Skip to main content
Log in

A Bionic Degassing Device Inspired by Gills: Application on Underwater Oil and Gas Detection

  • Research Article
  • Published:
Journal of Bionic Engineering Aims and scope Submit manuscript

Abstract

Over the past decades, membrane-based separation processes have found numerous applications in various industries. Membrane contactor is an important part of the separation of dissolved gas in the early stage of gas detection. In this paper, to improve efficiency in the detection of the dissolved gas phase in seawater, a better flat membrane contactor is proposed to achieve efficient degassing, inspired by the way fish breathe underwater and the special structure of fish gills. The bioinspired flow channel structures in the flat membrane contactor are suggested along with the distribution of internal blood vessels in the gill platelet and the feature of the gill platelet surface. Using 3D printing, the special degassing devices are manufactured, and comparative analysis of relevant flow parameters is made using different flow channels, combined with the CFD simulation. The final result showed that the proposed flow channel in the degasser achieves a better degassing effect compared with conventional flow channel when the membrane contact area is limited, which can provide good conditions for subsequent gas detection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data Availability

Data are openly available in a public repository and the initial data can be obtained from: https://pan.baidu.com/s/1gBFy6ReTrQ8sc5U0HvQnAg (6uxw).

References

  1. Sengupta, A., Peterson, P., Miller, B., Schneider, J., & Fulk, C., Jr. (1998). Large-scale application of membrane contactors for gas transfer from or to ultrapure water. Separation and Purification Technology, 14, 189–200.

    Google Scholar 

  2. Kodovska, F.G.-T., Sparrow, K. J., Yvon-Lewis, S. A., Paytan, A., Dimova, N. T., Lecher, A., & Kessler, J. D. (2016). Dissolved methane and carbon dioxide fluxes in Subarctic and Arctic regions: Assessing measurement techniques and spatial gradients. Earth and Planetary Science Letters, 436, 43–55.

    Google Scholar 

  3. Chua, E. J., Savidge, W., Short, R. T., Cardenas-Valencia, A. M., & Fulweiler, R. W. (2016). A review of the emerging field of underwater mass spectrometry. Frontiers in Marine Science, 3, 209.

    Google Scholar 

  4. Li, X., Fan, X. Y., He, Y. B., Chen, B., Yao, L., Hu, M., & Kan, R. F. (2019). Development of a compact tunable diode laser absorption spectroscopy based system for continuous measurements of dissolved carbon dioxide in seawater. Review of Scientific Instruments, 90, 065110.

    Google Scholar 

  5. Stanojević, M., Lazarević, B., & Radić, D. (2003). Review of membrane contactors designs and applications of different modules in industry. FME Transactions, 31, 91–98.

    Google Scholar 

  6. Kim, S., Scholes, C. A., Heath, D. E., & Kentish, S. E. (2021). Gas-liquid membrane contactors for carbon dioxide separation: A review. Chemical Engineering Journal, 411, 128468.

    Google Scholar 

  7. Wu, R. Y., Su, K. Z., Wang, Z. D., Hao, T. W., & Liu, S. G. (2019). A comprehensive investigation of filtration performance in submerged hollow fibre membrane modules with different fibre geometries. Separation and Purification Technology, 221, 93–100.

    Google Scholar 

  8. Yan, S. Y., Wang, Y. J., Mao, H., & Zhao, Z. P. (2019). Fabrication of PP hollow fiber membrane via TIPS using environmentally friendly diluents and its CO2 degassing performance. RSC Advances, 9, 19164–19170.

    Google Scholar 

  9. Bae, C., Park, K., Heo, H., & Yang, D. R. (2017). Quantitative estimation of internal concentration polarization in a spiral wound forward osmosis membrane module compared to a flat sheet membrane module. Korean Journal of Chemical Engineering, 34, 844–853.

    Google Scholar 

  10. Bopape, M. F., Van Geel, T., Dutta, A., Van der Bruggen, B., & Onyango, M. S. (2021). Numerical modelling assisted design of a compact ultrafiltration (UF) flat sheet membrane module. Membranes, 11, 54.

    Google Scholar 

  11. Cao, Z., Wiley, D., & Fane, A. (2001). CFD simulations of net-type turbulence promoters in a narrow channel. Journal of Membrane Science, 185, 157–176.

    Google Scholar 

  12. Chang, H., Ho, C. D., Chen, Y. H., Chen, L., Hsu, T. H., Lim, J. W., Chiou, C. P., & Lin, P. H. (2021). Enhancing the Permeate Flux of Direct Contact Membrane distillation modules with inserting 3D printing turbulence promoters. Membranes, 11, 266.

    Google Scholar 

  13. Nagase, K., Kohori, F., Sakai, K., & Nishide, H. (2005). Rearrangement of hollow fibers for enhancing oxygen transfer in an artificial gill using oxygen carrier solution. Journal of Membrane Science, 254, 207–217.

    Google Scholar 

  14. Iranzo, A., Arredondo, C., Kannan, A., & Rosa, F. (2020). Biomimetic flow fields for proton exchange membrane fuel cells: A review of design trends. Energy, 190, 116435.

    Google Scholar 

  15. Adkins, D., & Yan, Y. Y. (2006). CFD simulation of fish-like body moving in viscous liquid. Journal of Bionic Engineering, 3, 147–153.

    Google Scholar 

  16. Kowalczyk, W., & Delgado, A. (2007). Simulation of fluid flow in a channel induced by three types of fin-like motion. Journal of Bionic Engineering, 4, 165–176.

    Google Scholar 

  17. Yan, Y. Y. (2007). Recent advances in computational simulation of macro-, meso-, and micro-scale biomimetics related fluid flow problems. Journal of Bionic Engineering, 4, 97–107.

    Google Scholar 

  18. Salumäe, T., & Kruusmaa, M. (2011). A flexible fin with bio-inspired stiffness profile and geometry. Journal of Bionic Engineering, 8, 418–428.

    Google Scholar 

  19. Bajsanski, I., Stojakovic, V., Tepavcevic, B., Jovanovic, M., & Mitov, D. (2017). An application of the shark skin denticle geometry for windbreak fence design and fabrication. Journal of Bionic Engineering, 14, 579–587.

    Google Scholar 

  20. Nguyen, P. L., Do, V. P., & Lee, B. R. (2013). Dynamic modeling and experiment of a fish robot with a flexible tail fin. Journal of Bionic Engineering, 10, 39–45.

    Google Scholar 

  21. Sirkar, K. K. (2008). membranes, phase interfaces, and separations: Novel techniques and membranes—An overview. Industrial and Engineering Chemistry Research, 47, 5250–5266.

    Google Scholar 

  22. Hashemifard, S., Ismail, A., Matsuura, T., & DashtArzhandi, M. R. (2015). Performance of silicon rubber coated polyetherimide hollow fibers for CO2 removal via a membrane contactor. RSC Advances, 5, 48442–48455.

    Google Scholar 

  23. Kartohardjono, S., & Chen, V. (2005). Mass transfer and fluid hydrodynamics in sealed end hydrophobic hollow fiber membrane gas-liquid contactors. Journal of Applied Membrane Science and Technology, 2, 1–12.

    Google Scholar 

  24. Sethunga, G. S. M. D. P., Lee, J., Wang, R., & Bae, T.-H. (2019). Influence of membrane characteristics and operating parameters on transport properties of dissolved methane in a hollow fiber membrane contactor for biogas recovery from anaerobic effluents. Journal of Membrane Science, 589, 117263.

    Google Scholar 

  25. Nabian, N., Ghoreyshi, A. A., Rahimpour, A., & Shakeri, M. (2015). Performance evaluation and mass transfer study of CO2 absorption in flat sheet membrane contactor using novel porous polysulfone membrane. Korean Journal of Chemical Engineering, 32, 2204–2211.

    Google Scholar 

  26. Jiménez-Robles, R., Gabaldón, C., Martínez-Soria, V., & Izquierdo, M. (2021). Simultaneous application of vacuum and sweep gas in a polypropylene membrane contactor for the recovery of dissolved methane from water. Journal of Membrane Science, 617, 118560.

    Google Scholar 

  27. Leiknes, T., & Semmens, M. J. (2001). Vacuum degassing using microporous hollow fiber membranes. Separation and Purification Technology, 22–23, 287–294.

    Google Scholar 

  28. Henares, M., Ferrero, P., San-Valero, P., Martinez-Soria, V., & Izquierdo, M. (2018). Performance of a polypropylene membrane contactor for the recovery of dissolved methane from anaerobic effluents: Mass transfer evaluation, long-term operation and cleaning strategies. Journal of Membrane Science, 563, 926–937.

    Google Scholar 

  29. Mavroudi, M., Kaldis, S., & Sakellaropoulos, G. (2006). A study of mass transfer resistance in membrane gas–liquid contacting processes. Journal of Membrane Science, 272, 103–115.

    Google Scholar 

  30. Baitalow, K., Wypysek, D., Leuthold, M., Weisshaar, S., Lölsberg, J., & Wessling, M. (2021). A mini-module with built-in spacers for high-throughput ultrafiltration. Journal of Membrane Science, 637, 119602.

    Google Scholar 

  31. Alexiadis, A., Wiley, D., Fletcher, D., & Bao, J. (2007). Laminar flow transitions in a 2D channel with circular spacers. Industrial and Engineering Chemistry Research, 46, 5387–5396.

    Google Scholar 

  32. Bhaumik, D., Majumdar, S., Fan, Q., & Sirkar, K. K. (2004). Hollow fiber membrane degassing in ultrapure water and microbiocontamination. Journal of Membrane Science, 235, 31–41.

    Google Scholar 

  33. Henares, M., Izquierdo, M., Penya-Roja, J. M., & Martínez-Soria, V. (2016). Comparative study of degassing membrane modules for the removal of methane from Expanded Granular Sludge Bed anaerobic reactor effluent. Separation and Purification Technology, 170, 22–29.

    Google Scholar 

  34. Cao, X., Lee, H.-S., & Feng, X. (2020). Extraction of dissolved methane from aqueous solutions by membranes: Modelling and parametric studies. Journal of Membrane Science, 596, 117594.

    Google Scholar 

  35. Eiras-Stofella, D. R., Charvet-Almeida, P., Fanta, E., & Vianna, A. C. (2001). Surface ultrastructure of the gills of the mullets Mugil curema, M. liza and M. platanus (Mugilidae, Pisces). Journal of Morphology, 247, 122–133.

    Google Scholar 

  36. Kumari, U., Mittal, S., & Mittal, A. K. (2012). Surface ultrastructure of the gill filaments and the secondary lamellae of the catfish, Rita rita, and the carp, Cirrhinus mrigala. Microscopy Research and Technique, 75, 433–440.

    Google Scholar 

  37. Kamiya, A., & Yamamoto, K. (2019). A biomechanically derived minimum work model of the fish gill lamellar system exhibits its exquisite morphological arrangement and perfusate regulation for oxygen uptake from water. Journal of Biomechanics, 88, 155–163.

    Google Scholar 

  38. Piiper, J., Scheid, P., Perry, S. F., & Hughes, G. M. (1986). Effective and morphometric oxygen-diffusing capacity of the gills of the elasmobranch Scyliorhinus stellaris. Journal of Experimental Biology, 123, 27–41.

    Google Scholar 

  39. Malte, H., & Weber, R. E. (1985). A mathematical model for gas exchange in the fish gill based on non-linear blood gas equilibrium curves. Respiration Physiology, 62, 359–374.

    Google Scholar 

  40. Strother, J. A. (2013). A computational model of flow between the microscale respiratory structures of fish gills. Journal of Theoretical Biology, 338, 23–40.

    MathSciNet  MATH  Google Scholar 

  41. Steen, J. B., & Kruysse, A. (1964). The respiratory function of teleostean gills. Comparative Biochemistry and Physiology, 12, 127–142.

    Google Scholar 

  42. Strother, J. A. (2013). Hydrodynamic resistance and flow patterns in the gills of a tilapine fish. Journal of Experimental Biology, 216, 2595–2606.

    Google Scholar 

  43. Hills, B. A., & Hughes, G. M. (1970). A dimensional analysis of oxygen transfer in the fish gill. Respiration Physiology, 9, 126–140.

    Google Scholar 

  44. Wu, X. K., Sha, H. F., Zhang, F., Wu, F. W., Zhang, Z. B., & Wang, Z. X. (2013). Influence of geometry structures on the transfer and flow characteristics of membrane modules. Chemical Engineering and Technology, 36, 1943–1950.

    Google Scholar 

  45. Liang, Y., Weihs, G. F., & Wiley, D. (2020). Comparison of oscillating flow and slip velocity mass transfer enhancement in spacer-filled membrane channels: CFD analysis and validation. Journal of Membrane Science, 593, 117433.

    Google Scholar 

  46. McLeod, A., Jefferson, B., & McAdam, E. J. (2016). Toward gas-phase controlled mass transfer in micro-porous membrane contactors for recovery and concentration of dissolved methane in the gas phase. Journal of Membrane Science, 510, 466–471.

    Google Scholar 

  47. Li, T., Yu, P., & Luo, Y. B. (2015). Deoxygenation performance of polydimethylsiloxane mixed-matrix membranes for dissolved oxygen removal from water. Journal of Applied Polymer Science, 132, 4.

    Google Scholar 

  48. Wang, Y., Howell, J. A., Field, R. W., & Wu, D. (1994). Simulation of cross-flow filtration for baffled tubular channels and pulsatile flow. Journal of Membrane Science, 95, 243–258.

    Google Scholar 

  49. Cookney, J., Cartmell, E., Jefferson, B., & McAdam, E. (2012). Recovery of methane from anaerobic process effluent using poly-di-methyl-siloxane membrane contactors. Water Science and Technology, 65, 604–610.

    Google Scholar 

  50. Bandara, W. M., Satoh, H., Sasakawa, M., Nakahara, Y., Takahashi, M., & Okabe, S. (2011). Removal of residual dissolved methane gas in an upflow anaerobic sludge blanket reactor treating low-strength wastewater at low temperature with degassing membrane. Water Research, 45, 3533–3540.

    Google Scholar 

  51. Keir, G., & Jegatheesan, V. (2014). A review of computational fluid dynamics applications in pressure-driven membrane filtration. Reviews in Environmental Science and Bio/Technology, 13, 183–201.

    Google Scholar 

  52. Tian, G. Y., Zhang, Y. S., Feng, X. M., & Hu, Y. S. (2021). Focus on bioinspired textured surfaces toward fluid drag reduction: Recent progresses and challenges. Advanced Engineering Materials, 24, 2100696.

    Google Scholar 

  53. Han, Y., Huang, X., Lu, Y., Zhu, D. F., & Shi, X. (2021). Study of intrinsic oxygen mass transfer characteristic and model on polypropylene hollow fiber membrane contactor. International Communications in Heat and Mass Transfer, 121, 105045.

    Google Scholar 

  54. Ahmed, S., Taif Seraji, M., Jahedi, J., & Hashib, M. A. (2011). CFD simulation of turbulence promoters in a tubular membrane channel. Desalination, 276, 191–198.

    Google Scholar 

Download references

Funding

This article was funded by Science-Technology Development Plan Project of Jilin Province, 20210203099SF, Zhiyong Chang, Science and Technology Development Project of Jilin Province, 20190303061SF, Yongming Yao, 13th Five-Year Plan Scientific Research Foundation of the Education Department of Jilin Province, JJKH20190190KJ, Zhiyong Chang.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiyong Chang.

Ethics declarations

Conflict of interest

The authors declared that they have no conflicts of interest to this work. We declare that we do not have any commercial or associative interest that represents a conflict of interest in connection with the work submitted.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yao, Y., Li, H., Sun, Y. et al. A Bionic Degassing Device Inspired by Gills: Application on Underwater Oil and Gas Detection. J Bionic Eng 20, 253–266 (2023). https://doi.org/10.1007/s42235-022-00264-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42235-022-00264-3

Keywords

Navigation