Skip to main content
Log in

Numerical modeling of sediment transport based on unsteady and steady flows by incompressible smoothed particle hydrodynamics method

  • Published:
Journal of Hydrodynamics Aims and scope Submit manuscript

Abstract

The purpose of the present paper is to introduce a simple two-part multi-phase model for the sediment transport problems based on the incompressible smoothed particle hydrodynamics (ISPH) method. The proposed model simulates the movement of sediment particles in two parts. The sediment particles are classified into three categories, including the motionless particles, moving particles behave like a rigid body, and moving particles with a pseudo fluid behavior. The criterion for the classification of sediment particles is the Bingham rheological model. Verification of the present model is performed by simulation of the dam break waves on movable beds with different conditions and the bed scouring under steady flow condition. Comparison of the present model results, the experimental data and available numerical results show that it has good ability to simulate flow pattern and sediment transport.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. van Rijn L. C. Sediment transport, Part I: bed load transport [J]. Journal of Hydraulic Engineering, ASCE, 1984, 110 (10): 1431–1456.

    Article  Google Scholar 

  2. Wu W., Rodi W., Wenka T. 3D numerical modeling of flow and sediment transport in open channels [J]. Journal of Hydraulic Engineering, ASCE, 2000, 126(1): 4–15.

    Article  Google Scholar 

  3. Wu W. Depth-averaged two-dimensional numerical modeling of unsteady flow and nonuniform sediment transport in open channels [J]. Journal of Hydraulic Engineering, ASCE, 2004, 130(10): 1013–1024.

    Article  MathSciNet  Google Scholar 

  4. Liang D., Cheng L., LI F. Numerical modeling of scour below a pipeline in currents. Part II: Scour simulation [J]. Coastal Engineering, 2005, 52(1): 43–62.

    Article  Google Scholar 

  5. Swartenbroekx C., Zech Y., Soares-Frazão S. Two-dimensional two-layer shallow water model for dam break flows with significant bed load transport [J]. International Journal for Numerical Methods in Fluids, 2013, 73(5): 477–508.

    Article  MathSciNet  Google Scholar 

  6. Lucy L. B. A numerical approach to the testing of the fission hypothesis [J]. Astronomical Journal, 1977, 82(12): 1013–1024.

    Article  Google Scholar 

  7. Monaghan J. J. Smoothed particle hydrodynamics [J]. Annual Review of Astronomy and Astrophysics, 1992, 30: 543–574.

    Article  Google Scholar 

  8. Monaghan J. J. Simulating free surface flows with SPH [J]. Journal of Computational Physics, 1994, 110: 399–406.

    Article  MATH  Google Scholar 

  9. Ataie-Ashtiani B., Shobeiry G. Numerical simulation of landslide impulsive waves by incompressible smoothed particle hydrodynamics [J]. International Journal for Numerical Methods in Fluids, 2008, 56(2): 209–232.

    Article  MathSciNet  MATH  Google Scholar 

  10. Le Touzé D., Marsh A., Oger G. et al. SPH simulation of green water and ship flooding scenarios [J]. Journal of Hydrodynamics, 2010, 22(5Suppl.): 231–236.

    Article  Google Scholar 

  11. Rogers B. D., Dalrymple R., Stansby P. K. Simulation of caisson breakwater movement using 2-D SPH [J]. Journal of Hydraulic Research, 2010, 48(Suppl. 1), 135–141.

    Article  Google Scholar 

  12. Shao S. Incompressible smoothed particle hydrodynamics simulation of multifluid flows [J]. International Journal for Numerical Methods in Fluids, 2011, 69(11): 1715–1735.

    Article  MathSciNet  MATH  Google Scholar 

  13. Memarzadeh R., Hejazi K. ISPH numerical modeling of nonlinear wave run-up on steep slopes [J]. Journal of the Persian Gulf (Marine Science), 2012, 3(10): 17–26.

    Google Scholar 

  14. Ulrich C., Leonardi M., Rung T. Multi-physics SPH simulation of complex marine-engineering hydrodynamic problems [J]. Ocean Engineering, 2013, 64: 109–121.

    Article  Google Scholar 

  15. Wu J. S., Zhang H., Yang R. et al. Numerical modeling of dam-break flood through intricate city layouts including underground spaces using GPU-based SPH method [J]. Journal of Hydrodynamics, 2013, 25(6): 818–828.

    Article  Google Scholar 

  16. Farahani R., Dalrymple R., Hérault A. et al. Threedimensional SPH modeling of a bar/rip channel system [J]. Journal of Waterway Port Coastal and Ocean Engineering, 2014, 140(1): 82–99.

    Article  Google Scholar 

  17. Manenti S., Sibilla S., Gallati M. et al. SPH simulation of sediment flushing induced by a rapid water flow [J]. Journal of Hydraulic Engineering, ASCE, 2012, 138(3): 272–284.

    Article  Google Scholar 

  18. Sibilla S. SPH simulation of local processes [J]. ERCOFTAC Bulletin, 2008, 76: 41–44.

    Google Scholar 

  19. Ran Q., Tong J., Shao S. et al. Incompressible SPH scour model for movable bed dam break flows [J]. Advances in Water Resources, 2015, 82: 39–50.

    Article  Google Scholar 

  20. Spinewine B., Zech Y. Small-scale laboratory dam-break waves on movable beds [J]. Journal of Hydraulic Research, 2007, 45(Suppl. 1): 73–86.

    Article  Google Scholar 

  21. Mohamed M. S., Mccorquodale J. A. Short-term local scour [J]. Journal of Hydraulic Research, 1992, 30(5): 685–699.

    Article  Google Scholar 

  22. Lo E. Y. M., Shao S. Simulation of near-shore solitary wave mechanics by an incompressible SPH method [J]. Applied Ocean Research, 2002, 24(5): 275–286.

    Article  Google Scholar 

  23. Smagorinsky J. General circulation experiments with the primitive equations. I. The basic experiment [J]. Monthly Weather Review, 1963, 91: 99–164.

    Article  Google Scholar 

  24. Colagrossi A., Landrini M. Numerical simulation of interfacial flows by smoothed particle hydrodynamics [J]. Journal of Computational Physics, 2003, 191(2): 448–475.

    Article  MATH  Google Scholar 

  25. Chen C. L., Ling C. H. Granular-flow rheology: Role of shear-rate number in transition regime [J]. Journal of Engineering Mechanics, 1996, 122(5): 469–480.

    Article  Google Scholar 

  26. Hosseini S. M., Manzari M. T., Hannani S. K. A fully explicit three-step SPH algorithm for simulation of non-Newtonian fluid flow [J]. International Journal of Numerical Methods for Heat and Fluid Flow, 2007, 17(7): 715–735.

    Article  MathSciNet  MATH  Google Scholar 

  27. Kanatani K. A plasticity theory for the kinematics of ideal granular materials [J]. International Journal of Engineering Science, 1982, 20(1): 1–13.

    Article  MathSciNet  MATH  Google Scholar 

  28. Shao S., Lo E. Incompressible SPH method for simulating Newtonian and non Newtonian flows with a free surface [J]. Advances in Water Resources, 2003, 26(7): 787–800.

    Article  Google Scholar 

  29. Shakibaeinia A., Jin Y. C. A weakly compressible MPS method for modeling of open-boundary free-surface flow [J]. International Journal for Numerical Methods in Fluids, 2010, 63(10): 1208–1232.

    MathSciNet  MATH  Google Scholar 

  30. Shakibaeinia A., Jin Y. C. A mesh-free particle model for simulation of mobile-bed dam break [J]. Advances in Water Resources, 2011, 34(6): 794–807.

    Article  Google Scholar 

  31. Zech Y., Soares-frazão S., Spinewine B. Dam-break induced sediment movement: Experimental approaches and numerical modelling [J]. Journal of Hydraulic Research, 2008, 46(2): 176–190.

    Article  Google Scholar 

  32. Spinewine B., Carpart H. Intense bed-load due to a sudden dam-break [J]. Journal of Fluid Mechanics, 2013, 731: 579–614.

    Article  MATH  Google Scholar 

  33. Mohamed M. S. Erosion prediction and control in irrigation canals [D]. Doctoral Thesis, Windsor, Canada: University of Windsor, 1990.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rasoul Memarzadeh.

Additional information

Biography: Rasoul Memarzadeh (1987-), Male, Ph. D., Assistant Professor

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Memarzadeh, R., Barani, G. & Ghaeini-Hessaroeyeh, M. Numerical modeling of sediment transport based on unsteady and steady flows by incompressible smoothed particle hydrodynamics method. J Hydrodyn 30, 928–942 (2018). https://doi.org/10.1007/s42241-018-0111-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42241-018-0111-9

Key words

Navigation