DualSPHysics: A numerical tool to simulate real breakwaters

Abstract

The open-source code DualSPHysics is used in this work to compute the wave run-up in an existing dike in the Chinese coast using realistic dimensions, bathymetry and wave conditions. The GPU computing power of the DualSPHysics allows simulating real-engineering problems that involve complex geometries with a high resolution in a reasonable computational time. The code is first validated by comparing the numerical free-surface elevation, the wave orbital velocities and the time series of the run-up with physical data in a wave flume. Those experiments include a smooth dike and an armored dike with two layers of cubic blocks. After validation, the code is applied to a real case to obtain the wave run-up under different incident wave conditions. In order to simulate the real open sea, the spurious reflections from the wavemaker are removed by using an active wave absorption technique.

This is a preview of subscription content, log in to check access.

References

  1. [1]

    Altomare C., Domínguez J. M., Crespo A. J. C. et al. Long-crested wave generation and absorption for SPHbased DualSPHysics model [J]. Coastal Engineering, 2017, 127(7): 37–54.

    Article  Google Scholar 

  2. [2]

    Crespo A. J. C., Domínguez J. M., Rogers B. D. et al. DualSPHysics: open-source parallel CFD solver on SPH [J]. Computer Physics Communications, 2015, 187(2): 204–216.

    Article  MATH  Google Scholar 

  3. [3]

    Domínguez J. M., Crespo A. J. C., Valdez-Balderas D. et al. New multi-GPU implementation for smoothed particle hydrodynamics on heterogeneous clusters [J]. Computer Physics Communications, 2013, 184(8): 1848–1860.

    Article  Google Scholar 

  4. [4]

    Crespo A. J. C., Domínguez J. M., Barreiro A. et al. GPUs, a new tool of acceleration in CFD: Efficiency and reliability on smoothed particle hydrodynamics methods [J]. Plos One, 2011, 6(6): e20685.

    Article  Google Scholar 

  5. [5]

    Altomare C., Crespo A. J. C., Rogers B. D. et al. Numerical modelling of armour block sea breakwater with smoothed particle hydrodynamics [J]. Computers and Structures, 2014, 130(1): 34–45.

    Article  Google Scholar 

  6. [6]

    Altomare C., Crespo A. J. C., Domínguez J. M. et al. Applicability of smoothed particle hydrodynamics for estimation of sea wave impact on coastal structures [J]. Coastal Engineering, 2015, 96(2): 1–12.

    Article  Google Scholar 

  7. [7]

    Liu G. R., Liu M. B. Smoothed Particle Hydrodynamics: a meshfree particle method [M]. Singapore: World Scientific, 2003.

    Google Scholar 

  8. [8]

    Wendland H. Piecewiese polynomial, positive definite and compactly supported radial functions of minimal degree [J]. Advances in Computational Mathematics, 1995, 4(1): 389–396.

    MathSciNet  Article  MATH  Google Scholar 

  9. [9]

    Monaghan J. J. Smoothed particle hydrodynamics [J]. Annual Review of Astronomy and Astrophysics, 1992, 30(1): 543–574.

    Article  Google Scholar 

  10. [10]

    Monaghan J. J. Smoothed particle hydrodynamics [J]. Annual Review of Astronomy and Astrophysics, 1992, 30: 543–574.

    Article  Google Scholar 

  11. [11]

    Batchelor G. K. Introduction to fluid dynamics [M]. Cambridge, UK: Cambridge University Press, 1974.

    Google Scholar 

  12. [12]

    Leimkuhler B. J., Reich S., Skeel R. D. Integration methods for molecular dynamic IMA volume in mathematics and its application [M]. New York, USA: Springer, 1996.

    Google Scholar 

  13. [13]

    Crespo A. J. C., Gómez-Gesteira M., Dalrymple R. Boundary conditions generated by dynamic particles in SPH methods [J]. Comput Mater Continua, Contin, 2007, 5(3): 173–184.

    MathSciNet  MATH  Google Scholar 

  14. [14]

    Domínguez J. M., Crespo A. J. C., Cercós-Pita J. L. et al. Evaluation of reliability and efficiency of different boundary conditions in an SPH code [C]. Proceedings of the 10th SPHERIC International Workshop, Parma, Italy, 2015.

    Google Scholar 

  15. [15]

    Madsen P. A., Fuhrman D. R., Schäffer H. A. On the solitary wave paradigm for tsunamis [J]. Journal of Geophysical Research, 2008, 113(C12): 1–22.

    Article  Google Scholar 

  16. [16]

    Liu Z., Frigaard P. Generation and analysis of random waves, generation and analysis of random waves [R]. Aalborg, Denmark: Aalborg Universitet, 1999, 79.

    Google Scholar 

  17. [17]

    Barthel F. C., Mansard V., Sand E. P. et al. Group bounded long waves in physical models [J]. Ocean Engineering, 1983, 10(4): 261–294.

    Article  Google Scholar 

  18. [18]

    Schaffer H. A., Klopman G. Review of multidirectional active wave absorption methods [J]. Journal of Waterway, Port, Coast, Ocean Engineering, 2000, 126(2): 88–97.

    Article  Google Scholar 

  19. [19]

    Didier E., Neves M. G. A Semi-Infinite numerical wave flume using smoothed particle hydrodynamics [J]. International Journal of Offshore and Polar Engineering, 2001, 22(3): 193–199.

    Google Scholar 

  20. [20]

    Madsen O. S. On the generation of long waves [J]. Journal of Geophysical Research, 1971, 76(36): 8672–8683.

    Article  Google Scholar 

Download references

Acknowledgement

This work was supported by the Xunta de Galicia (Spain) under project ED431C 2017/64 "Programa de Consolidación e Estructuración de Unidades de Investigación Competitivas (Grupos de Referencia Competitiva)" co-funded by European Regional Development Fund (FEDER) and under project "NUMANTIA ED431F 2016/004". The work is also funded by the Ministry of Economy and Competitiveness of the Government of Spain under project "WELCOME ENE2016-75074-C2-1-R".

Author information

Affiliations

Authors

Corresponding author

Correspondence to Shao-ping Shang 商少平.

Additional information

Project supported by the National Key R&D Program of China (Grant No. 2017YFC1404801).

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, F., Crespo, A., Altomare, C. et al. DualSPHysics: A numerical tool to simulate real breakwaters. J Hydrodyn 30, 95–105 (2018). https://doi.org/10.1007/s42241-018-0010-0

Download citation

Keywords

  • SPH
  • DualSPHysics
  • wavemaker
  • wave run-up