Abstract
The characteristics of two different kinds of lignocellulosic materials (vegetable fillers) with two morphologies as Argania nut-shells (ANS) particles and Coir Fibers (CF) were used as reinforcement for phenolic resin (Bakelite) in this work, and the composite are studied as a function of filler types, shape, content (10, 20, and 30% wt. percent) and manufacturing loading force (1500 and 3000 LBs). Compression molding was used to create the composites, which were then evaluated using Scanning electronic microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR), bending, dynamic-mechanical-thermal and rheological studies. The morphology of broken samples demonstrates that both fillers are well dispersed and distributed. When fillers are added to the matrix, the flexural characteristics improve, and the optimal values are attained in the case of Argania nut-shells. The results showed that the kind and shape of the fillers had a direct influence on the dynamic mechanical characteristics of the composites due to the reinforcement's modulus augmentation. It was noticed that, the increment of manufacturing loading force decreased the mechanical and dynamical properties of composites. The optimum properties obtained indicate that the composites can only be manufactured at low manufacturing loading force (1500 LBs).
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Essabir, H., Nekhlaoui, S., Bensalah, M. O., Rodrigue, D., Bouhfid, R., & Qaiss, Ak. (2017). Phosphogypsum waste used as reinforcing fillers in polypropylene based composites: structural, mechanical and thermal properties. J Poly Environ., 25, 658–666.
Raji, M., Essabir, H., Bouhfid, R., & KacemQaiss, AEl. (2017). Impact of chemical treatment and the manufacturing process on mechanical, thermal, and rheological properties of natural fibers-based composites. Handbook of Composites from Renewable Materials (pp. 225–252). USA. Wiley: Hoboken, NJ.
Essabir, H., Hilali, E., Elgharad, A., El Minor, H., Imad, A., Elamraoui, A., et al. (2013). Mechanical and thermal properties of bio-composites based on polypropylene reinforced with Nut-shells of Argan particles. Mater Design., 49, 442–448.
I Hamerton J Kratz (2018) The use of thermosets in modern aerospace applications In Thermosets (Second Edition) Elsevier 303–340.
Mallick, P. K. (2010). Thermoset-matrix composites for lightweight automotive structures. Materials, Design and Manufacturing for Lightweight Vehicles: Woodhead Pub Ltd. https://doi.org/10.1533/9781845697822.1.208
Kordass, T., Bachy, B., Weisser, M., & Franke, J. (2017). Laser-assisted selective activation of injection molded chip packaging devices with thermoset substrate materials for intelligent connectivity systems in automobiles. Procedia CIRP., 63, 101–106.
S Agarwal, RK Gupta (2017). The use of thermosets in the building and construction industry 2nd eds Thermosets Structure Properties and Applications: Second Edition Elsevier 279–302.
Tóth, L. F., Sukumaran, J., Szebényi, G., Kalácska, Á., Fauconnier, D., Nagarajan, R., et al. (2020). Large-scale tribological characterisation of eco-friendly basalt and jute fibre reinforced thermoset composites. Wear. https://doi.org/10.1016/j.wear.2020.203274.
Xie, B. J., Sun, M. Y., Xu, B., Wang, C. Y., Jiang, H. Y., Li, D. Z., et al. (2019). Oxidation of stainless steel in vacuum and evolution of surface oxide scales during hot-compression bonding. Corrosion Science, 147, 41–52.
Lu, S. H., Wu, D., Chen, R. S., Han, E., & hou. (2019). The effect of twinning on dynamic recrystallization behavior of Mg-Gd-Y alloy during hot compression. Journal of Alloys and Compounds, 803, 277–290.
Raji, M., Essabir, H., Rodrigue, D., Bouhfid, R., el Qaiss, A., & kacem. (2018). Influence of graphene oxide and graphene nanosheet on the properties of polyvinylidene fluoride nanocomposites. Poly Comp., 39, 2932–2941.
Negawo, T. A., Polat, Y., Buyuknalcaci, F. N., Kilic, A., Saba, N., & Jawaid, M. (2019). Mechanical, morphological, structural and dynamic mechanical properties of alkali treated Ensete stem fibers reinforced unsaturated polyester composites. Comp Struct., 207, 589–597.
Malha, M., Nekhlaoui, S., Essabir, H., Benmoussa, K., Bensalah, M. O., Arrakhiz, F. E., et al. (2013). Mechanical and thermal properties of compatibilized polypropylene reinforced by woven doum. Journal of Appllied Polymer Science., 130, 4347–4356.
Asim, M., Jawaid, M., Abdan, K., & Ishak, M. R. (2017). The effect of silane treated fibre loading on mechanical properties of pineapple leaf/kenaf fibre filler phenolic composites. Journal of Polymers and the Environment., 26, 1520–1527.
Azeem, S., & Zain-Ul-Abdein, M. (2012). Investigation of thermal conductivity enhancement in bakelite-graphite particulate filled polymeric composite. International Journal of Engineering Science., 52, 30–40.
KS Boparai (2020).Thermal and Dynamic Mechanical Analysis of 3D Printed Bakelite Reinforced ABS In: Reference Module in Materials Science and Materials Engineering. Elsevier17–39.
Aneesh Kumar, K. V., Krishnaveni, S., Asokan, K., Ranganathaiah, C., & Ravikumar, H. B. (2018). Comparative study of 150 keV Ar+ and O+ ion implantation induced structural modification on electrical conductivity in Bakelite polymer. Journal of Physics and Chemistry of Solids, 113, 74–81. https://doi.org/10.1016/j.jpcs.2017.10.023.
Usahanunth, N., & Tuprakay, S. (2017). The transformation of waste Bakelite to replace natural fine aggregate in cement mortar. Case Studies in Construction Materials, 6, 120–133.
Bensalah, H., Raji, M., Abdellaoui, H., & Essabir, H. (2021). Coir fiber and phenolic resin based composite material: Mechanical and thermal properties. International Journal of Advanced Manufacturing Technology, 112, 1917–1930.
Usahanunth, N., Tuprakay, S., Kongsong, W., & Tuprakay, S. R. (2018). Study of mechanical properties and recommendations for the application of waste Bakelite aggregate concrete. Case Studies in Construction Materials, 8, 299–314.
Sapunov V, Vetkasov N, Khudobin L (2018) The study of the health of grinding wheels on a bakelite bunch, heat-treated in a microwave field. In: Materials Today: Proceedings. Elsevier, 1711–1713.
Kandola, B. K., Krishnan, L., Ebdon, J. R., & Myler, P. (2020). Structure-property relationships in structural glass fibre reinforced composites from unsaturated polyester and inherently fire retardant phenolic resin matrix blends. Composites Part B: Engineering., 182, 107607.
Widnyana, A., Rian, I. G., Surata, I. W., & Nindhia, T. G. T. (2020). Tensile Properties of coconut coir single fiber with alkali treatment and reinforcement effect on unsaturated polyester polymer. Mater Today Proceed., 22, 300–305.
Essabir, H., Bensalah, M. O., Rodrigue, D., Bouhfid, R., & Qaiss, A. (2016). Structural, mechanical and thermal properties of bio-based hybrid composites from waste coir residues: Fibers and shell particles. Mechanics of Materials, 93, 134–144.
Kakou, C. A., Essabir, H., Bensalah, M. O., Bouhfid, R., Rodrigue, D., & Qaiss, A. (2015). Hybrid composites based on polyethylene and coir/oil palm fibers. Journal of Reinforced Plastics and Composites., 34, 1684–1697.
Shrivastava, R., Telang, A., Rana, R. S., & Purohit, R. (2017). Mechanical properties of coir/g lass fiber epoxy resin hybrid composite. Materials Today: Proceedings., 4, 3477–3483.
Madhu, P., Sanjay, M. R., Jawaid, M., Siengchin, S., Khan, A., & Pruncu, C. I. (2020). A new study on effect of various chemical treatments on Agave Americana fiber for composite reinforcement: physico-chemical, thermal, mechanical and morphological properties. Poly Testing., 85, 1–7.
Essabir, H., Elkhaoulani, A., Benmoussa, K., Bouhfid, R., Arrakhiz, F. Z., & Qaiss, A. (2013). Dynamic mechanical thermal behavior analysis of doum fibers reinforced polypropylene composites. Material Design., 51, 48–55.
Essabir H, Bouhfid R, Qaiss A (2017). Alfa and doum fiber-based composite materials for different applications. In: Lignocellulosic Fibre and Biomass-Based Composite Materials: Processing, Properties and Applications. Elsevier,147–164
Qaiss AEK, Bouhfid R, Essabir H Qaiss. (2014) Natural fibers reinforced polymeric matrix: thermal, mechanical and interfacial properties. In/Biomass and Bioenergy. Springer, 225–245.
Essabir, H., Nekhlaoui, S., Malha, M., Bensalah, M. O., Arrakhiz, F. Z., Qaiss, A., et al. (2013). Bio-composites based on polypropylene reinforced with almond shells particles: mechanical and thermal properties. Material Design., 51, 225–230.
Daghigh, V., Lacy, T. E., Daghigh, H., Gu, G., Baghaei, K. T., Horstemeyer, M. F., et al. (2020). Heat deflection temperatures of bio-nano-composites using experiments and machine learning predictions. Mater Today Commun., 22, 100789.
Essabir, H., Bensalah, M. O., Rodrigue, D., Bouhfid, R., & Qaiss, A. E. K. (2016). Biocomposites based on Argan nut shell and a polymer matrix: effect of filler content and coupling agent. Carbohydrate Polymers., 143, 70–83.
Laaziz, S. A., Raji, M., Hilali, E., Essabir, H., Rodrigue, D., Bouhfid, R., et al. (2017). Bio-composites based on polylactic acid and argan nut shell: Production and properties. International Journal of Biological Macromolecules., 104, 30–42.
A Qaiss R Bouhfid H Essabir (2015) Characterization and use of coir, almond, apricot, argan, shells, and wood as reinforcement in the polymeric matrix in order to valorize these products.In: Agricultural Biomass Based Potential Materials. Springer. 305–339.
Alshammari, B. A., Saba, N., Alotaibi, M. D., Alotibi, M. F., Jawaid, M., & Alothman, O. Y. (2019). Evaluation of mechanical, physical, and morphological properties of epoxy composites reinforced with different date palm fillers. Materials, 2019(12), 2145–2162.
Kassab, Z., Benyoucef, H., Hannache, H., & ElAchaby, M. (2019). Isolation of cellulose nanocrystals from various lignocellulosic materials: Physico-chemical characterization and Application in Polymer Composites Development. Materials Today: Proceedings., 13, 964–973.
Alsadi, J. (2019). Investigation of the effects of Formulation, process parameters, Dispersions, and Rheology on using combined Modelling and experimental Simulations. Materials Today: Proceedings., 13, 530–540.
Kang, C. G., & Bae, J. W. (2008). Numerical simulation of mold filling and deformation behavior in rheology forming process. International Journal of Mechanical Sciences., 50, 944–955.
Liu, Y. L., Zhang, H., Yi, C., Quan, K., & Lin, B. (2021). Chemical composition, structure, physicochemical and functional properties of rice bran dietary fiber modified by cellulase treatment. Food Chemistry, 342, 1283.
Pereira, P. H. F., Ornaghi, H. L., Arantes, V., & Cioffi, M. O. H. (2021). Effect of chemical treatment of pineapple crown fiber in the production, chemical composition, crystalline structure, thermal stability and thermal degradation kinetic properties of cellulosic materials. Carbohydrate Research, 499, 1082–1127.
Komuraiah, A., Kumar, N. S., & Prasad, B. D. (2014). Chemical composition of natural fibers and its influence on their mechanical properties. Mechanics of Composite Materials., 50, 359–376.
Essabir, H., Bensalah, M. O., Bouhfid, R., & Qaiss, A. (2014). Fabrication and characterization of apricot shells particles reinforced high density polyethylene based bio-composites: Mechanical and thermal properties. Journal of Biobased Materials and Bioenergy, 8, 344–351.
Essabir, H., Bensalah, M. O., Rodrigue, D., Bouhfid, R., & Qaiss, A. E. K. (2017). A comparison between bio- and mineral calcium carbonate on the properties of polypropylene composites. Construction and Building Materials, 134, 549–555.
H Essabir, R Bouhfid, A El kacem Qaiss (2019). Fracture surface morphologies in understanding of composite structural behavior. In Structural Health Monitoring of Biocomposites, Fibre-Reinforced Composites and Hybrid Composites. Elsevier. 277–293.
Zhang, L., Zhao, W., Ma, Z., Nie, G., & Cui, Y. (2012). Enzymatic polymerization of phenol catalyzed by horseradish peroxidase in aqueous micelle system. European Polymer Journal., 48, 580–585.
Crespy, D., Bozonnet, M., & Meier, M. (2008). 100 Years of bakelite, the material of a 1000 Uses. Angew Chem Intern Edit, 47, 3322–3328.
Bensalah, H., Raji, M., Abdellaoui, H., Essabir, H., Bouhfid, R., el Qaiss, A., & kacem. (2021). Thermo-mechanical properties of low-cost “green” phenolic resin composites reinforced with surface modified coir fiber. The International Journal of Advanced Manufacturing Technology, 112, 1917–1930.
Ouarhim W, Zari N, Bouhfid R, Qaiss A el kacem. (2019). Mechanical performance of natural fibers–based thermosetting composites. In Mechanical and Physical Testing of Biocomposites, Fibre-Reinforced Composites and Hybrid Composites.Elsevier, 43–60.
Yousif, B. F., Shalwan, A., Chin, C. W., & Ming, K. C. (2012). Flexural properties of treated and untreated kenaf/epoxy composites. Material Design, 40, 378–385.
Yu, T. Y., Zhang, Z. Y., Song, S. T., Bai, Y. L., & Wu, D. Z. (2019). Tensile and flexural behaviors of additively manufactured continuous carbon fiber-reinforced polymer composites. Composite Structures, 225, 111147.
Rajeswaran, M., Prathap, P., Kannan, S., & Naveenkumar, S. (2020). Evaluation of tensile and flexural properties of foundry slag reinforced particulate polymer composite. Materials Today: Proceedings. Elsevier, 33, 214–216.
Sahu, R., Gupta, M. K., Chaturvedi, R., Tripaliya, S. S., & Pappu, A. (2020). Moisture resistant stones waste based polymer composites with enhanced dielectric constant and flexural strength. Composites Part B: Engineering, 182, 107656.
Boujmal, R., Kakou, C. A., Nekhlaoui, S., Essabir, H., Bensalah, M. O., Rodrigue, D., et al. (2018). Alfa fibers/clay hybrid composites based on polypropylene. J Thermoplast Composite Mater., 31, 974–991.
Raji, M., Nekhlaoui, S., El Hassani, I. E. E. A., Essassi, E. M., Essabir, H., Rodrigue, D., et al. (2019). Utilization of volcanic amorphous aluminosilicate rocks (perlite) as alternative materials in lightweight composites. Composites Part B Eng., 165, 47–54.
Nekhlaoui, S., Essabir, H., Kunal, D., Sonakshi, M., Bensalah, M. O., Bouhfid, R., et al. (2015). Comparative study for the talc and two kinds of moroccan clay as reinforcements in polypropylene-SEBS- g -MA matrix. Polymer Composites., 36, 675–684.
Safri, S. N. A., Sultan, M. T. H., Jawaid, M., & Abdul Majid, M. S. (2019). Analysis of dynamic mechanical, low-velocity impact and compression after impact behaviour of benzoyl treated sugar palm/glass/epoxy composites. Composite Structures., 226, 111308.
Sathyaseelan, P., Sellamuthu, P., & Palanimuthu, L. (2021). Dynamic mechanical analysis of areca/kenaf fiber reinforced epoxy hybrid composites fabricated in different stacking sequences. Mater Today Proceed., 39, 1202–1205.
Hu, J. H., Chen, W. J., Fan, P. X., Gao, J. F., Fang, G. Q., Cao, Z. L., et al. (2017). Uniaxial tensile tests and dynamic mechanical analysis of satin weave reinforced epoxy shape memory polymer composite. Polymer Testing., 64, 235–241.
Ravichandran, S., Vengatesan, E., & Ramakrishnan, A. (2020). Synthesis and dynamic mechanical analysis of fiber reinforced low-density polyethylene hybrid polymer composites. Materials Today: Proceedings., 27, 177–180.
Ornaghi, H. L., Neves, R. M., Monticeli, F. M., & Almeida, J. H. S. (2020). Viscoelastic characteristics of carbon fiber-reinforced epoxy filament wound laminates. Composites Communications., 21, 100418.
Mohana, K. D., Sreeramulu, D., & Venkateshwar, R. P. (2020). A study of filler content influence on dynamic mechanical and thermal characteristics of coir and luffa cylindrica reinforced hybrid composites. Construction and Building Materials, 251, 119040.
Rajesh, M., Jayakrishna, K., Sultan, M. T. H., Manikandan, M., Mugeshkannan, V., Shah, A. U. M., et al. (2020). The hydroscopic effect on dynamic and thermal properties of woven jute, banana, and intra-ply hybrid natural fiber composites. Journal of Materials Research and Technology., 9, 10305–10315.
Asim, M., Paridah, M. T., Saba, N., Jawaid, M., Alothman, O. Y., Nasir, M., et al. (2018). Thermal, physical properties and flammability of silane treated kenaf/pineapple leaf fibres phenolic hybrid composites. Composite Struct., 202, 1330–1338.
Ornaghi, H. L., da Silva, H. S. P., Zattera, A. J., & Amico, S. C. (2012). Dynamic mechanical properties of curaua composites. Journal of Applied Polymer Science, 125, 110–116.
Kalusuraman, G., Siva, I., Munde, Y., Selvan, C. P., Kumar, S. A., & Amico, S. C. (2020). Dynamic-mechanical properties as a function of luffa fibre content and adhesion in a polyester composite. Polymer Testing, 87, 106538.
Negawo, T. A., Polat, Y., Akgul, Y., Kilic, A., & Jawaid, M. (2021). Mechanical and dynamic mechanical thermal properties of ensete fiber/woven glass fiber fabric hybrid composites. Composite Structures, 259, 113221.
Idicula, M., Boudenne, A., Umadevi, L., Ibos, L., Candau, Y., & Thomas, S. (2006). Thermophysical properties of natural fibre reinforced polyester composites. Composites Science and Technology, 66, 2719–2725.
Singh, S. S., Parameswaran, V., & Kitey, R. (2019). Dynamic compression behavior of glass filled epoxy composites: Influence of filler shape and exposure to high temperature. Composites Part B: Engineering, 164, 103–115.
Huang, C. T., Chen, L. J., & Chien, T. Y. (2019). Investigation of the viscoelastic behavior variation of glass mat thermoplastics (GMT) in compression molding. Polymers, 11, 1–15.
Acknowledgement
Research carried out with the assistance of the Hassan II Academy of Sciences and Techniques "Recherche menées avec le concours de l'Académie Hassan II des Sciences et Techniques".
Funding
The authors did not receive support from any organization for the submitted work.
Author information
Authors and Affiliations
Corresponding authors
Ethics declarations
Conflict of Interests
The authors have no affiliation with any organization with a direct or indirect financial interest in the subject matter discussed in the manuscript
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Bensalah, H., Raji, M., Gueraoui, K. et al. Effect of Filler Content on Flexural and Viscoelastic Properties of Coir Fibers and Argania Nut-shells Reinforced Phenolic Resin Composites. J Bionic Eng 19, 1886–1898 (2022). https://doi.org/10.1007/s42235-022-00239-4
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s42235-022-00239-4