Skip to main content

Magnetic Field-induced Enhancement of Phase Change Heat Transfer via Biomimetic Porous Structure for Solar-thermal Energy Storage

Abstract

Multifunctional phase change composites are in great demand for all kinds of industrial technologies and applications, which have both superior latent heat capacity and excellent solar-thermal conversion capability. In this research, biomimetic phase change composites are made by inspired by natural systems, successfully getting the high thermal conductivity of carbon foam and magnetism of composites together, to establish a novel solar-thermal energy storage method. The morphology and the thermal characteristics of biomimetic phase change composites have been characterized. The results showed that the maximum storage efficiency of the biomimetic phase change materials increased by 56.3% compared to that of the based materials, and it can further be improved by the application of magnetic field. Meanwhile the heat transfer process of solar-thermal conversion and energy storage in biomimetic porous structure under the external physical fields has been explained by simulation. Thus, the magnetic field-induced method applied in this research has better solar-thermal energy storage characteristics within a porous structure by dynamically controlling the magnetism, which has potential uses for various sustainable applications, including waste-heat recovery, energy conservation in building, and solar-thermal energy storage.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Ghalambaz, M., Zadeh, S. M. H., Mehryan, S. A. M., Pop, I., & Wen, D. (2020). Analysis of melting behavior of PCMs in a cavity subject to a non-uniform magnetic field using a moving grid technique. Applied Mathematical Modelling, 77, 1936–1953.

    Article  MathSciNet  Google Scholar 

  2. Nourani, M., Hamdami, N., Keramat, J., Moheb, A., & Shahedi, M. (2016). Thermal behavior of paraffin-nano-Al2O3 stabilized by sodium stearoyl lactylate as a stable phase change material with high thermal conductivity. Renewable Energy, 88, 474–482.

    Article  Google Scholar 

  3. Liang, W. D., Wang, L. N., Zhu, H. Y., Pan, Y., Zhu, Z. Q., Sun, H. X., et al. (2018). Enhanced thermal conductivity of phase change material nanocomposites based on MnO2 nanowires and nanotubes for energy storage. Solar Energy Materials and Solar Cells, 180, 158–167.

    Article  Google Scholar 

  4. Shi, L., Wang, X. Z., Hu, Y. W., He, Y. R., & Yan, Y. Y. (2020). Bio-inspired recyclable carbon interface for solar steam generation. Journal of Bionic Engineering, 17, 315–325.

    Article  Google Scholar 

  5. Ye, H., Yuan, Z., & Zhang, S. Q. (2013). The heat and mass transfer analysis of a leaf. Journal of Bionic Engineering, 10, 170–176.

    Article  Google Scholar 

  6. Cheng, Z. D., He, Y. L., & Cui, F. Q. (2013). A new modelling method and unified code with MCRT for concentrating solar collectors and its applications. Applied Energy, 101, 686–698.

    Article  Google Scholar 

  7. Mohammadnia, A., Rezania, A., Ziapour, B. M., Sedaghati, F., & Rosendahl, L. (2020). Hybrid energy harvesting system to maximize power generation from solar energy. Energy Conversion and Management, 205, 112352.

    Article  Google Scholar 

  8. Feng, D. L., Feng, Y. H., Qiu, L., Li, P., Zhang, Y. Y., Zou, H. Y., et al. (2019). Review on nanoporous composite phase change materials: fabrication, characterization, enhancement and molecular simulation. Renewable and Sustainable Energy Reviews, 109, 578–605.

    Article  Google Scholar 

  9. Jia, H., Guo, J. S., & Zhu, J. J. (2017). Comparison of the photo-thermal energy conversion behavior of polar bear hair and wool of sheep. Journal of Bionic Engineering, 14, 616–621.

    Article  Google Scholar 

  10. Zeng, J., & Xuan, Y. M. (2018). Enhanced solar thermal conversion and thermal conduction of MWCNT-SiO2/Ag binary nanofluids. Applied Energy, 212, 809–819.

    Article  Google Scholar 

  11. Tasnim, S. H., Hossain, R., Mahmud, S., & Dutta, A. (2015). Convection effect on the melting process of nano-PCM inside porous enclosure. International Journal of Heat and Mass Transfer, 85, 206–220.

    Article  Google Scholar 

  12. Li, Y. Y., Yu, S., Chen, P., Rojas, R., Hajian, A., & Berglund, L. (2017). Cellulose nanofibers enable paraffin encapsulation and the formation of stable thermal regulation nanocomposites. Nano Energy, 34, 541–548.

    Article  Google Scholar 

  13. Wang, Y. F., Wang, L., Xie, N. N., Lin, X. P., & Chen, H. S. (2016). Experimental study on the melting and solidification behavior of erythritol in a vertical shell-and-tube latent heat thermal storage unit. International Journal of Heat and Mass Transfer, 99, 770–781.

    Article  Google Scholar 

  14. Xiao, X., Jia, H. W., Wen, D. S., & Zhao, X. D. (2020). Thermal performance analysis of a solar energy storage unit encapsulated with HITEC salt/copper foam/nanoparticles composite. Energy, 192, 116593.

    Article  Google Scholar 

  15. Sivapalan, B., Chandran, M., Manikandan, S., Saranprabhu, M. K., Pavithra, S., & Rajan, K. S. (2018). Paraffin wax-water nanoemulsion: a superior thermal energy storage medium providing higher rate of thermal energy storage per unit heat exchanger volume than water and paraffin wax. Energy Conversion and Management, 162, 109–117.

    Article  Google Scholar 

  16. Yu, Y. S., Tao, Y. B., & He, Y. L. (2020). Molecular dynamics simulation of thermophysical properties of NaCl-SiO2 based molten salt composite phase change materials. Applied Thermal Engineering, 166, 114628.

    Article  Google Scholar 

  17. Ren, Q. L. (2019). Enhancement of nanoparticle-phase change material melting performance using a sinusoidal heat pipe. Energy Conversion and Management, 180, 784–795.

    Article  Google Scholar 

  18. Pereira, J., & Eames, P. (2016). Thermal energy storage for low and medium temperature applications using phase change materials—a review. Applied Energy, 177, 227–238.

    Article  Google Scholar 

  19. Hussein, O. A., Habib, K., Muhsan, A. S., Saidur, R., Alawi, O. A., & Ibrahim, T. K. (2020). Thermal performance enhancement of a flat plate solar collector using hybrid nanofluid. Solar Energy, 204, 208–222.

    Article  Google Scholar 

  20. Li, B., Zhou, W. N., Yan, Y. Y., Han, Z. W., & Ren, L. Q. (2013). Numerical modelling of electroosmotic driven flow in nanoporous media by Lattice Boltzmann method. Journal of Bionic Engineering, 10, 90–99.

    Article  Google Scholar 

  21. Zhang, Q., Wang, H. C., Ling, Z. Y., Fang, X. M., & Zhang, Z. G. (2015). RT100/expand graphite composite phase change material with excellent structure stability, solar-thermal performance and good thermal reliability. Solar Energy Materials and Solar Cells, 140, 158–166.

    Article  Google Scholar 

  22. Han, Z. W., Niu, S. C., Zhang, L. F., Liu, Z. N., & Ren, L. Q. (2013). Light trapping effect in wing scales of butterfly Papilio peranthus and its simulations. Journal of Bionic Engineering, 10, 162–169.

    Article  Google Scholar 

  23. Shi, L., Hu, Y., Bai, Y., & He, Y. R. (2020). Dynamic tuning of magnetic phase change composites for solar-thermal conversion and energy storage. Applied Energy, 263, 114570.

    Article  Google Scholar 

  24. Xu, B., Zhou, J., Ni, Z. J., Zhang, C. X., & Lu, C. D. (2018). Synthesis of novel microencapsulated phase change materials with copper and copper oxide for solar energy storage and solar-thermal conversion. Solar Energy Materials and Solar Cells, 179, 87–94.

    Article  Google Scholar 

  25. Feng, Y. C., Li, H. X., Li, L. X., Bu, L., & Wang, T. (2015). Numerical investigation on the melting of nanoparticle-enhanced phase change materials (NEPCM) in a bottom-heated rectangular cavity using lattice Boltzmann method. International Journal of Heat and Mass Transfer, 81, 415–425.

    Article  Google Scholar 

  26. Sheikholeslami, M. (2018). Solidification of NEPCM under the effect of magnetic field in a porous thermal energy storage enclosure using CuO nanoparticles. Journal of Molecular Liquids, 263, 303–315.

    Article  Google Scholar 

  27. Hashemi-Tilehnoee, M., Dogonchi, A. S., Seyyedi, S. M., & Sharifpur, M. (2020). Magneto-fluid dynamic and second law analysis in a hot porous cavity filled by nanofluid and nano-encapsulated phase change material suspension with different layout of cooling channels. Journal of Energy Storage, 31, 101720.

    Article  Google Scholar 

  28. Wang, W. T., Tang, B. T., Ju, B. Z., Gao, Z. M., Xiu, J. H., & Zhang, S. F. (2017). Fe3O4-functionalized graphene nanosheet embedded phase change material composites: efficient magnetic-and sunlight-driven energy conversion and storage. Journal of Materials Chemistry A, 5, 958–968.

    Article  Google Scholar 

  29. Yu, Q., Lu, Y. W., Zhang, C. C., Wu, Y. T., & Sunden, B. (2019). Research on thermal properties of novel silica nanoparticle/binary nitrate/expanded graphite composite heat storage blocks. Solar Energy Materials and Solar Cells, 201, 110055.

    Article  Google Scholar 

  30. Wu, W. X., Wu, W., & Wang, S. F. (2019). Form-stable and thermally induced flexible composite phase change material for thermal energy storage and thermal management applications. Applied Energy, 236, 10–21.

    Article  Google Scholar 

  31. Liu, J., Chen, L. L., Fang, X. M., & Zhang, Z. G. (2017). Preparation of graphite nanoparticles-modified phase change microcapsules and their dispersed slurry for direct absorption solar collectors. Solar Energy Materials and Solar Cells, 159, 159–166.

    Article  Google Scholar 

  32. Feng, D. L., Feng, Y. H., Li, P., Zang, Y. Y., Wang, C., & Zhang, X. X. (2020). Modified mesoporous silica filled with PEG as a shape-stabilized phase change materials for improved thermal energy storage performance. Microporous and Mesoporous Materials, 292, 109756.

    Article  Google Scholar 

  33. Sarı, A., Biçer, A., & Hekimoğlu, G. (2019). Effects of carbon nanotubes additive on thermal conductivity and thermal energy storage properties of a novel composite phase change material. Journal of Composite Materials, 53, 2967–2980.

    Article  Google Scholar 

  34. Oya, T., Nomura, T., Tsubota, M., Okinaka, N., & Akiyama, T. (2013). Thermal conductivity enhancement of erythritol as PCM by using graphite and nickel particles. Applied Thermal Engineering, 61, 825–828.

    Article  Google Scholar 

  35. Sun, J., Song, L. J., Fan, Y., Tian, L. M., Luan, S. F., Niu, S. C., et al. (2019). Synergistic photodynamic and photothermal antibacterial nanocomposite membrane triggered by single NIR light source. ACS Applied Materials and Interfaces, 11, 26581–26589.

    Article  Google Scholar 

  36. Fu, R., & Yan, Y. Y. (2018). The Effect of particle disaggregation on viscosity of Fe3O4 ethylene glycol–water nanofluid. Journal of Nanofluids, 7, 413–419.

    Article  Google Scholar 

  37. Languri, E. M., Rokni, H. B., Alvarado, J., Takabi, B., & Kong, M. (2018). Heat transfer analysis of microencapsulated phase change material slurry flow in heated helical coils: a numerical and analytical study. International Journal of Heat and Mass Transfer, 118, 872–878.

    Article  Google Scholar 

  38. Shi, L., He, Y. R., Hu, Y. W., Wang, X. Z., Jiang, B. C., & Huang, Y. M. (2019). Synthesis of size-controlled hollow Fe3O4 nanospheres and their growth mechanism. Particuology, 49, 16–23.

    Article  Google Scholar 

  39. Zhang, L., Li, R., Tang, B., & Wang, P. (2016). Solar-thermal conversion and thermal energy storage of graphene foam-based composites. Nanoscale, 8(30), 14600–14607.

    Article  Google Scholar 

Download references

Acknowledgements

This work is financially supported by the China National Key Research and Development Plan Project (Grant No. 2018YFA0702300), and H2020-MSCA-RISE (778104) Smart thermal management of high power microprocessors using phase-change (ThermaSMART).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lei Shi or Yuying Yan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Zhu, Z., Arshad, A. et al. Magnetic Field-induced Enhancement of Phase Change Heat Transfer via Biomimetic Porous Structure for Solar-thermal Energy Storage. J Bionic Eng 18, 1215–1224 (2021). https://doi.org/10.1007/s42235-021-00096-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42235-021-00096-7

Keywords