Skip to main content
Log in

Surface Nanostructure Control with Poly(ethylene glycol) (PEG) Spacer by Templateless Electropolymerization

  • Published:
Journal of Bionic Engineering Aims and scope Submit manuscript

Abstract

Controlling the shape of surface nanostructures is fundamental for various potential applications for examples, in water harvesting systems, liquid transportation or oil/water separation membranes. In this paper, the creation of porous surface structures is made by a process called templateless electropolymerization, in which water (H2O) is oxidized/reduced to form gas (O2/H2) bubbles onto the surfaces and acting as soft template for the polymer growth. Keeping the monomer (thieno[3,4-b]thiophene) and the substituent (pyrene) constant, we demonstrate how a flexible PEG spacer can affect the structure shape. When the PEG spacer increases, the structures change from nanotubes (1D growth) to nanoribbons (2D) and after to hollow nanospheres (3D), which also affects the wetting properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yu S, Guo Z G, Liu W M. Biomimetic transparent and superhydrophobic coatings: From nature and beyond nature. Chemical Communications, 2015, 51, 1775–1794.

    Article  Google Scholar 

  2. Kwon O S, Park S J, Lee J S, Park E, Kim T, Park H W, You S A, Yoon H, Jang J. Multidimensional conducting polymer nanotubes for ultrasensitive chemical nerve agent sensing. Nano Letters, 2012, 12, 2797–2802.

    Article  Google Scholar 

  3. Cheng Z J, Gao J, Jiang L. Tip geometry controls adhesive states of superhydrophobic surfaces. Langmuir, 2010, 26, 8233–8238.

    Article  Google Scholar 

  4. Ge L, Sethi S, Ci L, Ajayan P M, Dhinojwala A. Carbon nanotube-based synthetic gecko tapes. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 10792–10795.

    Article  Google Scholar 

  5. Xu M, Du F, Ganguli S, Roy A, Dai L. Carbon nanotube dry adhesives with temperature-enhanced adhesion over a large temperature range. Nature Communications, 2016, 7, 13450.

    Article  Google Scholar 

  6. Aslanidou D, Karapanagiotis I. Superhydrophobic, superoleophobic and antimicrobial coatings for the protection of silk textiles. Coatings, 2018, 8, 101.

    Article  Google Scholar 

  7. Al-Azawi A, Latikka M, Jokinen V, Franssila S, Ras R H A. Friction and wetting transitions of magnetic droplets on micropillared superhydrophobic surfaces. Small, 2017, 13, 1700860.

    Article  Google Scholar 

  8. Cheng Y, Yang H, Yang Y, Huang J Y, Wu K, Chen Z, Wang X Q, Lin C J, Lai Y K. Progress in TiO2 nanotube coatings for biomedical applications: A review. Journal of Materials Chemistry B, 2018, 6, 1862–1886.

    Article  Google Scholar 

  9. Sun Z, Liao T, Liu K, Jiang L, Kim J H, Dou S X. Fly-eye inspired superhydrophobic anti-fogging inorganic nano-structures. Small, 2014, 10, 3001–3006.

    Article  Google Scholar 

  10. Liu K S, Du J X, Wu J T, Jiang L. Superhydrophobic gecko feet with high adhesive forces towards water and their bio-inspired materials. Nanoscale, 2012, 4, 768–772.

    Article  Google Scholar 

  11. Szczepanski C R, Darmanin T, Guittard F. Recent advances in the study and design of parahydrophobic surfaces: From natural examples to synthetic approaches. Advances in Colloid and Interface Science, 2017, 241, 37–61.

    Article  Google Scholar 

  12. Barthlott W, Mail M, Bhushan B, Koch K. Plant surfaces: Structures and functions for biomimetic innovations. Nano-Micro Letters, 2017, 9, 23.

    Article  Google Scholar 

  13. Lin H A, Luo S C, Zhu B, Chen C, Yamashita Y, Yu H h. Molecular or nanoscale structures? The deciding factor of surface properties on functionalized poly(3,4-ethylenedioxy thiophene) nanorod arrays. Advanced Functional Materials, 2013, 23, 3212–3219.

    Article  Google Scholar 

  14. Lee L, Park S J. Porous anodic aluminum oxide: Anodization and templated synthesis of functional nanostructures. Chemical Reviews, 2014, 114, 7487–7556.

    Article  Google Scholar 

  15. Yuan J Y, Qu L T, Zhang D Q, Shi G Q. Linear arrangements of polypyrrole microcontainers. Chemical Communications, 2004, 0, 994–995.

    Article  Google Scholar 

  16. Parakhonskiy B, Andreeva D, Möhwald H, Shchukin D G. Hollow polypyrrole containers with regulated uptake/release properties. Langmuir, 2009, 25, 4780–4786.

    Article  Google Scholar 

  17. Szczepanski C R, M’Jid I, Darmanin T, Godeau G, Guittard F. A template-free approach to nanotube-decorated polymer surfaces using 3,4-phenylenedioxythiophene (PhEDOT) monomers. Journal of Materials Chemistry A, 2016, 4, 17308–17323.

    Article  Google Scholar 

  18. Darmanin T, Guittard F. A one-step electrodeposition of homogeneous and vertically aligned nanotubes with para-hydrophobic properties (high water adhesion). Journal of Materials Chemistry A, 2016, 4, 3197–3203.

    Article  Google Scholar 

  19. Darmanin T, Godeau G, Guittard F, Klimarevav E L, Schewtschenko I, Perepichka I F. A templateless electropolymerization approach to porous hydrophobic nanostructures using 3,4-Phenylenedioxythiophene monomers with electron-withdrawing groups. ChemNanoMat, 2018, 4, 656–662.

    Article  Google Scholar 

  20. Gbilimou A, Darmanin T, Godeau G, Guittard F. A templateless electropolymerization approach to nanorings using substituted 3,4-naphthalenedioxythiophene (NaPhDOT) monomers. ChemNanoMat, 2018, 4, 140–147.

    Article  Google Scholar 

  21. Qu L T, Shi G Q, Chen F, Zhang J X. Electrochemical growth of polypyrrole microcontainers. Macromolecules, 2003, 36, 1063–1067.

    Article  Google Scholar 

  22. Qu L T, Shi G Q, Yuan J Y, Han G Y, Chen F. Preparation of polypyrrole microstructures by direct electrochemical oxidation of pyrrole in an aqueous solution of camphorsulfonic acid. Journal of Electroanalytical Chemistry, 2004, 561, 149–156.

    Article  Google Scholar 

  23. Kim J T, Seol S K, Je J H, Hwu Y, Margaritondo G. The microcontainer shape in electropolymerization on bubbles. Applied Physics Letters, 2009, 94, 034103.

    Article  Google Scholar 

  24. Parakhonskiy B, Shchukin D. Polypyrrole microcontainers: Electrochemical synthesis and characterization. Langmuir, 2015, 31, 9214–9218.

    Article  Google Scholar 

  25. Debiemme-Chouvy C. One-step electrochemical synthesis of a very thin overoxidized polypyrrole. Electrochemical and Solid State Letters, 2007, 10, E24–E26.

    Article  Google Scholar 

  26. Debiemme-Chouvy C, Fakhry A, Pillier F. Electrosynthesis of polypyrrole nano/micro structures using an electrogenerated oriented polypyrrole nanowire array as framework. Electrochimica Acta, 2018, 268, 66–72.

    Article  Google Scholar 

  27. Fakhry A, Cachet H, Debiemme-Chouvy C. Mechanism of formation of templateless electrogenerated polypyrrole nanostructures. Electrochimica Acta, 2015, 179, 297–303.

    Article  Google Scholar 

  28. Fakhry A, Pillier F, Debiemme-Chouvy C. Templateless electrogeneration of polypyrrole nanostructures: Impact of the anionic composition and pH of the monomer solution. Journal of Materials Chemistry A, 2014, 2, 9859–9865.

    Article  Google Scholar 

  29. Debiemme-Chouvy C. Template-free one-step electrochemical formation of polypyrrole nanowire array. Electrochemical Communications, 2009, 11, 298–301.

    Article  Google Scholar 

  30. Ramos Chagas G, Darmanin T, Godeau G, Guittard F. Nanocups and hollow microspheres formed by a one-step and templateless electropolymerization of thie-no[3,4-b]thiophene derivatives as a function of the substituent. Electrochimica Acta, 2018, 269, 462–478.

    Article  Google Scholar 

  31. Ramos Chagas G, Darmanin T, Guittard F. One-step and templateless electropolymerization process using thie-no-thiophene derivatives to develop arrays of nanotubes and tree-like structures with high water adhesion. ACS Applied Materials and Interfaces, 2016, 8, 22732–22743.

    Article  Google Scholar 

  32. Ramos Chagas G, Akbari R, Godeau G, Mohammadizadeh M, Guittard F, Darmanin T. Electro-deposited poly(thieno[3,2-b]thiophene) films for the templateless formation of porous structures by galvanostatic and pulse deposition. ChemPlusChem, 2017, 82, 1351–1358.

    Article  Google Scholar 

  33. Bai S L, Hu Q, Zeng Q, Wang M, Wang L S. Variations in surface morphologies, properties, and electrochemical responses to nitro-analyte by controlled electropolymerization of thiophene derivatives. ACS Applied Materials and Interfaces, 2018, 10, 11319–11327.

    Article  Google Scholar 

  34. Thiam E h Y, Dramé A, Sow S, Sene A, Szczepanski C R, Dieng S Y, Guittard F, Darmanin T. Designing nanoporous membranes through templateless electropolymerization of thieno[3,4-b]thiophene derivatives with high water content. ACS Omega, 2019, 4, 13080–13085.

    Article  Google Scholar 

  35. Wynberg H, Zwanenburg D J. Thieno[3,4-b]thiophene. The third thiophthene. Tetrahedron Letters, 1967, 8, 761–764.

    Article  Google Scholar 

  36. Wang P F, Fan H J, Zhu X Z. A 2-(trifluoromethyl)thieno [3,4-b]thiophene-based small- molecule electron acceptor for polymer solar cell application. Dyes and Pigments, 2018, 155, 179–185.

    Article  Google Scholar 

  37. Wada Y, Asada Y, Ikai T, Maeda K, Kuwabara T, Takahashi K, Kanoh S. Synthesis of thie-no[3,4-b]thiophene-based donor molecules with phenyl ester pendants for organic solar cells: Control of photovoltaic properties via single substituent replacement. ChemistrySelect, 2016, 1, 703–709.

    Article  Google Scholar 

  38. Khodja M, El Kateb M, Beji M, Guittard F, Darmanin T. Tuning nanotubular structures by templateless electropolymerization with thieno[3,4-b]thiophene-based monomers with different substituents and water content. Journal of Colloid and Interface Science, 2020, 564, 19–27.

    Article  Google Scholar 

  39. Sow S, Dramé A, Thiam E h Y, Orange F, Sene A, Dieng S Y, Guittard F, Darmanin T. Nanotubular structures via templateless electropolymerization using thieno[3,4-b]thiophene monomers with various substituents and polar linkers. Progress in Organic Coatings, 2020, 138, 105382.

    Article  Google Scholar 

  40. Sane O, Diouf A, Morán Cruz G, Savina F, Méallet-Renault R, Amigoni S, Dieng S Y, Guittard F, Darmanin T. Coral-like nanostructures. Materials Today, 2019, 31, 119–120.

    Article  Google Scholar 

  41. Bousrih I, El Kateb M, Szczepanski C R, Beji M, Guittard F, Darmanin T. A bioinspired strategy for designing well-ordered nanotubular structures by templateless electropolymerization of thie-no[3,4-b]thiophene-based monomers. Philosophical Transactions of the Royal Society A, 2020, 378, 20190450.

    Article  Google Scholar 

Download references

Acknowledgment

The group thanks Christelle Boscagli from the Centre Commun de Microscopie Appliquée (CCMA, Université Côte d’Azur) for the preparation of the substrates necessary for the SEM analyses. This work has been supported by CNRS GDR 2088 « BIOMIM ».

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thierry Darmanin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bousrih, I., El Kateb, M., Beji, M. et al. Surface Nanostructure Control with Poly(ethylene glycol) (PEG) Spacer by Templateless Electropolymerization. J Bionic Eng 18, 65–76 (2021). https://doi.org/10.1007/s42235-021-0003-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42235-021-0003-5

Keywords

Navigation