lu L. et al. Experimental investigation on the suppression of vortex-induced vibration of long flexible riser by multiple control rods [J]. Journal of Fluids and Structures, 2012, 30: 115–132.

    Google Scholar 

  165. Wu W., Wang J. Numerical simulation of VIV for a circular cylinder with a downstream control rod at low Reynolds number [J]. European Journal of Mechanics/B Fluids, 2018, 68: 153–166.

    MathSciNet  MATH  Google Scholar 

  166. Wu W. B., Wang J. S. Fluid flow past a circular cylinder with tandem and staggered rod at low Reynolds number [J]. Journal of Ocean University of China, 2018, 17(5): 1053–1065.

    Google Scholar 

  167. Zhu H., Yao J. Numerical evaluation of passive control of VIV by small control rods [J]. Applied Ocean Research, 2015, 51: 93–116.

    Google Scholar 

  168. Zhu H., Yao J., Ma Y. et al. Simultaneous CFD evaluation of VIV suppression using smaller control cylinders [J]. Journal of Fluids and Structures, 2015, 57: 66–80.

    Google Scholar 

  169. Zhu H., Gao Y. Vortex-induced vibration suppression of a main circular cylinder with two rotating control rods in its near wake: Effect of the rotation direction [J]. Journal of Fluids and Structures, 2017, 74: 469–491.

    Google Scholar 

  170. Assi G. R., Bearman P. W., Tognarelli M. A. On the stability of a free-to-rotate short-tail fairing and a splitter plate as suppressors of vortex-induced vibration [J]. Ocean Engineering, 2014, 92: 234–244.

    Google Scholar 

  171. Zheng H., Wang J. Numerical study of galloping oscillation of a two-dimensional circular cylinder attached with fixed fairing device [J]. Ocean Engineering, 2017, 130: 274–283.

    Google Scholar 

  172. Zheng H., Wang J. Galloping oscillation of a circular cylinder firmly combined with different shaped fairing devices [J]. Journal of Fluids and Structures, 2018, 77: 182–195.

    Google Scholar 

  173. Liang S., Wang J., Hu Z. VIV and galloping response of a circular cylinder with rigid detached splitter [J]. Ocean Engineering, 2018, 174: 176–186.

    Google Scholar 

  174. Liang S., Wang J., Xu B. et al. Vortex-induced vibration and structure instability for a circular cylinder with flexible splitter plates [J]. Journal of Wind Engineering and Industrial Aerodynamics, 2018, 174: 200–209.

    Google Scholar 

  175. Edwards A. T., Madeyski A. Progress report on the investigation of galloping [J]. Transaction of the American Institute of Electrical Engineers, 1956, 75: 666–683.

    Google Scholar 

  176. Richardson A. S., Martucelli J. R., Price W. S. Research study on galloping of electrical power transmission lines [C]. Proceedings of the first International Conference on Wind Effects on Buildings and Structures, Teddington, UK, 1965, 612–688.

  177. Parkinson G., Wawzonek M. Some considerations of combined effects of galloping and vortex resonance [J]. Journal of Wind Engineering and Industrial Aerodynamics, 1981, 8(1–2): 135–143.

    Google Scholar 

  178. Nakamura Y., Matsukawa T. Vortex excitation of rectangular cylinders with a long side normal to flow [J]. Journal of Fluid Mechanics, 1987, 180: 171–191.

    Google Scholar 

  179. Den Hartog J. P. Mechanical vibrations [M]. 4th Edition, New York, USA: McGraw-Hill, 1956.

    MATH  Google Scholar 

  180. Parkinson, G. V., Brooks, N. P. H. On the aeroelastic instability of bluff cylinders [J]. Journal of Applied Mechanics, 1961, 28(2): 252–258.

    MATH  Google Scholar 

  181. Mannini C., Marra A., Bartoli G. VIV-galloping instability of rectangular cylinders: review and new experiments [J]. Journal of Wind Engineering Industrial Aerodynamics, 2014, 132: 109–124.

    Google Scholar 

  182. Stappenbelt B. Splitter-plate wake stabilization and low aspect ratio cylinder flow induced vibration mitigation [J]. International Journal of Offshore and Polar Engineering, 2010, 20(3): 190–195.

    Google Scholar 

  183. Zhang Y. N., Qiu X., Chen F. P. et al. A selected review of vortex identification methods with applications [J]. Journal of Hydrodynamics, 2018, 30(5): 767–779.

    Google Scholar 

  184. Govardhan R. N., Williamson C. H. K. Defining the modified Griffin plot in vortex-induced vibration: revealing the effect of Reynolds number using controlled damping [J]. Journal of Fluid Mechanics, 2006, 561: 147–180.

    MATH  Google Scholar 

  185. Brunton S. L., Steven L., Noack B. R. et al. Machine learning for fluid mechanics [J]. Annual Review of Fluid Mechanics, 2020, 52: 477–508.

    MATH  Google Scholar 

  186. Raissi M., Wang Z., Triantafyllou M. S. et al. Deep learning of vortex-induced vibrations [J]. Journal of Fluid Mechanics, 2019, 861: 119–137.

    MathSciNet  MATH  Google Scholar 

  187. Fan D., Jodin G., Consi T. R. et al. A robotic intelligent towing tank for learning complex fluid-structure dynamics [J]. Science Robotics, 2019, 4(36): easy5063.

    Google Scholar 

  188. Tao F., Cheng J., Qi Q. et al. Digital twin-driven product design, manufacturing and service with big data [J]. International Journal of Advanced Manufacturing Technology, 2018, 94(9–12): 3563–3576.

    Google Scholar 

  189. Allen D. W., Henning D. L. Comparisons of various fairing geometries for vortex suppression at high Reynolds numbers [C]. Offshore Technology Conference 2008, Houston, Texas, USA, 2008.

  190. Pontaza J. P., Menon R. J. Numerical simulations of flow past in aspirated fairing with three degree-of-freedom motion [C]. ASME 2008 27th International Conference on Offshore Mechanics and Arctic Engineering, Estoril, Portugal, 2008, 799–807.

  191. Taggart S., Tognarell M. A. Offshore drilling riser VIV suppression devices-what’s available to operators? [C]. ASME 2008 27th International Conference on Offshore Mechanics and Arctic Engineering, Estoril, Portugal, 2008, 527–537.

  192. Law Y. Z., Jaiman R. K. Wake stabilization mechanism of low-drag suppression devices for vortex-induced vibration [J]. Journal of Fluids and Structures, 2017, 70: 428–449.

    Google Scholar 

  193. Yu Y., Xie F., Yan H. et al. Suppression of vortex-induced vibrations by fairings: A numerical study [J]. Journal of Fluids and Structures, 2015, 54: 679–700.

    Google Scholar 

  194. Xie F., Yu Y., Constantinide Y. et al. U-shaped fairings suppress vortex-induced vibrations for cylinders in cross-flow [J]. Journal of Fluid Mechanics, 2015, 782: 300–332.

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge Prof. Lian-di Zhou for his good suggestions to improve the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jia-song Wang.

Additional information

Project supported by the National Natural Science Foundation of China (Grant No. 11872250), the National Basic Research and Development Program of China (973 Program, Grant No. 2015CB251203) and the National Major Science and Technology Specific Project of China (Grant No. 2016ZX05028-001).

Biography: Jia-song Wang (1967-), Male, Ph. D., Professor

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Js., Fan, D. & Lin, K. A review on flow-induced vibration of offshore circular cylinders. J Hydrodyn 32, 415–440 (2020). https://doi.org/10.1007/s42241-020-0032-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42241-020-0032-2

Key words

Navigation