Skip to main content
Log in

Recent Progress in Bionic Hydrogels for Articular Cartilage: Tribological and Mechanical Characteristics

  • Review Article
  • Published:
Journal of Bionic Engineering Aims and scope Submit manuscript

Abstract

Cartilage regeneration and repair are considered clinical challenges since cartilage has limited capability for reconstruction. Although tissue-engineered materials have the ability to repair cartilage, they have weak mechanical characteristics and cannot resist long-term overload. On the other hand, surgery to replace the joint is frequently done to treat significant cartilage deterioration these days. However, the materials that are being used for replacement have high friction coefficients, lack shock absorption functions, and lack cushioning. Further research on natural articular cartilage structure and function may lead to bionic hydrogels, which have suitable physicochemical and biological characteristics (e.g., tribological and mechanical properties and the ability to support loadbearing capability), but need improvements. Based on their tribological and mechanical characteristics, the current review highlights the most recent advancements of bionic hydrogels used for articular cartilage, highlighting both the field's recent progress and its potential for future research. For this reason, firstly, some important property improvement methods of bionic hydrogels are discussed and then, the recent findings of various research on the making of those bionic materials are provided and compared. It seems that by using some modifications such as product design, surface treatments, animal tests, controlling the isoelectric point of hydrogels, and computer simulation, the intended mechanical and tribological characteristics of natural articular cartilage may be attained by the bionic hydrogels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Censi, R., Dubbini, A., & Matricardi, P. (2015). Bioactive hydrogel scaffolds-advances in cartilage regeneration through controlled drug delivery. Current Pharmaceutical Design, 21, 1545–1555.

    Google Scholar 

  2. Eslahi, N., Abdorahim, M., & Simchi, A. (2016). Smart polymeric hydrogels for cartilage tissue engineering: A review on the chemistry and biological functions. Biomacromolecules, 17, 3441–3463.

    Google Scholar 

  3. Ateshian, G. A., & Wang, H. (1995). A theoretical solution for the frictionless rolling contact of cylindrical biphasic articular cartilage layers. Journal of Biomechanics, 28, 1341–1355.

    Google Scholar 

  4. Sophia Fox, A. J., Bedi, A., & Rodeo, S. A. (2009). The basic science of articular cartilage: Structure, composition, and function. Sports Health, 1, 461–468.

    Google Scholar 

  5. Zhou, L., Guo, P., D’Este, M., Tong, W., Xu, J., Yao, H., Stoddart, M. J., van Osch, G. J., Ho, K.K.-W., Li, Z., & Qin, L. (2022). Functionalized hydrogels for articular cartilage tissue engineering. Engineering, 13, 71–90.

    Google Scholar 

  6. Bobic, V. (2000). Current status of the articular cartilage repair. E-biomed: The Journal of Regenerative Medicine, 1, 37–41.

    Google Scholar 

  7. Frisbie, D., Trotter, G., Powers, B., Rodkey, W., Steadman, J., Howard, R., Park, R., & McIlwraith, C. (1999). Arthroscopic subchondral bone plate microfracture technique augments healing of large chondral defects in the radial carpal bone and medial femoral condyle of horses. Veterinary Surgery, 28, 242–255.

    Google Scholar 

  8. Orljanski, W., Aghayev, E., Zazirnyj, I., & Schabus, R. (2005). Treatment of focal articular cartilage lesions of the knee with autogenous osteochondral grafts. Acta Chirurgiae Orthopaedicae Et Traumatologiae Cechoslovaca, 72, 246–249.

    Google Scholar 

  9. Outerbridge, H. K., Outerbridge, A. R., & Outerbridge, R. E. (1995). The use of a lateral patellar autologous graft for the repair of a large osteochondral defect in the knee. The Journal of Bone and Joint Surgery, 77, 65–72.

    Google Scholar 

  10. Khan, I. M., Gilbert, S. J., Singhrao, S. K., Duance, V. C., & Archer, C. W. (2008). Cartilage integration: Evaluation of the reasons for failure of integration during cartilage repair. a review. European Cells and Matertrials, 16, 26–39.

    Google Scholar 

  11. Shimko, D. A., White, K. K., Nauman, E. A., & Dee, K. C. (2003). A device for long term, in vitro loading of three-dimensional natural and engineered tissues. Annals of Biomedical Engineering, 31, 1347–1356.

    Google Scholar 

  12. Tuli, R., Li, W.-J., & Tuan, R. S. (2003). Current state of cartilage tissue engineering. Arthritis Research and Therapy, 5, 1–4.

    Google Scholar 

  13. Sharkey, P. F., Hozack, W. J., Rothman, R. H., Shastri, S., & Jacoby, S. M. (2002). Why are total knee arthroplasties failing today? Clinical Orthopaedics and Related Research, 404, 7–13.

    Google Scholar 

  14. Zhao, X., Zhao, W., Zhang, Y., Zhang, X., Ma, Z., Wang, R., Wei, Q., Ma, S., & Zhou, F. (2022). Recent progress of bioinspired cartilage hydrogel lubrication materials. Biosurface and Biotribology, 8, 225–243.

    Google Scholar 

  15. Ngadimin, K. D., Stokes, A., Gentile, P., & Ferreira, A. M. (2021). Biomimetic hydrogels designed for cartilage tissue engineering. Biomaterials Science, 9, 4246–4259.

    Google Scholar 

  16. Cai, Z., Tang, Y., Wei, Y., Wang, P., & Zhang, H. (2022). Double–network hydrogel based on exopolysaccharides as a biomimetic extracellular matrix to augment articular cartilage regeneration. Acta Biomaterialia, 152, 124–143.

    Google Scholar 

  17. Nonoyama, T., & Gong, J. P. (2015). Double-network hydrogel and its potential biomedical application: A review. Journal of Engineering in Medicine, 229, 853–863.

    Google Scholar 

  18. Nonoyama, T., & Gong, J. P. (2021). Tough double network hydrogel and its biomedical applications. Annual Review of Chemical and Biomolecular Engineering, 12, 393–410.

    Google Scholar 

  19. Gong, J. P., Katsuyama, Y., Kurokawa, T., & Osada, Y. (2003). Double-network hydrogels with extremely high mechanical strength. Advanced Materials, 15, 1155–1158.

    Google Scholar 

  20. Chen, Q., Chen, H., Zhu, L., & Zheng, J. (2015). Fundamentals of double network hydrogels. Journal of Materials Chemistry B, 3, 3654–3676.

    Google Scholar 

  21. Cao, L., Wu, X., Wang, Q., & Wang, J. (2018). Biocompatible nanocomposite of TiO2 incorporated bi-polymer for articular cartilage tissue regeneration: A facile material. Journal of Photochemistry and Photobiology B: Biology, 178, 440–446.

    Google Scholar 

  22. Cui, L., Chen, J., Yan, C., & Xiong, D. (2023). Mechanical and biotribological properties of PVA/SB triple-network hydrogel for biomimetic artificial cartilage. Journal of Bionic Engineering, 20, 1072–1082.

    Google Scholar 

  23. Liu, Y., & Xiong, D. (2020). Self-healable polyacrylic acid-polyacrylamide-ferric ion dual-crosslinked hydrogel with good biotribological performance as a load-bearing surface. Journal of Applied Polymer Science, 137, 48499.

    Google Scholar 

  24. Sun, T. L., Kurokawa, T., Kuroda, S., Ihsan, A. B., Akasaki, T., Sato, K., Haque, M. A., Nakajima, T., & Gong, J. P. (2013). Physical hydrogels composed of polyampholytes demonstrate high toughness and viscoelasticity. Nature Materials, 12, 932–937.

    Google Scholar 

  25. Natali, A., Pavan, P., Carniel, E. L., Lucisano, M., & Taglialavoro, G. (2005). Anisotropic elasto-damage constitutive model for the biomechanical analysis of tendons. Medical Engineering & Physics, 27, 209–214.

    Google Scholar 

  26. Liang, Y., Ye, L., Sun, X., Lv, Q., & Liang, H. (2020). Tough and stretchable dual ionically cross-linked hydrogel with high conductivity and fast recovery property for high-performance flexible sensors. ACS Applied Materials & Interfaces, 12, 1577–1587.

    Google Scholar 

  27. Wang, Z., Meng, F., Zhang, Y., & Guo, H. (2023). Low friction hybrid hydrogel with excellent mechanical properties for simulating articular cartilage movement. Langmuir, 39, 2368–2379.

    Google Scholar 

  28. Osaheni, A. O., Mather, P. T., & Blum, M. M. (2020). Mechanics and tribology of a zwitterionic polymer blend: Impact of molecular weight. Materials Science and Engineering: C, 111, 110736.

    Google Scholar 

  29. Sismondo, R. A., Werner, F. W., Ordway, N. R., Osaheni, A. O., Blum, M. M., & Scuderi, M. G. (2019). The use of a hydrogel implant in the repair of osteochondral defects of the knee: A biomechanical evaluation of restoration of native contact pressures in cadaver knees. Clinical Biomechanics, 67, 15–19.

    Google Scholar 

  30. Wang, F., Wen, Y., & Bai, T. (2017). Thermal behavior of polyvinyl alcohol–gellan gum–Al 3+ composite hydrogels with improved network structure and mechanical property. Journal of Thermal Analysis and Calorimetry, 127, 2447–2457.

    Google Scholar 

  31. Li, Z., Wang, B., Xu, Q., You, D., Li, W., & Wang, X. (2023). A dual-crosslinked zwitterionic hydrogel with load-bearing capacity and ultra-low friction coefficient. Materials Chemistry and Physics, 307, 128208.

    Google Scholar 

  32. Sun, W., Hu, Y., Cheng, Y., Yang, S., & Kang, Z. (2021). Effect of cross-linking methods on stress relaxation of PVA/PAM-co-PAA-based hydrogels. International Journal of Polymer Analysis and Characterization, 26, 330–341.

    Google Scholar 

  33. Wang, J.-H., Xue, Y.-N., Wang, Y.-Q., An, M.-W., Qin, Y.-X., & Chen, W.-Y. (2021). High-strength and tough composite hydrogels reinforced by the synergistic effect of nano-doping and triple-network structures. European Polymer Journal, 142, 110122.

    Google Scholar 

  34. Yu, P., Li, Y., Sun, H., Ke, X., Xing, J., Zhao, Y., Xu, X., Qin, M., Xie, J., & Li, J. (2022). Cartilage-inspired hydrogel with mechanical adaptability, controllable lubrication, and inflammation regulation abilities. ACS Applied Materials & Interfaces, 14, 27360–27370.

    Google Scholar 

  35. Guan, P., Ji, Y., Kang, X., Liu, W., Yang, Q., Liu, S., Lin, Y., Zhang, Z., Li, J., Zhang, Y., Liu, C., Fan, L., & Sun, Y. (2023). Biodegradable dual-cross-linked hydrogels with stem cell differentiation regulatory properties promote growth plate injury repair via controllable three-dimensional mechanics and a cartilage-like extracellular matrix. ACS Applied Materials & Interfaces, 15, 8986–8998.

    Google Scholar 

  36. Gennisson, J.-L., Deffieux, T., Macé, E., Montaldo, G., Fink, M., & Tanter, M. (2010). Viscoelastic and anisotropic mechanical properties of in vivo muscle tissue assessed by supersonic shear imaging. Ultrasound in Medicine & Biology, 36, 789–801.

    Google Scholar 

  37. Zhu, J., Wang, J., Liu, Q., Liu, Y., Wang, L., He, C., & Wang, H. (2013). Anisotropic tough poly (2-hydroxyethyl methacrylate) hydrogels fabricated by directional freezing redox polymerization. Journal of Materials Chemistry B, 1, 978–986.

    Google Scholar 

  38. Chen, M., Zhu, J., Qi, G., He, C., & Wang, H. (2012). Anisotropic hydrogels fabricated with directional freezing and radiation-induced polymerization and crosslinking method. Materials Letters, 89, 104–107.

    Google Scholar 

  39. Lin, S., Liu, J., Liu, X., & Zhao, X. (2019). Muscle-like fatigue-resistant hydrogels by mechanical training. Proceedings of the National Academy of Sciences, 116, 10244–10249.

    Google Scholar 

  40. Lin, P., Zhang, T., Wang, X., Yu, B., & Zhou, F. (2016). Freezing molecular orientation under stretch for high mechanical strength but anisotropic hydrogels. Small (Weinheim an der Bergstrasse, Germany), 12, 4386–4392.

    Google Scholar 

  41. Shi, W., Huang, J., Fang, R., & Liu, M. (2020). Imparting functionality to the hydrogel by magnetic-field-induced nano-assembly and macro-response. ACS Applied Materials & Interfaces, 12, 5177–5194.

    Google Scholar 

  42. Pardo, A., Gómez-Florit, M., Barbosa, S., Taboada, P., Domingues, R. M., & Gomes, M. E. (2021). Magnetic nanocomposite hydrogels for tissue engineering: Design concepts and remote actuation strategies to control cell fate. ACS Nano, 15, 175–209.

    Google Scholar 

  43. Sano, K., Ishida, Y., & Aida, T. (2018). Synthesis of anisotropic hydrogels and their applications. Angewandte Chemie International Edition, 57, 2532–2543.

    Google Scholar 

  44. Chen, Q., Zhang, X., Chen, K., Feng, C., Wang, D., Qi, J., Li, X., Zhao, X., Chai, Z., & Zhang, D. (2022). Bilayer hydrogels with low friction and high load-bearing capacity by mimicking the oriented hierarchical structure of cartilage. ACS Applied Materials & Interfaces, 14, 52347–52358.

    Google Scholar 

  45. Khademhosseini, A., & Langer, R. (2007). Microengineered hydrogels for tissue engineering. Biomaterials, 28, 5087–5092.

    Google Scholar 

  46. Nichol, J. W., & Khademhosseini, A. (2009). Modular tissue engineering: Engineering biological tissues from the bottom up. Soft Matter, 5, 1312–1319.

    Google Scholar 

  47. Griffon, D. J., Sedighi, M. R., Schaeffer, D. V., Eurell, J. A., & Johnson, A. L. (2006). Chitosan scaffolds: Interconnective pore size and cartilage engineering. Acta Biomaterialia, 2, 313–320.

    Google Scholar 

  48. Tong, J., Yang, C., Qi, L., Zhang, J., Deng, H., Du, Y., & Shi, X. (2022). Tubular chitosan hydrogels with a tuneable lamellar structure programmed by electrical signals. Chemical Communications, 58, 5781–5784.

    Google Scholar 

  49. Zhang, X., Lou, Z., Yang, X., Chen, Q., Chen, K., Feng, C., Qi, J., Luo, Y., & Zhang, D. (2021). Fabrication and characterization of a multilayer hydrogel as a candidate for artificial cartilage. ACS Applied Polymer Materials, 3, 5039–5050.

    Google Scholar 

  50. Mamachan, M., Maiti, S. K., Banu, A. S., Sharun, K., Mishra, M., & Manjusha, K. M. (2023). Application of nanotechnology in cartilage regeneration. Clinics in Nursing, 2, 520–2644.

    Google Scholar 

  51. Miguel, F., Barbosa, F., Ferreira, F. C., & Silva, J. C. (2022). Electrically conductive hydrogels for articular cartilage tissue engineering. Gels, 8, 710.

    Google Scholar 

  52. Zhao, H., Liu, M., Zhang, Y., Yin, J., & Pei, R. (2020). Nanocomposite hydrogels for tissue engineering applications. Nanoscale, 12, 14976–14995.

    Google Scholar 

  53. Huang, J., Liu, F., Su, H., Xiong, J., Yang, L., Xia, J., & Liang, Y. (2022). Advanced nanocomposite hydrogels for cartilage tissue engineering. Gels, 8, 138.

    Google Scholar 

  54. Fu, Q., Xie, D., Ge, J., Zhang, W., & Shan, H. (2022). Negatively charged composite nanofibrous hydrogel membranes for high-performance protein adsorption. Nanomaterials, 12, 3500.

    Google Scholar 

  55. Moghadam, R. R., Keshvari, H., Imani, R., & Nazarpak, M. H. (2022). A biomimetic three-layered fibrin gel/PLLA nanofibers composite as a potential scaffold for articular cartilage tissue engineering application. Biomedical Materials, 17, 055017.

    Google Scholar 

  56. Elídóttir, K. L., Scott, L., Lewis, R., & Jurewicz, I. (2022). Biomimetic approach to articular cartilage tissue engineering using carbon nanotube–coated and textured polydimethylsiloxane scaffolds. Annals of the New York Academy of Sciences, 1513, 48–64.

    Google Scholar 

  57. Cui, P., Pan, P., Qin, L., Wang, X., Chen, X., Deng, Y., & Zhang, X. (2023). Nanoengineered hydrogels as 3D biomimetic extracellular matrix with injectable and sustained delivery capability for cartilage regeneration. Bioactive Materials, 19, 487–498.

    Google Scholar 

  58. Trucco, D., Vannozzi, L., Teblum, E., Telkhozhayeva, M., Nessim, G. D., Affatato, S., Al-Haddad, H., Lisignoli, G., & Ricotti, L. (2021). Graphene oxide-doped gellan gum–PEGDA bilayered hydrogel mimicking the mechanical and lubrication properties of articular cartilage. Advanced Healthcare Materials, 10, 2001434.

    Google Scholar 

  59. Revzin, A., Russell, R. J., Yadavalli, V. K., Koh, W.-G., Deister, C., Hile, D. D., Mellott, M. B., & Pishko, M. V. (2001). Fabrication of poly (ethylene glycol) hydrogel microstructures using photolithography. Langmuir, 17, 5440–5447.

    Google Scholar 

  60. Sumaru, K., Takagi, T., Morishita, K., Satoh, T., & Kanamori, T. (2018). Fabrication of pocket-like hydrogel microstructures through photolithography. Soft Matter, 14, 5710–5714.

    Google Scholar 

  61. Paul, A., Stührenberg, M., Chen, S., Rhee, D., Lee, W.-K., Odom, T., Heilshorn, S., & Enejder, A. (2017). Micro-and nano-patterned elastin-like polypeptide hydrogels for stem cell culture. Soft Matter, 13, 5665–5675.

    Google Scholar 

  62. Buzzacchera, I., Vorobii, M., Kostina, N. Y., de Los Santos Pereira, A., Riedel, T. S., Bruns, M., Ogieglo, W., Möller, M., Wilson, C. J., & Rodriguez-Emmenegger, C. (2017). Polymer brush-functionalized chitosan hydrogels as antifouling implant coatings. Biomacromolecules, 18, 1983–1992.

    Google Scholar 

  63. Zhou, J., Lin, Y., Wang, L., Zhou, L., Yu, B., Zou, X., Luo, Z., & Hu, H. (2021). Poly (carboxybetaine methacrylate) grafted on PVA hydrogel via a novel surface modification method under near-infrared light for enhancement of antifouling properties. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 617, 126369.

    Google Scholar 

  64. Xiao, F., Zheng, P., Tang, J., Huang, X., Kang, W., Zhou, G., & Sun, K. (2023). Cartilage-bioinspired, tough and lubricated hydrogel based on nanocomposite enhancement effect. Journal of Materials Chemistry B, 11, 4763–4775.

    Google Scholar 

  65. Yang, L., Li, R., Liao, X., Li, T., Kong, Y., Zhao, X., Wang, R., Ma, Z., Fan, Z., Liang, Y.-M., Ma, S., & Zhou, F. (2023). Zwitterionic polyelectrolyte brush modified chitosan nanoparticles as functional biolubricant with good friction-reduction effect. Tribology International, 183, 108405.

    Google Scholar 

  66. Zhao, Y., Wang, H., Zhao, W., Luo, J., Zhao, X., & Zhang, H. (2022). Bioinspired self-adhesive lubricated coating for the surface functionalization of implanted biomedical devices. Langmuir, 38, 15178–15189.

    Google Scholar 

  67. Wang, H., Yang, Y., Zhao, W., Han, Y., Luo, J., Zhao, X., & Zhang, H. (2022). Bioinspired polymeric coating with self-adhesion, lubrication, and drug release for synergistic bacteriostatic and bactericidal performance. Advanced Materials Interfaces, 9, 2200561.

    Google Scholar 

  68. Li, Q., Wen, C., Yang, J., Zhou, X., Zhu, Y., Zheng, J., Cheng, G., Bai, J., Xu, T., Ji, J., Jiang, S., Zhang, L., & Zhang, P. (2022). Zwitterionic biomaterials. Chemical Reviews, 122, 17073–17154.

    Google Scholar 

  69. Zhao, Y., Qian, Y., Wang, H., Zhao, W., Zhao, J., & Zhang, H. (2023). Bioinspired polycation functionalization of the polyurethane surface for enhanced lubrication, antibacterial property, and anticoagulation. ACS Applied Polymer Materials, 5, 3999–4010.

    Google Scholar 

  70. Liu, Y., Xiong, D., & Zhao, X. (2020). Improved biotribological properties of polyetheretherketone composites for artificial joints with a ‘soft-on-hard’structure and brushlike molecules. Tribology International, 145, 106165.

    Google Scholar 

  71. Zhao, W., Zhang, Y., Zhao, X., Ji, Z., Ma, Z., Gao, X., Ma, S., Wang, X., & Zhou, F. (2022). Bioinspired design of a cartilage-like lubricated composite with mechanical robustness. ACS Applied Materials & Interfaces, 14, 9899–9908.

    Google Scholar 

  72. Luo, C., Guo, A., Li, J., Tang, Z., & Luo, F. (2022). Janus hydrogel to mimic the structure and property of articular cartilage. ACS Applied Materials & Interfaces, 14, 35434–35443.

    Google Scholar 

  73. Yang, F., Zhao, J., Koshut, W. J., Watt, J., Riboh, J. C., Gall, K., & Wiley, B. J. (2020). A synthetic hydrogel composite with the mechanical behavior and durability of cartilage. Advanced Functional Materials, 30, 2003451.

    Google Scholar 

  74. Yuan, S., Chen, X., & Zhang, C. (2020). Reducing friction by control of isoelectric point: A potential method to design artificial cartilage. Advanced Materials Interfaces, 7, 2000485.

    Google Scholar 

  75. Liu, Y., Xiong, D., & Zhao, X. (2021). A bionic PEEK composite structure with negatively charged surface adsorbing molecular brushes possessing improved biotribological properties for artificial joints. Tribology International, 155, 106808.

    Google Scholar 

  76. Uchida, A., Araki, N., Shinto, Y., Yoshikawa, H., Kurisaki, E., & Ono, K. (1990). The use of calcium hydroxyapatite ceramic in bone tumour surgery. The Journal of Bone & Joint Surgery British, 72, 298–302.

    Google Scholar 

  77. Oonishi, H. (1991). Orthopaedic applications of hydroxyapatite. Biomaterials, 12, 171–178.

    Google Scholar 

  78. Yu, P., Bao, R.-Y., Shi, X.-J., Yang, W., & Yang, M.-B. (2017). Self-assembled high-strength hydroxyapatite/graphene oxide/chitosan composite hydrogel for bone tissue engineering. Carbohydrate Polymers, 155, 507–515.

    Google Scholar 

  79. Fang, J., Li, P., Lu, X., Fang, L., Lü, X., & Ren, F. (2019). A strong, tough, and osteoconductive hydroxyapatite mineralized polyacrylamide/dextran hydrogel for bone tissue regeneration. Acta Biomaterialia, 88, 503–513.

    Google Scholar 

  80. Nonoyama, T., Wada, S., Kiyama, R., Kitamura, N., Mredha, M. T. I., Zhang, X., Kurokawa, T., Nakajima, T., Takagi, Y., Yasuda, K., & Gong, J. P. (2016). Double-network hydrogels strongly bondable to bones by spontaneous osteogenesis penetration. Advanced Materials, 28, 6740–6745.

    Google Scholar 

  81. Zhao, X., Xiong, D., & Liu, Y. (2018). Improving surface wettability and lubrication of polyetheretherketone (PEEK) by combining with polyvinyl alcohol (PVA) hydrogel. Journal of the Mechanical Behavior of Biomedical Materials, 82, 27–34.

    Google Scholar 

  82. Huang, L., Hu, J., Lang, L., Wang, X., Zhang, P., Jing, X., Wang, X., Chen, X., Lelkes, P. I., MacDiarmid, A. G., & Wei, Y. (2007). Synthesis and characterization of electroactive and biodegradable ABA block copolymer of polylactide and aniline pentamer. Biomaterials, 28, 1741–1751.

    Google Scholar 

  83. Hayes, W. C., & Mockros, L. F. (1971). Viscoelastic properties of human articular cartilage. Journal of Applied Physiology, 31, 562–568.

    Google Scholar 

  84. Murphy, W., Black, J., & Hastings, G. (2013). Handbook of biomaterial properties (pp. 38–42). Springer.

    Google Scholar 

  85. Bao, W., Li, M., Yang, Y., Wan, Y., Wang, X., Bi, N., & Li, C. (2020). Advancements and frontiers in the high performance of natural hydrogels for cartilage tissue engineering. Frontiers in Chemistry, 8, 53.

    Google Scholar 

  86. Catoira, M. C., Fusaro, L., Di Francesco, D., Ramella, M., & Boccafoschi, F. (2019). Overview of natural hydrogels for regenerative medicine applications. Journal of Materials Science: Materials in Medicine, 30, 1–10.

    Google Scholar 

  87. Meng, Y., Cao, J., Chen, Y., Yu, Y., & Ye, L. (2020). 3D printing of a poly (vinyl alcohol)-based nano-composite hydrogel as an artificial cartilage replacement and the improvement mechanism of printing accuracy. Journal of Materials Chemistry B, 8, 677–690.

    Google Scholar 

  88. Cui, L., Li, H., Gong, C., Huang, J., & Xiong, D. (2022). A biomimetic bilayer coating on laser-textured Ti6Al4V alloy with excellent surface wettability and biotribological properties for artificial joints. Ceramics International, 48, 26264–26273.

    Google Scholar 

  89. Huang, L., Li, Z., Ma, S., Ye, D., Yang, J., Qin, G., Yin, H., & Chen, Q. (2022). Articular cartilage-inspired hybrid double-network hydrogels with a layered structure and low friction properties. ACS Applied Polymer Materials, 4, 7634–7644.

    Google Scholar 

  90. Wei, Q., Liu, H., Zhao, X., Zhao, W., Xu, R., Ma, S., & Zhou, F. (2023). Bio-inspired hydrogel-polymer brush bi-layered coating dramatically boosting the lubrication and wear-resistance. Tribology International, 177, 108000.

    Google Scholar 

  91. Han, Y., Yang, J., Zhao, W., Wang, H., Sun, Y., Chen, Y., Luo, J., Deng, L., Xu, X., Cui, W., & Zhang, H. (2021). Biomimetic injectable hydrogel microspheres with enhanced lubrication and controllable drug release for the treatment of osteoarthritis. Bioactive Materials, 6, 3596–3607.

    Google Scholar 

  92. Chen, Q., Liu, S., Yuan, Z., Yang, H., Xie, R., & Ren, L. (2022). Construction and tribological properties of biomimetic cartilage-lubricating hydrogels. Gels, 8, 415.

    Google Scholar 

  93. Zhang, K., Yang, J., Sun, Y., Wang, Y., Liang, J., Luo, J., Cui, W., Deng, L., Xu, X., Wang, B., & Zhang, H. (2022). Gelatin-based composite hydrogels with biomimetic lubrication and sustained drug release. Friction, 10, 232–246.

    Google Scholar 

  94. Xiao, F., Tang, J., Huang, X., Kang, W., & Zhou, G. (2023). A robust, low swelling, and lipid-lubricated hydrogel for bionic articular cartilage substitute. Journal of Colloid and Interface Science, 629, 467–477.

    Google Scholar 

  95. Liu, Y., & Xiong, D. (2021). A tannic acid-reinforced PEEK-hydrogel composite material with good biotribological and self-healing properties for artificial joints. Journal of Materials Chemistry B, 9, 8021–8030.

    Google Scholar 

  96. Zhang, R., Zhao, W., Ning, F., Zhen, J., Qiang, H., Zhang, Y., Liu, F., & Jia, Z. (2022). Alginate fiber-enhanced poly (vinyl alcohol) hydrogels with superior lubricating property and biocompatibility. Polymers, 14, 4063.

    Google Scholar 

  97. Zhao, X., Karthik, N., Xiong, D., & Liu, Y. (2020). Bio-inspired surface modification of PEEK through the dual cross-linked hydrogel layers. Journal of the Mechanical Behavior of Biomedical Materials, 112, 104032.

    Google Scholar 

  98. Liu, H., Zhao, X., Zhang, Y., Ma, S., Ma, Z., Pei, X., Cai, M., & Zhou, F. (2020). Cartilage mimics adaptive lubrication. ACS Applied Materials & Interfaces, 12, 51114–51121.

    Google Scholar 

  99. Chen, Q., Zhang, X., Liu, S., Chen, K., Feng, C., Li, X., Qi, J., Luo, Y., Liu, H., & Zhang, D. (2022). Cartilage-bone inspired the construction of soft-hard composite material with excellent interfacial binding performance and low friction for artificial joints. Friction, 11, 1177–1193.

    Google Scholar 

  100. Li, J., Gao, L., Xu, R., Ma, S., Ma, Z., Liu, Y., Wu, Y., Feng, L., Cai, M., & Zhou, F. (2022). Fibers reinforced composite hydrogels with improved lubrication and load-bearing capacity. Friction, 10, 54–67.

    Google Scholar 

  101. Ye, Z., Lu, H., Chai, G., Wu, C., Chen, J., & Lv, L. (2023). Glycerol-modified poly (vinyl alcohol)/poly (ethylene glycol) self-healing hydrogel for artificial cartilage. Polymer International, 72, 27–38.

    Google Scholar 

  102. Morgese, G., Ramakrishna, S. N., Simic, R., Zenobi-Wong, M., & Benetti, E. M. (2018). Hairy and slippery polyoxazoline-based copolymers on model and cartilage surfaces. Biomacromolecules, 19, 680–690.

    Google Scholar 

  103. Xu, R., Zhao, X., Ma, S., Ma, Z., Wang, R., Cai, M., & Zhou, F. (2021). Hydrogen bonding induced enhancement for constructing anisotropic sugarcane composite hydrogels. Journal of Applied Polymer Science, 138, 51374.

    Google Scholar 

  104. Cui, L., Li, H., Huang, J., & Xiong, D. (2021). Improved biotribological performance of Ti6Al4V alloy through the synergetic effects of porous TiO2 layer and zwitterionic hydrogel coating. Ceramics International, 47, 34970–34978.

    Google Scholar 

  105. Shi, Y., Liu, J., Li, J., Xiong, D., & Dini, D. (2022). Improved mechanical and tribological properties of PAAm/PVA hydrogel-Ti6Al4V alloy configuration for cartilage repair. Journal of Polymer Research, 29, 515.

    Google Scholar 

  106. Deng, S., Wang, L., Zhao, C., Xiang, D., Li, H., Wang, B., Li, Z., Zhou, H., & Wu, Y. (2023). Low coefficient of friction hydrogels with fast self-healing properties inspired by articular cartilage. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 656, 130380.

    Google Scholar 

  107. Chen, J., Cui, L., Yan, C., & Xiong, D. (2021). Mechanical and tribological study of PVA–pMPDSAH double-network hydrogel prepared by ultraviolet irradiation and freeze–thaw methods for bionic articular cartilage. Journal of Bionic Engineering, 18, 1192–1201.

    Google Scholar 

  108. Ye, Z., Lu, H., Jia, E., Chen, J., & Fu, L. (2022). Organic solvents enhance polyvinyl alcohol/polyethylene glycol self-healing hydrogels for artificial cartilage. Polymers for Advanced Technologies, 33, 3455–3469.

    Google Scholar 

  109. Cui, L., Tong, W., Zhou, H., Yan, C., Chen, J., & Xiong, D. (2021). PVA-BA/PEG hydrogel with bilayer structure for biomimetic articular cartilage and investigation of its biotribological and mechanical properties. Journal of Materials Science, 56, 3935–3946.

    Google Scholar 

  110. Xi, Y., Sharma, P. K., Kaper, H. J., & Choi, C.-H. (2021). Tribological properties of micropored poly (2-hydroxyethyl methacrylate) hydrogels in a biomimetic aqueous environment. ACS Applied Materials & Interfaces, 13, 41473–41484.

    Google Scholar 

  111. Bas, O., Lucarotti, S., Angella, D. D., Castro, N. J., Meinert, C., Wunner, F. M., Rank, E., Vozzi, G., Klein, T. J., Catelas, I., De-Juan-Pardo, E. M., & Hutmacher, D. W. (2018). Rational design and fabrication of multiphasic soft network composites for tissue engineering articular cartilage: A numerical model-based approach. Chemical Engineering Journal, 340, 15–23.

    Google Scholar 

  112. Sridhar, S. L., Schneider, M. C., Chu, S., De Roucy, G., Bryant, S. J., & Vernerey, F. J. (2017). Heterogeneity is key to hydrogel-based cartilage tissue regeneration. Soft Matter, 13, 4841–4855.

    Google Scholar 

  113. Pearce, D., Fischer, S., Huda, F., & Vahdati, A. (2020). Applications of computer modeling and simulation in cartilage tissue engineering. Tissue Engineering and Regenerative Medicine, 17, 1–13.

    Google Scholar 

  114. Liao, J., Smith, D. W., Miramini, S., Gardiner, B. S., & Zhang, L. (2020). A coupled contact model of cartilage lubrication in the mixed-mode regime under static compression. Tribology International, 145, 106185.

    Google Scholar 

  115. Liao, J., Smith, D. W., Miramini, S., Gardiner, B. S., & Zhang, L. (2021). A probabilistic failure risk approach to the problem of articular cartilage lubrication. Computer Methods and Programs in Biomedicine, 203, 106053.

    Google Scholar 

  116. Elahi, S. A., Tanska, P., Mukherjee, S., Korhonen, R. K., Geris, L., Jonkers, I., & Famaey, N. (2021). Guide to mechanical characterization of articular cartilage and hydrogel constructs based on a systematic in silico parameter sensitivity analysis. Journal of the Mechanical Behavior of Biomedical Materials, 124, 104795.

    Google Scholar 

  117. Mairpady, A., Mourad, A.-H.I., & Mozumder, M. S. (2022). Accelerated discovery of the polymer blends for cartilage repair through data-mining tools and machine-learning algorithm. Polymers, 14, 1802.

    Google Scholar 

  118. Chatterjee, A., Dubey, D. K., & Sinha, S. K. (2021). Nanoscale friction and adhesion mechanisms in articular cartilage top layer hydrated interfaces: Insights from atomistic simulations. Applied Surface Science, 550, 149216.

    Google Scholar 

  119. Chatterjee, A., Dubey, D. K., & Sinha, S. K. (2020). Effect of loading on the adhesion and frictional characteristics of top layer articular cartilage nanoscale contact: A molecular dynamics study. Langmuir, 37, 46–62.

    Google Scholar 

Download references

Acknowledgements

This work is supported by National Natural Science Foundation of China (Grant No. 51975296).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dangsheng Xiong.

Ethics declarations

Conflict of Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Javan Almasi, M., Xiong, D. Recent Progress in Bionic Hydrogels for Articular Cartilage: Tribological and Mechanical Characteristics. J Bionic Eng 21, 653–673 (2024). https://doi.org/10.1007/s42235-024-00480-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42235-024-00480-z

Keywords

Navigation