Skip to main content

Advertisement

SpringerLink
  1. Home
  2. Journal of Hydrodynamics
  3. Article
Spectral/hp element methods: Recent developments, applications, and perspectives
Download PDF
Your article has downloaded

Similar articles being viewed by others

Slider with three articles shown per slide. Use the Previous and Next buttons to navigate the slides or the slide controller buttons at the end to navigate through each slide.

A Characteristic-Based Spectral Element Method for Moving-Domain Problems

03 December 2018

Saumil Patel, Paul Fischer, … Ananias Tomboulides

Lax–Wendroff Schemes with Polynomial Extrapolation and Simplified Lax–Wendroff Schemes for Dispersive Waves: A Comparative Study

10 June 2022

Aurore Cauquis, Mario Ricchiuto & Philippe Heinrich

Overview of Moving Particle Semi-implicit Techniques for Hydrodynamic Problems in Ocean Engineering

01 September 2022

Fengze Xie, Weiwen Zhao & Decheng Wan

A paired spectral-finite difference approach for solving boundary layer flow problems

01 February 2019

O. Otegbeye & S. S. Motsa

A Comparative Study from Spectral Analyses of High-Order Methods with Non-Constant Advection Velocities

19 April 2021

Niccolò Tonicello, Guido Lodato & Luc Vervisch

Numerical resolution of the wave equation using the spectral method

31 March 2022

Mohamed Abdelwahed & Nejmeddine Chorfi

Novel advances in high-order numerical algorithm for evaluation of the shallow water wave equations

03 March 2023

Kanyuta Poochinapan & Ben Wongsaijai

A Robust Analytical Method for Regularized Long Wave Equations

15 November 2022

Haresh P. Jani & Twinkle R. Singh

A novel truly explicit time-marching procedure for simple and effective analyses of wave propagation models

11 January 2021

Delfim Soares Jr.

Download PDF
  • Review Article
  • Open Access
  • Published: 11 April 2018

Spectral/hp element methods: Recent developments, applications, and perspectives

  • Hui Xu1,
  • Chris D. Cantwell1,
  • Carlos Monteserin2,
  • Claes Eskilsson4,5,
  • Allan P. Engsig-Karup2,3 &
  • …
  • Spencer J. Sherwin1 

Journal of Hydrodynamics volume 30, pages 1–22 (2018)Cite this article

  • 6032 Accesses

  • 55 Citations

  • 1 Altmetric

  • Metrics details

Abstract

The spectral/hp element method combines the geometric flexibility of the classical h-type finite element technique with the desirable numerical properties of spectral methods, employing high-degree piecewise polynomial basis functions on coarse finite element-type meshes. The spatial approximation is based upon orthogonal polynomials, such as Legendre or Chebychev polynomials, modified to accommodate a C0 - continuous expansion. Computationally and theoretically, by increasing the polynomial order p, high-precision solutions and fast convergence can be obtained and, in particular, under certain regularity assumptions an exponential reduction in approximation error between numerical and exact solutions can be achieved. This method has now been applied in many simulation studies of both fundamental and practical engineering flows. This paper briefly describes the formulation of the spectral/hp element method and provides an overview of its application to computational fluid dynamics. In particular, it focuses on the use of the spectral/hp element method in transitional flows and ocean engineering. Finally, some of the major challenges to be overcome in order to use the spectral/hp element method in more complex science and engineering applications are discussed.

Download to read the full article text

Working on a manuscript?

Avoid the most common mistakes and prepare your manuscript for journal editors.

Learn more

References

  1. Babuška I., Suri M. The p- and h-p versions of the finite element method, an overview[J]. Computer Methods in Applied Mechanics and Engineering, 1990, 80(1): 5–26.

    Article  MathSciNet  MATH  Google Scholar 

  2. Babuška I., Suri M. The p and h-p versions of the finite element method, basic principles and properties[J]. Computer Methods in Applied Mechanics and Engineering, 1994, 36(4): 578–632.

    MathSciNet  MATH  Google Scholar 

  3. Karniadakis G., Sherwin S. Spectral/hp element methods for computational fluid dynamics[M]. Second Edition, New York, USA, Oxford University Press, 2005.

    Google Scholar 

  4. Cantwell C. D., Moxey D., Comerford A. et al. Nektar++: An open-source spectral/hp element framework[J]. Computer Physics Communications, 2015, 192: 205–219.

    Article  MATH  Google Scholar 

  5. Yakovlev S., Moxey D., Kirby R. M. et al. To CG or to HDG: A comparative study in 3D [J]. Journal of Scientific Computing, 2016, 67(1): 192–220.

    Article  MathSciNet  MATH  Google Scholar 

  6. King J., Yakovlev S., Fu Z. S. et al. Exploiting batch processing on streaming architectures to solve 2D elliptic finite element problems: A hybridized discontinuous Galerkin (HDG) case study [J]. Journal of Scientific Computing, 2014, 60(2): 457–482.

    Article  MathSciNet  MATH  Google Scholar 

  7. Lombard J. E. W., Moxey D., Sherwin S. J. et al. Implicit large-eddy simulation of a wingtip vortex [J]. AIAA Journal, 2016, 54(2): 506–518.

    Article  Google Scholar 

  8. Serson D., Meneghini J. R., Sherwin S. J. Velocity-correction schemes for the incompressible navier-stokes equations in general coordinate systems [J]. Journal of Computational Physics, 2016, 316: 243–254.

    Article  MathSciNet  MATH  Google Scholar 

  9. Serson D., Meneghini J. R., Sherwin S. J. Direct numerical simulations of the flow around wings with spanwise waviness at a very low Reynolds number [J]. Computers and Fluids, 2017, 146: 117–124.

    Article  MathSciNet  MATH  Google Scholar 

  10. Xu H., Lombard J.-E. W., Sherwin S. J. Influence of localised smooth steps on the instability of a boundary layer [J]. Journal of Fluid Mechanics, 2017, 817: 138–170.

    Article  MathSciNet  MATH  Google Scholar 

  11. Xu H., Mughal S. M., Gowree E. R. et al. Destabilisation and modification of Tollmien-Schlichting disturbances by a three-dimensional surface indentation [J]. Journal of Fluid Mechanics, 2017, 819: 592–620.

    Article  MathSciNet  MATH  Google Scholar 

  12. Cantwell C. D., Yakovlev S., Kirby R. M. et al. Highorder spectral/hp element discretisation for reactiondiffusion problems on surfaces: Application to cardiac electrophysiology [J]. Journal of Computational Physics, 2017, 257: 813–829.

    Article  MATH  Google Scholar 

  13. Szabó B., Babuka I. Finite element analysis [M]. New York, USA: John Wiley and Sons, Inc., 1991.

    Google Scholar 

  14. Moxey D., Ekelschot D., Keskin Ü. et al. A thermo-elastic analogy for high-order curvilinear meshing with control of mesh validity and quality [C]. Procedia Engineering, 23rd International Meshing Roundtable (IMR23), London, UK, 2014, 82: 127–135.

    Google Scholar 

  15. Comerford A., Chooi K. Y., Nowak M. et al. A combined numerical and experimental framework for determining permeability properties of the arterial media[J]. Biomechanics and Modeling in Mechanobiology, 2015, 14(2): 297–313.

    Article  Google Scholar 

  16. Eskilsson C., Sherwin S. J. Spectral/hp discontinuous Galerkin methods for modelling 2D Boussinesq equations [J]. Journal of Computational Physics, 2016, 212(2): 566–589.

    Article  MathSciNet  MATH  Google Scholar 

  17. Duffy M. G. Quadrature over a pyramid or cube of integrands with a singularity at a vertex[J]. SIAM Journal on Numerical Analysis, 1982, 19(6): 1260–1262.

    Article  MathSciNet  MATH  Google Scholar 

  18. Hesthaven J. S., Warburton T. Nodal discontinuous Galerkin methods[M]. New York, USA: Springer-Verlag, 2008.

    Book  MATH  Google Scholar 

  19. Reed W. H., Hill T. R. Triangular mesh methods for the neutron transport equation[R]. Technical report, Los Alamos National Laboratory, 1973, lA-UR-73-479.

    Google Scholar 

  20. Adams R. A. Sobolev spaces[M]. New York, USA: Academic Press, 1975.

    MATH  Google Scholar 

  21. Vermeire B., Witherden F., Vincent P. On the utility of GPU accelerated high-order methods for unsteady flow simulations: A comparison with industry-standard tools[J]. Journal of Computational Physics, 2017, 334: 497–521.

    Article  MathSciNet  Google Scholar 

  22. Gottlieb D., Orszag S. A. Numerical analysis of spectral methods: Theory and applications[M]. Philadelphia, USA: Society for Industrial and Applied Mathematics, 1977.

    Book  MATH  Google Scholar 

  23. Kirby R. M., Karniadakis G. E. De-aliasing on non-uniform grids: Algorithms and applications[J]. Journal of Computational Physics, 2003, 191(1): 249–264.

    Article  MATH  Google Scholar 

  24. Kirby R. M., Sherwin S. J. Aliasing errors due to quadratic nonlinearities on triangular spectral/hp element discretisations[J]. Journal of Engineering Mathematics, 2006, 56(3): 273–288.

    Article  MathSciNet  MATH  Google Scholar 

  25. Malm J., Schlatter P., Henningson D. S. Coherent structures and dominant frequencies in a turbulent threedimensional diffuser[J]. Journal of Fluid Mechanics, 2012, 699: 320–351.

    Article  MATH  Google Scholar 

  26. Mengaldo G., Grazia D. D., Moxey D. et al. Dealiasing techniques for high-order spectral element methods on regular and irregular grids[J]. Journal of Computational Physics, 2015, 299: 56–81.

    Article  MathSciNet  MATH  Google Scholar 

  27. Cockburn B., Hou S. C., Shu C. W. The Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. IV. The multidimensional case [J]. Mathematics of Computation, 1990, 54(190): 545–581.

    MathSciNet  MATH  Google Scholar 

  28. Tadmor E. Convergence of spectral methods for nonlinear conservation laws [J]. SIAM Journal on Numerical Analysis, 1989, 26(1): 30–44.

    Article  MathSciNet  MATH  Google Scholar 

  29. Karamanos G. S., Karniadakis G. E. A spectral vanishing viscosity method for large-eddy simulations [J]. Journal of Computational Physics, 2000, 163(1): 22–50.

    Article  MathSciNet  MATH  Google Scholar 

  30. Kirby R. M., Sherwin S. J. Stabilisation of spectral/hp element methods through spectral vanishing viscosity: Application to fluid mechanics modelling [J]. Computer Methods in Applied Mechanics and Engineering, 2006, 195(23): 3128–3144.

    Article  MathSciNet  MATH  Google Scholar 

  31. Pasquetti R. Spectral vanishing viscosity method for LES: sensitivity to the SVV control parameters [J]. Journal of Turbulence, 2005, 6(12): 1–14.

    MathSciNet  Google Scholar 

  32. Pasquetti R. Spectral vanishing viscosity method for largeeddy simulation of turbulent flows [J], Journal of Scientific Computing, 2006, 27(1): 365–375.

    Article  MathSciNet  MATH  Google Scholar 

  33. Kirby R. M., Karniadakis G. E. Coarse resolution turbulence simulations with spectral vanishing viscosity-largeeddy simulations (SVV-LES) [J]. Journal of Fluids Engineering, 2002, 124(4): 886–891.

    Article  Google Scholar 

  34. Xu C. Stabilization methods for spectral element computations of incompressible flows [J]. Journal of Scientific Computing, 2006, 27(1): 495–505.

    Article  MathSciNet  MATH  Google Scholar 

  35. Severac E., Serre E. A spectral vanishing viscosity for the LES of turbulent flows within rotating cavities [J]. Journal of Computational Physics, 2007, 226(2): 1234–1255.

    Article  MathSciNet  MATH  Google Scholar 

  36. Koal K., Stiller J., Blackburn H. Adapting the spectral vanishing viscosity method for large-eddy simulations in cylindrical configurations [J]. Journal of Computational Physics, 2012, 231(8): 3389–3405.

    Article  MathSciNet  MATH  Google Scholar 

  37. Sagaut P. Large eddy simulation for incompressible flows [M]. Berlin, Heidelberg, Germany: Springer-Verlag, 2001.

    Book  MATH  Google Scholar 

  38. Moura R. C., Sherwin S. J., Peiró J. Eigensolution analysis of spectral/hp continuous Galerkin approximations to advection-diffusion problems: Insights into spectral vanishing viscosity [J]. Journal of Computational Physics, 2016, 307: 401–422.

    Article  MathSciNet  MATH  Google Scholar 

  39. Maday Y., Kaber S. M. O., Tadmor E. Legendre pseudospectral viscosity method for nonlinear conservation laws [J]. SIAM Journal on Numerical Analysis, 1993, 30(2): 321–342.

    Article  MathSciNet  MATH  Google Scholar 

  40. Collis S. Discontinuous Galerkin methods for turbulence simulation [C]. Proceedings of the 2002 Center for Turbulence Research Summer Program, San Francisco, USA, 2002, 155–167.

    Google Scholar 

  41. Collis S., Ghayour K. Discontinuous Galerkin methods for compressible DNS [C]. Proceedings of the 4th ASME/JSME Joint Fluids Summer Engineering Conference, Honolulu, USA, 2003, 1777–1786.

    Google Scholar 

  42. Wei L., Pollard A. Direct numerical simulation of compressible turbulent channel flows using the discontinuous Galerkin method [J]. Computers and Fluids, 2011, 47(1): 85–100.

    Article  MathSciNet  MATH  Google Scholar 

  43. Chapelier J. B., de la Llave Plata M., Renac F. et al. Evaluation of a high-order discontinuous Galerkin method for the DNS of turbulent flows [J]. Computers and Fluids, 2014, 95(3): 210–226.

    Article  MathSciNet  MATH  Google Scholar 

  44. Moura R. C., Sherwin S. J., Peiró J. Linear dispersiondiffusion analysis and its application to under-resolved turbulence simulations using discontinuous Galerkin spectral/hp methods [J]. Journal of Computational Physics, 2015, 298: 695–710.

    Article  MathSciNet  MATH  Google Scholar 

  45. Bolis A., Cantwell C. D., Moxey D. et al. An adaptable parallel algorithm for the direct numerical simulation of incompressible turbulent flows using a Fourier spectral/hp element method and MPI virtual topologies [J]. Computer Physics Communications, 2016, 206: 17–25.

    Article  MathSciNet  MATH  Google Scholar 

  46. Vos P. E., Sherwin S. J., Kirby R. M. From h to p efficiently: Implementing finite and spectral/hp element methods to achieve optimal performance for low-and high-order discretisations [J]. Journal of Computational Physics, 2010, 229(13): 5161–5181.

    Article  MathSciNet  MATH  Google Scholar 

  47. Cantwell C. D., Sherwin S. J., Kirby R. M. et al. From h to p efficiently: Strategy selection for operator evaluation on hexahedral and tetrahedral elements [J]. Computers and Fluids, 2011, 43(1): 23–28.

    Article  MathSciNet  MATH  Google Scholar 

  48. Cantwell C. D., Sherwin S. J., Kirby R. M. et al. From h to p efficiently: Selecting the optimal spectral/hp discretisation in three dimensions [J]. Mathematical Modelling of Natural Phenomena, 2011, 6(3): 84–96.

    Article  MathSciNet  MATH  Google Scholar 

  49. Bolis A., Cantwell C. D., Kirby R. M. et al. From h to p efficiently: Optimal implementation strategies for explicit time-dependent problems using the spectral/hp element method [J]. International Journal for Numerical Methods in Fluids, 2014, 75(8): 591–607.

    Article  MathSciNet  Google Scholar 

  50. Moxey D., Cantwell C. D., Kirby R. M. et al. Optimising the performance of the spectral/hp element method with collective linear algebra operations [J]. Computer Methods in Applied Mechanics and Engineering, 2016, 310: 628–645.

    Article  MathSciNet  Google Scholar 

  51. Moxey D., Green M. D., Sherwin S. J. et al. An isoparametric approach to high-order curvilinear boundary-layer meshing [J]. Computer Methods in Applied Mechanics and Engineering, 2015, 283: 636–650.

    Article  MathSciNet  MATH  Google Scholar 

  52. Sherwin S. J., Peiró J. Mesh generation in curvilinear domains using high-order elements [J]. International Journal for Numerical Methods in Engineering, 2002, 53(1): 207–223.

    Article  MATH  Google Scholar 

  53. Turner M., Peiró J., Moxey D. A variational framework for high-order mesh generation [C]. Procedia Engineering, 25th International Meshing Roundtable, Washington DC, USA, 2016, 163: 340–352.

    Google Scholar 

  54. Moxey D., Ekelschot D., Keskin Ü. et al. High-order curvilinear meshing using a thermo-elastic analogy [C]. Computer-Aided Design, 23rd International Meshing Roundtable Special Issue: Advances in Mesh Generation, London, UK, 2016, 72: 130–139.

    Google Scholar 

  55. Wang Z., Fidkowski K., Abgrall R. et al. High-order CFD methods: Current status and perspective [J]. International Journal for Numerical Methods in Fluids, 2013, 72(8): 811–845.

    Article  MathSciNet  Google Scholar 

  56. Dey S., O’Bara R. M., Shephard M. S. Curvilinear mesh generation in 3D [C]. Proceedings of the 8th International Meshing Roundtable, Lake Tahoe, California, USA, 1999.

    Google Scholar 

  57. Geuzaine C., Remacle J. F. Gmsh: A 3-D finite element mesh generator with built-in pre-and post-processing facilities [J]. International Journal for Numerical Methods in Engineering, 2009, 79(11): 1309–1331.

    Article  MathSciNet  MATH  Google Scholar 

  58. Karniadakis G. E., Israeli M., Orszag S. A. High-order splitting methods for the incompressible Navier-Stokes equations [J]. Journal of Computational Physics, 1991, 97(2): 414–443.

    Article  MathSciNet  MATH  Google Scholar 

  59. Vos P. E., Eskilsson C., Bolis A. et al. A generic framework for time-stepping partial differential equations (PDEs): General linear methods, object-oriented implementation and application to fluid problems [J]. International Journal of Computational Fluid Dynamics, 2011, 25(3): 107–125.

    Article  MathSciNet  MATH  Google Scholar 

  60. Fischer P. F., RØnquist E. M. Spectral element methods for large scale parallel Navier-Stokes calculations [J]. Computer Methods in Applied Mechanics and Engineering, 1994, 116(1): 69–76.

    Article  MathSciNet  MATH  Google Scholar 

  61. Sherwin S. J., Karniadakis G. E. A triangular spectral element method, applications to the incompressible Navier-Stokes equations [J]. Computer Methods in Applied Mechanics and Engineering, 1995, 123(1): 189–229.

    Article  MathSciNet  MATH  Google Scholar 

  62. Sherwin S. J., Karniadakis G. E. Tetrahedral hp finite elements: Algorithms and flow simulations [J]. Journal of Computational Physics, 1996, 124(1): 14–45.

    Article  MathSciNet  MATH  Google Scholar 

  63. Fischer P. F. An overlapping Schwarz method for spectral element solution of the incompressible Navier-Stokes equations [J]. Journal of Computational Physics, 1997, 133(1): 84–101.

    Article  MathSciNet  MATH  Google Scholar 

  64. Tomboulides A. G., Orszag S. A. Numerical investigation of transitional and weak turbulent flow past a sphere [J]. Journal of Fluid Mechanics, 2000, 416: 45–73.

    Article  MathSciNet  MATH  Google Scholar 

  65. Fischer P., Mullen J. Filter-based stabilization of spectral element methods [J]. Comptes Rendus De Lacademie Des Sciences, 2001, 332(3): 265–270.

    MathSciNet  MATH  Google Scholar 

  66. Wasberg C. E., Gjesdal T., Reif B. A. P. et al. Variational multiscale turbulence modelling in a high order spectral element method [J]. Journal of Computational Physics, 2009, 228(19): 7333–7356.

    Article  MathSciNet  MATH  Google Scholar 

  67. Blackburn H., Schmidt S. Spectral element filtering techniques for large eddy simulation with dynamic estimation [J]. Journal of Computational Physics, 2003, 186(2): 610–629.

    Article  MATH  Google Scholar 

  68. Iliescu T., Fischer P. F. Large eddy simulation of turbulent channel flows by the rational large eddy simulation model [J]. Physics of Fluids, 2003, 15(10): 3036–3047.

    Article  MATH  Google Scholar 

  69. Ohlsson J., Schlatter P., Fischer P. F. et al. Stabilization of the spectral-element method in turbulent flow simulations [M]. Berlin Heidelberg, Germany: Springer-Verlag, 2011, 449–458.

    MATH  Google Scholar 

  70. Beck A. D., Bolemann T., Flad D. et al. High-order discontinuous Galerkin spectral element methods for transitional and turbulent flow simulations [J]. International Journal for Numerical Methods in Fluids, 2014, 76(8): 522–548.

    Article  MathSciNet  Google Scholar 

  71. Blackburn H. M., Sherwin S. J. Formulation of a Galerkin spectral element-Fourier method for three-dimensional incompressible flows in cylindrical geometries [J]. Journal of Computational Physics, 2004, 197(2): 759–778.

    Article  MATH  Google Scholar 

  72. Patera A. T. A spectral element method for fluid dynamics: Laminar flow in a channel expansion [J]. Journal of Computational Physics, 1984, 54(3): 468–488.

    Article  MATH  Google Scholar 

  73. Vinuesa R., Schlatter P., Malm J. et al. Direct numerical simulation of the flow around a wall-mounted square cylinder under various inflow conditions [J]. Journal of Turbulence, 2015, 16(6): 555–587.

    Article  Google Scholar 

  74. Diosady L. T., Murman S. M. DNS of flows over periodic hills using a discontinuous Galerkin spectral-element method [C]. 44th AIAA Fluid Dynamics Conference, Atlanta, GA, USA, 2014.

    Google Scholar 

  75. Xu H., Sherwin S. J., Hall P. et al. The behaviour of Tollmien-Schlichting waves undergoing small-scale localised distortions [J]. Journal of Fluid Mechanics, 2016, 792: 499–525.

    Article  MathSciNet  MATH  Google Scholar 

  76. Serson D., Meneghini J. R., Sherwin S. J. Direct numerical simulations of the flow around wings with spanwise waviness [J]. Journal of Fluid Mechanics, 2017, 826: 714–731.

    Article  MathSciNet  MATH  Google Scholar 

  77. Barkley D., Blackburn H. M., Sherwin S. J. Direct optimal growth analysis for timesteppers [J]. International Journal for Numerical Methods in Fluids, 2008, 57(9): 1435–1458.

    Article  MathSciNet  MATH  Google Scholar 

  78. Blackburn H., Barkley D., Sherwin S. J. Convective instability and transient growth in flow over a backward-facing step [J]. Journal of Fluid Mechanics, 2008, 603: 271–304.

    Article  MathSciNet  MATH  Google Scholar 

  79. Blackburn H., Sherwin S. J., Barkley D. Convective instability and transient growth in steady and pulsatile stenotic flows [J]. Journal of Fluid Mechanics, 2008, 607: 267–277.

    Article  MATH  Google Scholar 

  80. Cantwell C. D., Barkley D., Blackburn H. M. Transient growth analysis of flow through a sudden expansion in a circular pipe [J]. Physics of Fluids, 2010, 22(3): 034101.

    Article  MATH  Google Scholar 

  81. Cantwell C. D., Barkley D. Computational study of subcritical response in flow past a circular cylinder [J]. Physical review E, 2010, 82(2): 026315.

    Article  Google Scholar 

  82. Broadhurst M. S., Theofilis V., Sherwin S. J. Spectral element stability analysis of vortical flows [C]. IUTAM Symposium on Laminar-Turbulent Transition, Bangalore, India, 2006, 153–158.

    Chapter  Google Scholar 

  83. Rocco G. Advanced instability methods using spectral/hp discretisations and their applications to complex geometries [D]. Doctoral Thesis, London, UK: Imperial College London, 2014.

    Google Scholar 

  84. Jordi B. Steady-state solvers for stability analysis of vortex dominated flows [D]. Doctoral Thesis, London, UK: Imperial College London (2015).

    Google Scholar 

  85. Devenport W. J., Rife M. C., Liapis S. I. et al. The structure and development of a wing-tip vortex [J]. Journal of Fluid Mechanics, 1996, 312: 67–106.

    Article  MathSciNet  Google Scholar 

  86. Arndt R. E. Cavitation in vortical flows [J]. Annual Review of Fluid Mechanics, 2002, 34(1): 143–175.

    Article  MathSciNet  MATH  Google Scholar 

  87. Ford C. W. P., Babinsky H. Lift and the leading-edge vortex [J]. Journal of Fluid Mechanics, 2013, 720: 280–313.

    Article  MathSciNet  MATH  Google Scholar 

  88. Leweke T., Dizès S. L., Williamson C. H. Dynamics and instabilities of vortex pairs [J]. Annual Review of Fluid Mechanics, 2016, 48(1): 507–541.

    Article  MathSciNet  MATH  Google Scholar 

  89. Feys J., Maslowe S. A. Elliptical instability of the mooresaffman model for a trailing wingtip vortex [J]. Journal of Fluid Mechanics, 2016, 803: 556–590.

    Article  MathSciNet  Google Scholar 

  90. Moura R. C., Mengaldo G., Peiró J. et al. On the eddyresolving capability of high-order discontinuous galerkin approaches to implicit LES/under-resolved DNS of Euler turbulence [J]. Journal of Computational Physic, 2017, 330: 615–623.

    Article  MATH  Google Scholar 

  91. Eskilsson C., Engsig-Karup A. P., Sherwin S. J. et al. The next step in coastal numerical models: spectral/hp element methods? [C]. Proceedings of the WAVES2005 Conference, Madrid, Spain, 2005.

    Google Scholar 

  92. Brocchini M., A reasoned overview on Boussinesq-type models: The interplay between physics, mathematics and numerics [J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2013, 469(2160): 1–27.

    Article  MathSciNet  MATH  Google Scholar 

  93. Wu G. X., Taylor R. E. Finite element analysis of twodimensional non-linear transient water waves [J]. Applied Ocean Research, 1994, 16(6): 363–372.

    Article  Google Scholar 

  94. Cai X., Langtangen H. P., Nielsen B. F. et al. A finite element method for fully nonlinear water waves [J]. Journal of Computational Physics, 1998, 143(2): 544–568.

    Article  MathSciNet  MATH  Google Scholar 

  95. Ma Q. W.,Wu G. X., Taylor R. E. Finite element simulation of fully non-linear interaction between vertical cylinders and steep waves. Part 1: Methodology and numerical procedure [J]. International Journal for Numerical Methods in Fluids, 2001, 36(3): 265–285.

    Article  MATH  Google Scholar 

  96. Ma Q. W., Yan S. Quasi ALE finite element method for nonlinear water waves [J]. Journal of Computational Physics, 2006, 212(1): 52–72.

    Article  MathSciNet  MATH  Google Scholar 

  97. Robertson I., Sherwin S. J. Free-surface flow simulation using hp/spectral elements [J]. Journal of Computational Physics, 1999, 155(1): 26–53.

    Article  MathSciNet  MATH  Google Scholar 

  98. Engsig-Karup A. P., Eskilsson C., Bigoni D. A stabilised nodal spectral element method for fully nonlinear water waves [J]. Journal of Computational Physics, 2016, 318(2): 1–21.

    Article  MathSciNet  MATH  Google Scholar 

  99. Engsig-Karup A. P., Eskilsson C., Bigoni D. Unstructured spectral element model for dispersive and nonlinear wave propagation [C]. Proceedings of The Twenty-sixth (2016) International Ocean and Polar Engineering Conference, Rhodes, Greece, 2016, 3: 661–669.

    MATH  Google Scholar 

  100. Zakharov V. E. Stability of periodic waves of finite amplitude on the surface of a deep fluid [J]. Journal of Applied Mechanics and Technical Physics, 1968, 9(2): 190–194.

    Article  Google Scholar 

  101. Mieritz A., Engsig-Karup A., Eskilsson C. et al. Largescale water wave simulations using a spectral/hp element fully nonlinear potential flow model [J]. (in preparation).

  102. Engsig-Karup A. P., Eskilsson C., Bigoni D. A stabilised nodal spectral element method for fully nonlinear water waves [J]. Journal of Computational Physics, 2016, 318(2): 1–21.

    Article  MathSciNet  MATH  Google Scholar 

  103. Eskilsson C., Sherwin S. J. A discontinuous spectral element model for Boussinesq-type equations [J]. Journal of Scientific Computing, 2002, 17(1-4): 143–152.

    Article  MathSciNet  MATH  Google Scholar 

  104. Eskilsson C., Sherwin S. J. Discontinuous Galerkin spectral/hp element modelling of dispersive shallow water systems [J]. Journal of Scientific Computing, 2005, 22–23(1): 269–288.

    Article  MathSciNet  MATH  Google Scholar 

  105. Kreiss H. O., Oliger J. Comparison of accurate methods for the integration of hyperbolic equations [J]. Tellus, 1972, 24: 199–215.

    Article  MathSciNet  Google Scholar 

  106. Eskilsson C., Sherwin S. J., Bergdahl L. An unstructured spectral/hp element model for enhanced Boussinesq-type equations [J]. Coastal Engineering, 2006, 53(11): 947–963.

    Article  Google Scholar 

  107. Dumbser M., Facchini M. A space-time discontinuous Galerkin method for Boussinesq-type equations [J]. Applied Mathematics and Computation, 2016, 272: 336–346.

    Article  MathSciNet  Google Scholar 

  108. Engsig-Karup A. P. Unstructured nodal DG-FEM solution of high-order Boussinesq-type equations [D]. Doctoral Thesis, Copenhagen, Denmark: Technical University of Denmark, 2006.

    MATH  Google Scholar 

  109. Engsig-Karup A. P., Hesthaven J. S., Bingham H. B. et al. Nodal DG-FEM solutions of high-order Boussinesq-type equations [J]. Journal of Engineering Mathematics, 2006, 56(3): 351–370.

    Article  MathSciNet  MATH  Google Scholar 

  110. Engsig-Karup A. P., Hesthaven J. S., Bingham H. B. et al. DG-FEM solution for nonlinear wave-structure interaction using Boussinesq-type equations [J]. Coastal Engineering, 2008, 55(3): 197–208.

    Article  Google Scholar 

  111. Panda N., Dawson C., Zhang Y. et al. Discontinuous Galerkin methods for solving Boussinesq-Green-Naghdi equations in resolving non-linear and dispersive surface water waves [J]. Journal of Computational Physics, 2014, 273: 572–588.

    Article  MathSciNet  MATH  Google Scholar 

  112. Duran A., Marche F. Discontinuous-Galerkin discretization of a new class of Green-Naghdi equations [J]. Communications in Computational Physics, 2015, 17(3): 721–760.

    Article  MathSciNet  MATH  Google Scholar 

  113. Samii A., Dawson C. An explicit hybridized discontinuous Galerkin method for Serre-Green-Naghdi wave model [J]. Computer Methods in Applied Mechanics and Engineering, 2018, 330: 447–470.

    Article  MathSciNet  Google Scholar 

  114. Peregrine D. Long waves on a beach [J]. Journal of Fluid Mechanics, 1976, 27: 815–827.

    Article  MATH  Google Scholar 

  115. Eskilsson C., Sherwin S. J. Spectral/hp discontinuous Galerkin methods for modelling 2D Boussinesq equations [J]. Journal of Computational Physics, 2006, 212(2): 566–589.

    Article  MathSciNet  MATH  Google Scholar 

  116. Blaise S., St-Cyr A. A dynamic hp-adaptive discontinuous Galerkin method for shallow-water flows on the sphere with application to a global tsunami simulation [J]. Monthly Weather Review, 2012, 140(3): 978–996.

    Article  Google Scholar 

  117. Blaise S., St-Cyr A., Mavriplis D. et al. Discontinuous Galerkin unsteady discrete adjoint method for real-time efficient tsunami simulations [J]. Journal of Computational Physics, 2013, 232(1): 416–430.

    Article  MathSciNet  Google Scholar 

  118. Bonev B., Hesthaven J., Giraldo F. et al. Discontinuous Galerkin scheme for the spherical shallow water equations with applications to tsunami modelling and prediction [J]. Submitted to: Journal of Computational Physics, 2017.

    MATH  Google Scholar 

  119. Ma H. A spectral element basin model for the shallow water equations [J]. Journal of Computational Physics, 1993, 109(1): 133–149.

    Article  MathSciNet  MATH  Google Scholar 

  120. Iskandarani M., Haidvogel D., Boyd J. A staggered spectral element model with application to the oceanic shallow water equations [J]. International Journal for Numerical Methods in Fluids, 1995, 20(5): 393–414.

    Article  MATH  Google Scholar 

  121. Taylor M., Tribbia J., Iskandarani M. The spectral element method for the shallow water equations on the sphere [J]. Journal of Computational Physics, 1997, 130(1): 92–108.

    Article  MATH  Google Scholar 

  122. Giraldo F. X., Hesthaven J. S., Warburton T. Nodal high-order discontinuous Galerkin methods for the spherical shallow water equations [J]. Journal of Computational Physics, 2002, 181(2): 499–525.

    Article  MathSciNet  MATH  Google Scholar 

  123. Nair R., Thomas S., Loft R. A discontinuous Galerkin global shallow water model [J]. Montly Weather Review, 2005, 133(4): 876–888.

    Article  Google Scholar 

  124. Lauter M., Giraldo F., Handorf D. et al. A discontinuous Galerkin method for the shallow water equations in spherical triangular coordinates [J]. Journal of Computational Physics, 2008, 227(24): 10226–10242.

    Article  MathSciNet  MATH  Google Scholar 

  125. Bao L., Nair R., Tufo H. A mass and momentum fluxform high-order discontinuous Galerkin shallow water model on the cubed-sphere [J]. Journal of Computational Physics, 2014, 271: 224–243.

    Article  MathSciNet  MATH  Google Scholar 

  126. Chun S., Eskilsson C. Method of moving frames to solve the shallow water equations on arbitrary rotating curved surfaces [J]. Journal of Computational Physics, 2017, 333: 1–23

    Article  MathSciNet  MATH  Google Scholar 

  127. Chun S. Method of moving frames to solve conservation laws on curved surfaces [J]. Journal of Scientific Computing, 2012, 53(2): 268–294.

    Article  MathSciNet  MATH  Google Scholar 

  128. Moxey D., Cantwell C. D., Mengaldo G. et al. Towards p-adaptive spectral/hp element methods for modelling industrial flows [C]. International Conference on Spectral and High-Order Methods is a Mathematics Conference, Rio de Janeiro, Brazil, 2016.

    Google Scholar 

  129. Ekelschot D., Moxey D., Sherwin S. J. et al. A p-adaptation method for compressible flow problems using a goal-based error indicator [J]. Computers and Structures, 2017, 181: 55–69.

    Article  Google Scholar 

  130. Tafti D. Comparison of some upwind-biased high-order formulations with a second-order central-difference scheme for time integration of the incompressible Navier-Stokes equations [J]. Computers and Fluids, 1996, 25(7): 647–665.

    Article  MathSciNet  MATH  Google Scholar 

  131. Priolo E., Carcione J. M., Seriani G. Numerical simulation of interface waves by high-order spectral modelling techniques [J]. The Journal of the Acoustical Society of America, 1994, 95(2): 681–693.

    Article  Google Scholar 

  132. Sprague M. A., Geers T. L. A spectral-element method for modelling cavitation in transient fluid-structure interaction [J]. International Journal for Numerical Methods in Engineering, 2004, 60(15): 2467–2499.

    Article  MATH  Google Scholar 

  133. Bodard N., Deville M. O. Fluid-structure interaction by the spectral element method [J]. Journal of Scientific Computing, 2006, 27(1): 123–136.

    Article  MathSciNet  MATH  Google Scholar 

  134. Sprague M. A., Geers T. L. A spectral-element/finiteelement analysis of a ship-like structure subjected to an underwater explosion [J]. Computer Methods in Applied Mechanics and Engineering, 2006, 195(17): 2149–2167.

    Article  MATH  Google Scholar 

  135. Sprague M. A., Geers T. L. Spectral elements and field separation for an acoustic fluid subject to cavitation [J]. Journal of Computational Physics, 2003, 184(1): 149–162.

    Article  MATH  Google Scholar 

  136. Van Loon R., Anderson P. D., Van de Vosse F. N. et al. Comparison of various fluid-structure interaction methods for deformable bodies [J]. Computers and Structures, 2007, 85(11): 833–843.

    Article  Google Scholar 

  137. Hoffmann M., Boblest S., Offenhäuser P. et al. A robust high-order discontinuous Galerkin solver for fluid flow with cavitation [C]. Ninth International Conference on ICCFD9-196 Computational Fluid Dynamics (ICCFD9), Istanbul, Turkey, 2016.

    Google Scholar 

  138. Lee-Wing H., Patera A. T. A legendre spectral element method for simulation of unsteady incompressible viscous free-surface flows [J]. Computer Methods in Applied Mechanics and Engineering, 1990, 80(1): 355–366.

    Article  MathSciNet  MATH  Google Scholar 

  139. Sussman M., Hussaini M. Y. A discontinuous spectral element method for the level set equation [J]. Journal of Scientific Computing, 2003, 19(1): 479–500.

    Article  MathSciNet  MATH  Google Scholar 

  140. Lin C. L., Lee H., Lee T. et al. A level set characteristic Galerkin finite element method for free surface flows [J]. International Journal for Numerical Methods in Fluids, 2005, 49(5): 521–547.

    Article  MATH  Google Scholar 

  141. Bouffanais R., Deville M. O. Mesh update techniques for free-surface flow solvers using spectral element method [J]. Journal of Scientific Computing, 2006, 27(1): 137–149.

    Article  MathSciNet  MATH  Google Scholar 

  142. Grooss J., Hesthaven J. A level set discontinuous Galerkin method for free surface flows [J]. Computer Methods in Applied Mechanics and Engineering, 2006, 195(25): 3406–3429.

    Article  MathSciNet  MATH  Google Scholar 

  143. Marchandise E., Remacle J. F. A stabilized finite element method using a discontinuous level set approach for solving two phase incompressible flows [J]. Journal of Computational Physics, 2006, 219(2): 780–800.

    Article  MathSciNet  MATH  Google Scholar 

  144. Nguyen V. T., Peraire J., Khoo B. C. et al. A discontinuous Galerkin front tracking method for two-phase flows with surface tension [J]. Computers and Fluids, 2010, 39(1): 1–14.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors kindly thank the Executive Editorin-Chief Prof. Lian-di Zhou for the invitation to contribute this review article and Dr. Wei Zhang for his contribution to conducting the tip-vortex simulation. H.X. and S.J.S would like to acknowledge support under EPSRC (Grant No. EP/L000407/1).

Author information

Authors and Affiliations

  1. Department of Aeronautics, Imperial College London, London, SW7 2AZ, UK

    Hui Xu, Chris D. Cantwell & Spencer J. Sherwin

  2. Department of Applied Mathematics and Computer Science, Technical University of Denmark, 2800 Kgs., Lyngby, Denmark

    Carlos Monteserin & Allan P. Engsig-Karup

  3. Center for Energy Resources Engineering (CERE), Technical University of Denmark, 2800 Kgs., Lyngby, Denmark

    Allan P. Engsig-Karup

  4. Department of Civil Engineering, Aalborg University, DK-9220, Aalborg Ø, Denmark

    Claes Eskilsson

  5. Division Safety and Transport, Research Institutes of Sweden (RISE), SE-50115, Borås, Sweden

    Claes Eskilsson

Authors
  1. Hui Xu
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Chris D. Cantwell
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Carlos Monteserin
    View author publications

    You can also search for this author in PubMed Google Scholar

  4. Claes Eskilsson
    View author publications

    You can also search for this author in PubMed Google Scholar

  5. Allan P. Engsig-Karup
    View author publications

    You can also search for this author in PubMed Google Scholar

  6. Spencer J. Sherwin
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Hui Xu.

Additional information

This article is published with open access at link.springer.com

Rights and permissions

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Xu, H., Cantwell, C.D., Monteserin, C. et al. Spectral/hp element methods: Recent developments, applications, and perspectives. J Hydrodyn 30, 1–22 (2018). https://doi.org/10.1007/s42241-018-0001-1

Download citation

  • Received: 22 December 2017

  • Accepted: 28 December 2017

  • Published: 11 April 2018

  • Issue Date: February 2018

  • DOI: https://doi.org/10.1007/s42241-018-0001-1

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • High-precision spectral/hp elements
  • continuous Galerkin method
  • discontinuous Galerkin method
  • implicit large eddy simulation
Download PDF

Working on a manuscript?

Avoid the most common mistakes and prepare your manuscript for journal editors.

Learn more

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.