Skip to main content

Advertisement

Log in

Effect of Filler Content on Flexural and Viscoelastic Properties of Coir Fibers and Argania Nut-shells Reinforced Phenolic Resin Composites

  • Research Article
  • Published:
Journal of Bionic Engineering Aims and scope Submit manuscript

Abstract

The characteristics of two different kinds of lignocellulosic materials (vegetable fillers) with two morphologies as Argania nut-shells (ANS) particles and Coir Fibers (CF) were used as reinforcement for phenolic resin (Bakelite) in this work, and the composite are studied as a function of filler types, shape, content (10, 20, and 30% wt. percent) and manufacturing loading force (1500 and 3000 LBs). Compression molding was used to create the composites, which were then evaluated using Scanning electronic microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR), bending, dynamic-mechanical-thermal and rheological studies. The morphology of broken samples demonstrates that both fillers are well dispersed and distributed. When fillers are added to the matrix, the flexural characteristics improve, and the optimal values are attained in the case of Argania nut-shells. The results showed that the kind and shape of the fillers had a direct influence on the dynamic mechanical characteristics of the composites due to the reinforcement's modulus augmentation. It was noticed that, the increment of manufacturing loading force decreased the mechanical and dynamical properties of composites. The optimum properties obtained indicate that the composites can only be manufactured at low manufacturing loading force (1500 LBs).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Essabir, H., Nekhlaoui, S., Bensalah, M. O., Rodrigue, D., Bouhfid, R., & Qaiss, Ak. (2017). Phosphogypsum waste used as reinforcing fillers in polypropylene based composites: structural, mechanical and thermal properties. J Poly Environ., 25, 658–666.

    Article  Google Scholar 

  2. Raji, M., Essabir, H., Bouhfid, R., & KacemQaiss, AEl. (2017). Impact of chemical treatment and the manufacturing process on mechanical, thermal, and rheological properties of natural fibers-based composites. Handbook of Composites from Renewable Materials (pp. 225–252). USA. Wiley: Hoboken, NJ.

    Chapter  Google Scholar 

  3. Essabir, H., Hilali, E., Elgharad, A., El Minor, H., Imad, A., Elamraoui, A., et al. (2013). Mechanical and thermal properties of bio-composites based on polypropylene reinforced with Nut-shells of Argan particles. Mater Design., 49, 442–448.

    Article  Google Scholar 

  4. I Hamerton J Kratz (2018) The use of thermosets in modern aerospace applications In Thermosets (Second Edition) Elsevier 303–340.

  5. Mallick, P. K. (2010). Thermoset-matrix composites for lightweight automotive structures. Materials, Design and Manufacturing for Lightweight Vehicles: Woodhead Pub Ltd. https://doi.org/10.1533/9781845697822.1.208

    Book  Google Scholar 

  6. Kordass, T., Bachy, B., Weisser, M., & Franke, J. (2017). Laser-assisted selective activation of injection molded chip packaging devices with thermoset substrate materials for intelligent connectivity systems in automobiles. Procedia CIRP., 63, 101–106.

    Article  Google Scholar 

  7. S Agarwal, RK Gupta (2017). The use of thermosets in the building and construction industry 2nd eds Thermosets Structure Properties and Applications: Second Edition Elsevier 279–302.

  8. Tóth, L. F., Sukumaran, J., Szebényi, G., Kalácska, Á., Fauconnier, D., Nagarajan, R., et al. (2020). Large-scale tribological characterisation of eco-friendly basalt and jute fibre reinforced thermoset composites. Wear. https://doi.org/10.1016/j.wear.2020.203274.

    Article  Google Scholar 

  9. Xie, B. J., Sun, M. Y., Xu, B., Wang, C. Y., Jiang, H. Y., Li, D. Z., et al. (2019). Oxidation of stainless steel in vacuum and evolution of surface oxide scales during hot-compression bonding. Corrosion Science, 147, 41–52.

    Article  Google Scholar 

  10. Lu, S. H., Wu, D., Chen, R. S., Han, E., & hou. (2019). The effect of twinning on dynamic recrystallization behavior of Mg-Gd-Y alloy during hot compression. Journal of Alloys and Compounds, 803, 277–290.

    Article  Google Scholar 

  11. Raji, M., Essabir, H., Rodrigue, D., Bouhfid, R., el Qaiss, A., & kacem. (2018). Influence of graphene oxide and graphene nanosheet on the properties of polyvinylidene fluoride nanocomposites. Poly Comp., 39, 2932–2941.

    Article  Google Scholar 

  12. Negawo, T. A., Polat, Y., Buyuknalcaci, F. N., Kilic, A., Saba, N., & Jawaid, M. (2019). Mechanical, morphological, structural and dynamic mechanical properties of alkali treated Ensete stem fibers reinforced unsaturated polyester composites. Comp Struct., 207, 589–597.

    Article  Google Scholar 

  13. Malha, M., Nekhlaoui, S., Essabir, H., Benmoussa, K., Bensalah, M. O., Arrakhiz, F. E., et al. (2013). Mechanical and thermal properties of compatibilized polypropylene reinforced by woven doum. Journal of Appllied Polymer Science., 130, 4347–4356.

    Google Scholar 

  14. Asim, M., Jawaid, M., Abdan, K., & Ishak, M. R. (2017). The effect of silane treated fibre loading on mechanical properties of pineapple leaf/kenaf fibre filler phenolic composites. Journal of Polymers and the Environment., 26, 1520–1527.

    Article  Google Scholar 

  15. Azeem, S., & Zain-Ul-Abdein, M. (2012). Investigation of thermal conductivity enhancement in bakelite-graphite particulate filled polymeric composite. International Journal of Engineering Science., 52, 30–40.

    Article  Google Scholar 

  16. KS Boparai (2020).Thermal and Dynamic Mechanical Analysis of 3D Printed Bakelite Reinforced ABS In: Reference Module in Materials Science and Materials Engineering. Elsevier17–39.

  17. Aneesh Kumar, K. V., Krishnaveni, S., Asokan, K., Ranganathaiah, C., & Ravikumar, H. B. (2018). Comparative study of 150 keV Ar+ and O+ ion implantation induced structural modification on electrical conductivity in Bakelite polymer. Journal of Physics and Chemistry of Solids, 113, 74–81. https://doi.org/10.1016/j.jpcs.2017.10.023.

    Article  Google Scholar 

  18. Usahanunth, N., & Tuprakay, S. (2017). The transformation of waste Bakelite to replace natural fine aggregate in cement mortar. Case Studies in Construction Materials, 6, 120–133.

    Article  Google Scholar 

  19. Bensalah, H., Raji, M., Abdellaoui, H., & Essabir, H. (2021). Coir fiber and phenolic resin based composite material: Mechanical and thermal properties. International Journal of Advanced Manufacturing Technology, 112, 1917–1930.

    Article  Google Scholar 

  20. Usahanunth, N., Tuprakay, S., Kongsong, W., & Tuprakay, S. R. (2018). Study of mechanical properties and recommendations for the application of waste Bakelite aggregate concrete. Case Studies in Construction Materials, 8, 299–314.

    Article  Google Scholar 

  21. Sapunov V, Vetkasov N, Khudobin L (2018) The study of the health of grinding wheels on a bakelite bunch, heat-treated in a microwave field. In: Materials Today: Proceedings. Elsevier, 1711–1713.

  22. Kandola, B. K., Krishnan, L., Ebdon, J. R., & Myler, P. (2020). Structure-property relationships in structural glass fibre reinforced composites from unsaturated polyester and inherently fire retardant phenolic resin matrix blends. Composites Part B: Engineering., 182, 107607.

    Article  Google Scholar 

  23. Widnyana, A., Rian, I. G., Surata, I. W., & Nindhia, T. G. T. (2020). Tensile Properties of coconut coir single fiber with alkali treatment and reinforcement effect on unsaturated polyester polymer. Mater Today Proceed., 22, 300–305.

    Article  Google Scholar 

  24. Essabir, H., Bensalah, M. O., Rodrigue, D., Bouhfid, R., & Qaiss, A. (2016). Structural, mechanical and thermal properties of bio-based hybrid composites from waste coir residues: Fibers and shell particles. Mechanics of Materials, 93, 134–144.

    Article  Google Scholar 

  25. Kakou, C. A., Essabir, H., Bensalah, M. O., Bouhfid, R., Rodrigue, D., & Qaiss, A. (2015). Hybrid composites based on polyethylene and coir/oil palm fibers. Journal of Reinforced Plastics and Composites., 34, 1684–1697.

    Article  Google Scholar 

  26. Shrivastava, R., Telang, A., Rana, R. S., & Purohit, R. (2017). Mechanical properties of coir/g lass fiber epoxy resin hybrid composite. Materials Today: Proceedings., 4, 3477–3483.

    Google Scholar 

  27. Madhu, P., Sanjay, M. R., Jawaid, M., Siengchin, S., Khan, A., & Pruncu, C. I. (2020). A new study on effect of various chemical treatments on Agave Americana fiber for composite reinforcement: physico-chemical, thermal, mechanical and morphological properties. Poly Testing., 85, 1–7.

    Google Scholar 

  28. Essabir, H., Elkhaoulani, A., Benmoussa, K., Bouhfid, R., Arrakhiz, F. Z., & Qaiss, A. (2013). Dynamic mechanical thermal behavior analysis of doum fibers reinforced polypropylene composites. Material Design., 51, 48–55.

    Article  Google Scholar 

  29. Essabir H, Bouhfid R, Qaiss A (2017). Alfa and doum fiber-based composite materials for different applications. In: Lignocellulosic Fibre and Biomass-Based Composite Materials: Processing, Properties and Applications. Elsevier,147–164

  30. Qaiss AEK, Bouhfid R, Essabir H Qaiss. (2014) Natural fibers reinforced polymeric matrix: thermal, mechanical and interfacial properties. In/Biomass and Bioenergy. Springer, 225–245.

  31. Essabir, H., Nekhlaoui, S., Malha, M., Bensalah, M. O., Arrakhiz, F. Z., Qaiss, A., et al. (2013). Bio-composites based on polypropylene reinforced with almond shells particles: mechanical and thermal properties. Material Design., 51, 225–230.

    Article  Google Scholar 

  32. Daghigh, V., Lacy, T. E., Daghigh, H., Gu, G., Baghaei, K. T., Horstemeyer, M. F., et al. (2020). Heat deflection temperatures of bio-nano-composites using experiments and machine learning predictions. Mater Today Commun., 22, 100789.

    Article  Google Scholar 

  33. Essabir, H., Bensalah, M. O., Rodrigue, D., Bouhfid, R., & Qaiss, A. E. K. (2016). Biocomposites based on Argan nut shell and a polymer matrix: effect of filler content and coupling agent. Carbohydrate Polymers., 143, 70–83.

    Article  Google Scholar 

  34. Laaziz, S. A., Raji, M., Hilali, E., Essabir, H., Rodrigue, D., Bouhfid, R., et al. (2017). Bio-composites based on polylactic acid and argan nut shell: Production and properties. International Journal of Biological Macromolecules., 104, 30–42.

    Article  Google Scholar 

  35. A Qaiss R Bouhfid H Essabir (2015) Characterization and use of coir, almond, apricot, argan, shells, and wood as reinforcement in the polymeric matrix in order to valorize these products.In: Agricultural Biomass Based Potential Materials. Springer. 305–339.

  36. Alshammari, B. A., Saba, N., Alotaibi, M. D., Alotibi, M. F., Jawaid, M., & Alothman, O. Y. (2019). Evaluation of mechanical, physical, and morphological properties of epoxy composites reinforced with different date palm fillers. Materials, 2019(12), 2145–2162.

    Article  Google Scholar 

  37. Kassab, Z., Benyoucef, H., Hannache, H., & ElAchaby, M. (2019). Isolation of cellulose nanocrystals from various lignocellulosic materials: Physico-chemical characterization and Application in Polymer Composites Development. Materials Today: Proceedings., 13, 964–973.

    Google Scholar 

  38. Alsadi, J. (2019). Investigation of the effects of Formulation, process parameters, Dispersions, and Rheology on using combined Modelling and experimental Simulations. Materials Today: Proceedings., 13, 530–540.

    Google Scholar 

  39. Kang, C. G., & Bae, J. W. (2008). Numerical simulation of mold filling and deformation behavior in rheology forming process. International Journal of Mechanical Sciences., 50, 944–955.

    Article  MATH  Google Scholar 

  40. Liu, Y. L., Zhang, H., Yi, C., Quan, K., & Lin, B. (2021). Chemical composition, structure, physicochemical and functional properties of rice bran dietary fiber modified by cellulase treatment. Food Chemistry, 342, 1283.

    Article  Google Scholar 

  41. Pereira, P. H. F., Ornaghi, H. L., Arantes, V., & Cioffi, M. O. H. (2021). Effect of chemical treatment of pineapple crown fiber in the production, chemical composition, crystalline structure, thermal stability and thermal degradation kinetic properties of cellulosic materials. Carbohydrate Research, 499, 1082–1127.

    Article  Google Scholar 

  42. Komuraiah, A., Kumar, N. S., & Prasad, B. D. (2014). Chemical composition of natural fibers and its influence on their mechanical properties. Mechanics of Composite Materials., 50, 359–376.

    Article  Google Scholar 

  43. Essabir, H., Bensalah, M. O., Bouhfid, R., & Qaiss, A. (2014). Fabrication and characterization of apricot shells particles reinforced high density polyethylene based bio-composites: Mechanical and thermal properties. Journal of Biobased Materials and Bioenergy, 8, 344–351.

    Article  Google Scholar 

  44. Essabir, H., Bensalah, M. O., Rodrigue, D., Bouhfid, R., & Qaiss, A. E. K. (2017). A comparison between bio- and mineral calcium carbonate on the properties of polypropylene composites. Construction and Building Materials, 134, 549–555.

    Article  Google Scholar 

  45. H Essabir, R Bouhfid, A El kacem Qaiss (2019). Fracture surface morphologies in understanding of composite structural behavior. In Structural Health Monitoring of Biocomposites, Fibre-Reinforced Composites and Hybrid Composites. Elsevier. 277–293.

  46. Zhang, L., Zhao, W., Ma, Z., Nie, G., & Cui, Y. (2012). Enzymatic polymerization of phenol catalyzed by horseradish peroxidase in aqueous micelle system. European Polymer Journal., 48, 580–585.

    Article  Google Scholar 

  47. Crespy, D., Bozonnet, M., & Meier, M. (2008). 100 Years of bakelite, the material of a 1000 Uses. Angew Chem Intern Edit, 47, 3322–3328.

    Article  Google Scholar 

  48. Bensalah, H., Raji, M., Abdellaoui, H., Essabir, H., Bouhfid, R., el Qaiss, A., & kacem. (2021). Thermo-mechanical properties of low-cost “green” phenolic resin composites reinforced with surface modified coir fiber. The International Journal of Advanced Manufacturing Technology, 112, 1917–1930.

  49. Ouarhim W, Zari N, Bouhfid R, Qaiss A el kacem. (2019). Mechanical performance of natural fibers–based thermosetting composites. In Mechanical and Physical Testing of Biocomposites, Fibre-Reinforced Composites and Hybrid Composites.Elsevier, 43–60.

  50. Yousif, B. F., Shalwan, A., Chin, C. W., & Ming, K. C. (2012). Flexural properties of treated and untreated kenaf/epoxy composites. Material Design, 40, 378–385.

    Article  Google Scholar 

  51. Yu, T. Y., Zhang, Z. Y., Song, S. T., Bai, Y. L., & Wu, D. Z. (2019). Tensile and flexural behaviors of additively manufactured continuous carbon fiber-reinforced polymer composites. Composite Structures, 225, 111147.

    Article  Google Scholar 

  52. Rajeswaran, M., Prathap, P., Kannan, S., & Naveenkumar, S. (2020). Evaluation of tensile and flexural properties of foundry slag reinforced particulate polymer composite. Materials Today: Proceedings. Elsevier, 33, 214–216.

    Google Scholar 

  53. Sahu, R., Gupta, M. K., Chaturvedi, R., Tripaliya, S. S., & Pappu, A. (2020). Moisture resistant stones waste based polymer composites with enhanced dielectric constant and flexural strength. Composites Part B: Engineering, 182, 107656.

    Article  Google Scholar 

  54. Boujmal, R., Kakou, C. A., Nekhlaoui, S., Essabir, H., Bensalah, M. O., Rodrigue, D., et al. (2018). Alfa fibers/clay hybrid composites based on polypropylene. J Thermoplast Composite Mater., 31, 974–991.

    Article  Google Scholar 

  55. Raji, M., Nekhlaoui, S., El Hassani, I. E. E. A., Essassi, E. M., Essabir, H., Rodrigue, D., et al. (2019). Utilization of volcanic amorphous aluminosilicate rocks (perlite) as alternative materials in lightweight composites. Composites Part B Eng., 165, 47–54.

    Article  Google Scholar 

  56. Nekhlaoui, S., Essabir, H., Kunal, D., Sonakshi, M., Bensalah, M. O., Bouhfid, R., et al. (2015). Comparative study for the talc and two kinds of moroccan clay as reinforcements in polypropylene-SEBS- g -MA matrix. Polymer Composites., 36, 675–684.

    Article  Google Scholar 

  57. Safri, S. N. A., Sultan, M. T. H., Jawaid, M., & Abdul Majid, M. S. (2019). Analysis of dynamic mechanical, low-velocity impact and compression after impact behaviour of benzoyl treated sugar palm/glass/epoxy composites. Composite Structures., 226, 111308.

    Article  Google Scholar 

  58. Sathyaseelan, P., Sellamuthu, P., & Palanimuthu, L. (2021). Dynamic mechanical analysis of areca/kenaf fiber reinforced epoxy hybrid composites fabricated in different stacking sequences. Mater Today Proceed., 39, 1202–1205.

    Article  Google Scholar 

  59. Hu, J. H., Chen, W. J., Fan, P. X., Gao, J. F., Fang, G. Q., Cao, Z. L., et al. (2017). Uniaxial tensile tests and dynamic mechanical analysis of satin weave reinforced epoxy shape memory polymer composite. Polymer Testing., 64, 235–241.

    Article  Google Scholar 

  60. Ravichandran, S., Vengatesan, E., & Ramakrishnan, A. (2020). Synthesis and dynamic mechanical analysis of fiber reinforced low-density polyethylene hybrid polymer composites. Materials Today: Proceedings., 27, 177–180.

    Google Scholar 

  61. Ornaghi, H. L., Neves, R. M., Monticeli, F. M., & Almeida, J. H. S. (2020). Viscoelastic characteristics of carbon fiber-reinforced epoxy filament wound laminates. Composites Communications., 21, 100418.

    Article  Google Scholar 

  62. Mohana, K. D., Sreeramulu, D., & Venkateshwar, R. P. (2020). A study of filler content influence on dynamic mechanical and thermal characteristics of coir and luffa cylindrica reinforced hybrid composites. Construction and Building Materials, 251, 119040.

    Article  Google Scholar 

  63. Rajesh, M., Jayakrishna, K., Sultan, M. T. H., Manikandan, M., Mugeshkannan, V., Shah, A. U. M., et al. (2020). The hydroscopic effect on dynamic and thermal properties of woven jute, banana, and intra-ply hybrid natural fiber composites. Journal of Materials Research and Technology., 9, 10305–10315.

    Article  Google Scholar 

  64. Asim, M., Paridah, M. T., Saba, N., Jawaid, M., Alothman, O. Y., Nasir, M., et al. (2018). Thermal, physical properties and flammability of silane treated kenaf/pineapple leaf fibres phenolic hybrid composites. Composite Struct., 202, 1330–1338.

    Article  Google Scholar 

  65. Ornaghi, H. L., da Silva, H. S. P., Zattera, A. J., & Amico, S. C. (2012). Dynamic mechanical properties of curaua composites. Journal of Applied Polymer Science, 125, 110–116.

    Article  Google Scholar 

  66. Kalusuraman, G., Siva, I., Munde, Y., Selvan, C. P., Kumar, S. A., & Amico, S. C. (2020). Dynamic-mechanical properties as a function of luffa fibre content and adhesion in a polyester composite. Polymer Testing, 87, 106538.

    Article  Google Scholar 

  67. Negawo, T. A., Polat, Y., Akgul, Y., Kilic, A., & Jawaid, M. (2021). Mechanical and dynamic mechanical thermal properties of ensete fiber/woven glass fiber fabric hybrid composites. Composite Structures, 259, 113221.

    Article  Google Scholar 

  68. Idicula, M., Boudenne, A., Umadevi, L., Ibos, L., Candau, Y., & Thomas, S. (2006). Thermophysical properties of natural fibre reinforced polyester composites. Composites Science and Technology, 66, 2719–2725.

    Article  Google Scholar 

  69. Singh, S. S., Parameswaran, V., & Kitey, R. (2019). Dynamic compression behavior of glass filled epoxy composites: Influence of filler shape and exposure to high temperature. Composites Part B: Engineering, 164, 103–115.

    Article  Google Scholar 

  70. Huang, C. T., Chen, L. J., & Chien, T. Y. (2019). Investigation of the viscoelastic behavior variation of glass mat thermoplastics (GMT) in compression molding. Polymers, 11, 1–15.

    Article  Google Scholar 

Download references

Acknowledgement

Research carried out with the assistance of the Hassan II Academy of Sciences and Techniques "Recherche menées avec le concours de l'Académie Hassan II des Sciences et Techniques".

Funding

The authors did not receive support from any organization for the submitted work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hamid Essabir or Abou el kacem Qaiss.

Ethics declarations

Conflict of Interests

The authors have no affiliation with any organization with a direct or indirect financial interest in the subject matter discussed in the manuscript

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bensalah, H., Raji, M., Gueraoui, K. et al. Effect of Filler Content on Flexural and Viscoelastic Properties of Coir Fibers and Argania Nut-shells Reinforced Phenolic Resin Composites. J Bionic Eng 19, 1886–1898 (2022). https://doi.org/10.1007/s42235-022-00239-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42235-022-00239-4

Keywords

Navigation