Advertisement

Journal of Hydrodynamics

, Volume 30, Issue 2, pp 218–234 | Cite as

Vorticity vector-potential method based on time-dependent curvilinear coordinates for two-dimensional rotating flows in closed configurations

  • Yuan Fu (傅 渊)
  • Da-peng Zhang (张大鹏)
  • Xi-lin Xie (谢锡麟)
Article
  • 78 Downloads

Abstract

In this study, a vorticity vector-potential method for two-dimensional viscous incompressible rotating driven flows is developed in the time-dependent curvilinear coordinates. The method is applicable in both inertial and non-inertial frames of reference with the advantage of a fixed and regular calculation domain. The numerical method is applied to triangle and curved triangle configurations in constant and varying rotational angular velocity cases respectively. The evolutions of flow field are studied. The geostrophic effect, unsteady effect and curvature effect on the evolutions are discussed.

Key words

Rotating driven flow time-dependent curvilinear coordinate geostrophic effect unsteady effect curvature effect 

References

  1. [1]
    Hardenberg J., McWilliams J. C., Provenzale A. et al. Vortex merging in quasi-geostrophic [J]. Journal of Fluid Mechanics, 2000, 412: 331–353.MathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    Plumley M., Julien K., Marti P. et al. The effects of Ekman pumping on quasi-geostrophic Rayleigh-Benard convection [J]. Journal of Fluid Mechanics, 2016, 803: 51–71.MathSciNetCrossRefGoogle Scholar
  3. [3]
    Greenspan H. P. The theory of rotating fluids [M]. Cambridge, UK: Cambridge University Press}, 1968.zbMATHGoogle Scholar
  4. [4]
    You D., Wang M., Moin P. et al. Large-eddy simulation analysis of mechanisms for viscous losses in a turboma-chinery tip-clearance flow [J]. Journal of Fluid Mechanics, 2007, 586: 177–204.CrossRefzbMATHGoogle Scholar
  5. [5]
    Li L. J., Zhou S. J. Numerical simulation of hydrodynamic performance of blade position-variable hydraulic turbine [J]. Journal of Hydrodynamics, 2017, 29(2): 314–321.CrossRefGoogle Scholar
  6. [6]
    Zhou P. J., Wang F. J., Yang Z. J. et al. Investigation of rotating stall for a centrifugal pump impeller using various SGS models [J]. Journal of Hydrodynamics, 2017, 29(2): 235–242.CrossRefGoogle Scholar
  7. [7]
    Wells M. G., Clercx H. J. H., Van Heijst G. J. F. Vortices in oscillating spin-up [J]. Journal of Fluid Mechanics, 2007, 573: 339–369.CrossRefzbMATHGoogle Scholar
  8. [8]
    Foster M. R., Munro R. J. The linear spin-up of a stratified, rotating fluid in a square cylinder [J]. Journal of Fluid Mechanics, 2012, 712: 7–40.MathSciNetCrossRefzbMATHGoogle Scholar
  9. [9]
    Flor J. B., Ungarish M., Bush J. W. M. Spin-up from rest in a stratified fluid: boundary flows [J]. Journal of Fluid Mechanics, 2002, 472: 51–82.MathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    Suh Y. K., Choi Y. H. Study on the spin-up of fluid in a rectangular container using Ekman pumping models [J]. Journal of Fluid Mechanics, 2002, 458: 103–132.MathSciNetCrossRefzbMATHGoogle Scholar
  11. [11]
    Xie X. L. Modern Tensor analysis with applications in continuum mechanics [M]. Shanghai, China: Fudan University Press, 2014(in Chinese).Google Scholar
  12. [12]
    Xie X. L. On two kinds of differential operators on general smooth surfaces [J]. Journal of Fudan University (Natural Science), 2013, 52(5): 688–711.MathSciNetzbMATHGoogle Scholar
  13. [13]
    Xie X. L., Chen Y., Shi Q. Some studies on mechanics of continuous mediums viewed as differential manifolds [J]. Science China Physics, Mechanics and Astronomy, 2013, 56(2): 432–456.CrossRefGoogle Scholar
  14. [14]
    E W., Liu J. Finite difference methods for 3D viscous in-compressible flows in the vorticity vector potential formu-lation on non-staggered grids [J]. Journal of Computa-tional Physics, 1997, 138(1): 57–82.CrossRefGoogle Scholar
  15. [15]
    Meitz H. L., Fasel H. F. A compact-difference scheme for the Navier-Stokes equations in vorticity-velocity formula-tion [J]. Journal of Computational Physics, 2000, 157(1): 371–403.MathSciNetCrossRefzbMATHGoogle Scholar
  16. [16]
    Olshanskii M. A., Rebholz L. G. Velocity-vorticity-heicity formulation and a solver for the Navier-Stokes equations [J]. Journal of Computational Physics, 2010, 229(11): 4291–4303.MathSciNetCrossRefzbMATHGoogle Scholar
  17. [17]
    Wu J. Z., Ma H. Y., Zhou M. D. Vorticity and vortex dynamics [M]. Berlin, Heidelberg, Germany: Springer, 2005.Google Scholar
  18. [18]
    Luo H., Bewley T. R. On the contravariant form of the Navier-Stokes equations in time-dependent curvilinear coordinates systems [J]. Journal of Computational Physics, 2004, 199(1): 355–375.MathSciNetCrossRefzbMATHGoogle Scholar
  19. [19]
    Dubrovin B. A., Fomenko A. T., Novikov S. P. Modern geometry-methods and applications [M]. Berlin, Heidelberg, Germany: Springr-Verlag, 2011.Google Scholar
  20. [20]
    Chen Y., Xie X. Vorticity vector-potential method for 3D viscous incompressible flows in time-dependent curvili-near coordinates [J]. Journal of Computational Physics, 2016, 312: 50–81.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© China Ship Scientific Research Center 2018

Authors and Affiliations

  • Yuan Fu (傅 渊)
    • 1
  • Da-peng Zhang (张大鹏)
    • 1
  • Xi-lin Xie (谢锡麟)
    • 1
  1. 1.Department of Aeronautics and AstronauticsFudan UniversityShanghaiChina

Personalised recommendations