Journal of Hydrodynamics

, Volume 30, Issue 1, pp 95–105 | Cite as

DualSPHysics: A numerical tool to simulate real breakwaters

  • Feng Zhang (张峰)
  • Alejandro Crespo
  • Corrado Altomare
  • José Domínguez
  • Andrea Marzeddu
  • Shao-ping Shang (商少平)
  • Moncho Gómez-Gesteira
Special Column on SPHERIC2017 (Guest Editors Mou-bin Liu, Can Huang, A-man Zhang)

Abstract

The open-source code DualSPHysics is used in this work to compute the wave run-up in an existing dike in the Chinese coast using realistic dimensions, bathymetry and wave conditions. The GPU computing power of the DualSPHysics allows simulating real-engineering problems that involve complex geometries with a high resolution in a reasonable computational time. The code is first validated by comparing the numerical free-surface elevation, the wave orbital velocities and the time series of the run-up with physical data in a wave flume. Those experiments include a smooth dike and an armored dike with two layers of cubic blocks. After validation, the code is applied to a real case to obtain the wave run-up under different incident wave conditions. In order to simulate the real open sea, the spurious reflections from the wavemaker are removed by using an active wave absorption technique.

Keywords

SPH DualSPHysics wavemaker wave run-up 

Notes

Acknowledgement

This work was supported by the Xunta de Galicia (Spain) under project ED431C 2017/64 "Programa de Consolidación e Estructuración de Unidades de Investigación Competitivas (Grupos de Referencia Competitiva)" co-funded by European Regional Development Fund (FEDER) and under project "NUMANTIA ED431F 2016/004". The work is also funded by the Ministry of Economy and Competitiveness of the Government of Spain under project "WELCOME ENE2016-75074-C2-1-R".

References

  1. [1]
    Altomare C., Domínguez J. M., Crespo A. J. C. et al. Long-crested wave generation and absorption for SPHbased DualSPHysics model [J]. Coastal Engineering, 2017, 127(7): 37–54.CrossRefGoogle Scholar
  2. [2]
    Crespo A. J. C., Domínguez J. M., Rogers B. D. et al. DualSPHysics: open-source parallel CFD solver on SPH [J]. Computer Physics Communications, 2015, 187(2): 204–216.CrossRefMATHGoogle Scholar
  3. [3]
    Domínguez J. M., Crespo A. J. C., Valdez-Balderas D. et al. New multi-GPU implementation for smoothed particle hydrodynamics on heterogeneous clusters [J]. Computer Physics Communications, 2013, 184(8): 1848–1860.CrossRefGoogle Scholar
  4. [4]
    Crespo A. J. C., Domínguez J. M., Barreiro A. et al. GPUs, a new tool of acceleration in CFD: Efficiency and reliability on smoothed particle hydrodynamics methods [J]. Plos One, 2011, 6(6): e20685.CrossRefGoogle Scholar
  5. [5]
    Altomare C., Crespo A. J. C., Rogers B. D. et al. Numerical modelling of armour block sea breakwater with smoothed particle hydrodynamics [J]. Computers and Structures, 2014, 130(1): 34–45.CrossRefGoogle Scholar
  6. [6]
    Altomare C., Crespo A. J. C., Domínguez J. M. et al. Applicability of smoothed particle hydrodynamics for estimation of sea wave impact on coastal structures [J]. Coastal Engineering, 2015, 96(2): 1–12.CrossRefGoogle Scholar
  7. [7]
    Liu G. R., Liu M. B. Smoothed Particle Hydrodynamics: a meshfree particle method [M]. Singapore: World Scientific, 2003.CrossRefMATHGoogle Scholar
  8. [8]
    Wendland H. Piecewiese polynomial, positive definite and compactly supported radial functions of minimal degree [J]. Advances in Computational Mathematics, 1995, 4(1): 389–396.MathSciNetCrossRefMATHGoogle Scholar
  9. [9]
    Monaghan J. J. Smoothed particle hydrodynamics [J]. Annual Review of Astronomy and Astrophysics, 1992, 30(1): 543–574.CrossRefGoogle Scholar
  10. [10]
    Monaghan J. J. Smoothed particle hydrodynamics [J]. Annual Review of Astronomy and Astrophysics, 1992, 30: 543–574.CrossRefGoogle Scholar
  11. [11]
    Batchelor G. K. Introduction to fluid dynamics [M]. Cambridge, UK: Cambridge University Press, 1974.Google Scholar
  12. [12]
    Leimkuhler B. J., Reich S., Skeel R. D. Integration methods for molecular dynamic IMA volume in mathematics and its application [M]. New York, USA: Springer, 1996.Google Scholar
  13. [13]
    Crespo A. J. C., Gómez-Gesteira M., Dalrymple R. Boundary conditions generated by dynamic particles in SPH methods [J]. Comput Mater Continua, Contin, 2007, 5(3): 173–184.MathSciNetMATHGoogle Scholar
  14. [14]
    Domínguez J. M., Crespo A. J. C., Cercós-Pita J. L. et al. Evaluation of reliability and efficiency of different boundary conditions in an SPH code [C]. Proceedings of the 10th SPHERIC International Workshop, Parma, Italy, 2015.Google Scholar
  15. [15]
    Madsen P. A., Fuhrman D. R., Schäffer H. A. On the solitary wave paradigm for tsunamis [J]. Journal of Geophysical Research, 2008, 113(C12): 1–22.CrossRefGoogle Scholar
  16. [16]
    Liu Z., Frigaard P. Generation and analysis of random waves, generation and analysis of random waves [R]. Aalborg, Denmark: Aalborg Universitet, 1999, 79.Google Scholar
  17. [17]
    Barthel F. C., Mansard V., Sand E. P. et al. Group bounded long waves in physical models [J]. Ocean Engineering, 1983, 10(4): 261–294.CrossRefGoogle Scholar
  18. [18]
    Schaffer H. A., Klopman G. Review of multidirectional active wave absorption methods [J]. Journal of Waterway, Port, Coast, Ocean Engineering, 2000, 126(2): 88–97.CrossRefGoogle Scholar
  19. [19]
    Didier E., Neves M. G. A Semi-Infinite numerical wave flume using smoothed particle hydrodynamics [J]. International Journal of Offshore and Polar Engineering, 2001, 22(3): 193–199.Google Scholar
  20. [20]
    Madsen O. S. On the generation of long waves [J]. Journal of Geophysical Research, 1971, 76(36): 8672–8683.CrossRefGoogle Scholar

Copyright information

© China Ship Scientific Research Center 2018

Authors and Affiliations

  • Feng Zhang (张峰)
    • 1
  • Alejandro Crespo
    • 2
  • Corrado Altomare
    • 3
    • 4
  • José Domínguez
    • 2
  • Andrea Marzeddu
    • 5
  • Shao-ping Shang (商少平)
    • 1
  • Moncho Gómez-Gesteira
    • 2
  1. 1.College of Ocean and Earth ScienceXiamen UniversityXiamenChina
  2. 2.Environmental Physics LaboratoryUniversidade de VigoOurenseSpain
  3. 3.Department of Mobility and Public WorksGhent UniversityGhentBelgium
  4. 4.Flanders Hydraulics ResearchAntwerpBelgium
  5. 5.Laboratory of Maritime EngineeringUniversitat Politècnica de CatalunyaBarcelonaSpain

Personalised recommendations