Skip to main content
Log in

Strengthening the Mechanical Performance of Sea Urchin Skeleton by Tube Feet Pore

  • Published:
Journal of Bionic Engineering Aims and scope Submit manuscript

Abstract

In this paper, the effects of tube feet pores on the mechanical properties of Sea Urchin Skeleton (SUS) have been studied. The pore structure of drop-like Tripnenstes gratilla (a sea urchin) skeleton is characterized by Scanning Electron Microscopy (SEM). Based upon the data, the finite element method has been employed to analyze the Maximum Tensile Stress (MTS) of SUS models with different pore positions, accompanied by compressive tests on SUS-like ceramics. Results indicate that for a drop-like SUS, the MTS keeps a linear relationship with the maximum load applied on the SUS. More importantly, the mechanical performances of some perforated SUSs are better than their non-perforated counterparts due to their lower MTS values, e.g. the maximum load can thus be increased by 35% when the pore is perforated at −10°. The strengthening is attributed to the introduced pore that causes the redistribution of stress and partly reduces the stress intensity on the original MTS position. By contrast, the pore only increases the MTS value of a spherical shell under isostatic pressure or unidirectional pressing. This is a strong hint that the drop-like shape of SUS has evolved to work with the tube feet pores to better protect their bodies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sherwin F. The Ocean Book Study Guide & Workbook. Master Books, New York, USA, 2012.

    Google Scholar 

  2. Gisvold K M. Development trends in marine technology, Proceedings of 3rd International Symposium on Practical Design of Ships and Mobile Units, Trondheim, Norway, 1987.

    Google Scholar 

  3. Shenoi A, Bowker J, Dzielendziak A S, Lidtke A K, Zhu G, Chen F, Argyros D, Fang I, Gonzalez J, Johnson S, Ross K, Kennedy I, O’Dell M, Westgarth R. Global Marine Technology Trends 2030, Southampton, UK, 2015.

    Google Scholar 

  4. Xiang J. Marine Science & Technology in China: A Roadmap to 2050, Springer, Berlin, Germany, 2010.

    Book  Google Scholar 

  5. Amore I, Aiello S, Ambriola M, Ameli F, Anghinolfi M, Anzalone A, Barbarino G, Barbarito E, Battaglieri M, Bellotti R, Beverini N, Bonori M, Bouhadef B, Brescia M, Cacopardo G, Cafagna F, Capone A, Caponetto L, Castorina E, Vicini P. Nemo: A project for a KM3 underwater detector for astrophysical neutrinos detector in the Mediterranean sea. International Journal of Modern Physics A, 2007, 22, 3509–3520.

    Article  Google Scholar 

  6. Kuykendall F, Zion P. The pilot ocean data system science workstation. IEEE Oceans, Washington, USA, 1984.

    Book  Google Scholar 

  7. Guberek M, Borders S, Masse S. A digital image processing workstation for the ocean sciences. IEEE Oceans, San Diego, USA, 1985.

    Book  Google Scholar 

  8. Rahman M M, Sugimori S, Miki H, Yamamoto R, Sanada Y, Toda Y. Braking performance of a biomimetic squid-like underwater robot. Journal of Bionic Engineering, 2013, 10, 265–273.

    Article  Google Scholar 

  9. Ryuh Y S, Yang G H, Liu J, Hu H. A school of robotic fish for mariculture monitoring in the sea coast. Journal of Bionic Engineering, 2015, 12, 37–46.

    Article  Google Scholar 

  10. Park Y J, Huh T M, Park D, Cho K J. Design of a variable-stiffness flapping mechanism for maximizing the thrust of a bio-inspired underwater robot. Bioinspiration & Biomimetics, 2014, 9, 036002.

    Article  Google Scholar 

  11. Brown N P, Eddy S D. Sea Urchin Ecology and Biology Echinoderm Aquaculture, John Wiley & Sons, Hoboken, USA, 2015.

    Google Scholar 

  12. Chen P Y, Lin A Y, Lin Y S, Seki Y, Stokes A G, Peyras J, Olevsky E A, Meyers M A, McKittrick J. Structure and mechanical properties of selected biological materials. Journal of the Mechanical Behavior of Biomedical Materials, 2008, 1, 208–226.

    Article  Google Scholar 

  13. Ellers O, Telford M. Causes and consequences of fluctuating coelomic pressure in sea urchins. Biological Bulletin, 1992, 182, 424–434.

    Article  Google Scholar 

  14. Grossmann J N. Stereom differentiation in sea urchin spines under special consideration as a model for a new impact protective system. PhD thesis, Universität Tübingen, Munich, Germany, 2010.

    Google Scholar 

  15. Elisabeth D. Book reviews: Echinodermata. vol. IV of the invertebrates–The coelomate bilateria. Science, 1956, 123, 592.

    Google Scholar 

  16. Bruno D, Mooi R. Comprendre les echinodermes; la contribution du modele extraxial-axial. Bulletin de la Société Géologique de France, 1999, 170, 91–101.

    Google Scholar 

  17. Chakra M A, Stone J R. Holotestoid: A computational model for testing hypotheses about echinoid skeleton form and growth. Journal of Theoretical Biology, 2011, 285, 113–125.

    Article  MathSciNet  MATH  Google Scholar 

  18. Smith A B. Stereom microstructure of the echinoid test. Special Papers in Palaeontology Series, 1980, 25, 1–81.

    Google Scholar 

  19. Harrison F W, Chia F S, Lawrence J M. Microscopic Anatomy of Invertebrates: Echinodermata, in Quarterly Review of Biology, Wiley-Liss Inc, New York, USA, 1994.

    Google Scholar 

  20. Smith A B. Biomineralization in Echinoderms. Skeletal Biomineralization: Patterns, Processes and Evolutionary Trends, 2013, 5, 117–147.

    Article  Google Scholar 

  21. Schroeder J H, Dwornik E J, Papike J J. Primary protodolomite in echinoid skeletons. Geological Society of America Bulletin, 1969, 80, 1613–1616.

    Article  Google Scholar 

  22. Wilt F H, Ettensohn C A. The Morphogenesis and Biomineralization of the Sea Urchin Larval Skeleton Handbook of Biomineralization: Biological Aspects and Structure Formation, Wiley-VCH Verlag GmbH, Weinheim, Germany, 2007.

    Google Scholar 

  23. Chakra M A, Lovric M, Stone J R. Predicting morphological disparities in sea urchin skeleton growth and form. Biorxiv, [2017-03-03], https://doi.org/10.1101/133900.

    Google Scholar 

  24. Thompson D A W. On Growth and Form. Cambridge Uni versity Press, London, UK, 1917.

    Google Scholar 

  25. Johnson A S, Ellers O, Lemire J, Minor M, Leddy H A. Sutural loosening and skeletal flexibility during growth: Determination of drop-like shapes in sea urchins. Proceedings of the Royal Society B-Biological Sciences, 2002, 269, 215–220.

    Article  Google Scholar 

  26. Ellers O, Johnson A S, Moberg P E. Structural strengthening of urchin skeletons by collagenous sutural ligaments. Biological & Pharmaceutical Bulletin, 1998, 195, 136–144.

    Article  Google Scholar 

  27. Zachos L G. A new computational growth model for sea urchin skeletons. Journal of Theoretical Biology, 2009, 259, 646–657.

    Article  MathSciNet  MATH  Google Scholar 

  28. Ebert T. Allometry, design and constraint of body components and of shape in sea urchins. Annals & Magazine of Natural History, 1988, 22, 1407–1425.

    Google Scholar 

  29. Telford M. Domes, arches and urchins: The skeletal architecture of echinoids (Echinodermata). Zoomorphology, 1985, 105, 114–124.

    Article  Google Scholar 

  30. Ellers O. A mechanical model of growth in regular sea urchins: Predictions of shape and a developmental morphospace. Proceedings of the Royal Society of London, 1993, 254, 123–129.

    Article  Google Scholar 

  31. Märkel K, Röser U. Calcite-resorption in the spine of the echinoid Eucidaris Tribuloides. Zoomorphology, 1983, 103, 43–58.

    Article  Google Scholar 

  32. Ullrichlüter E M, Dupont S, Arboleda E, Hausen H, Arnone M I. Unique system of photoreceptors in sea urchin tube feet. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 8367–8372.

    Article  Google Scholar 

  33. Kanold J M, Immel F, Broussard C, Guichard N, Plasseraud L, Corneillat M, Alcaraz G, Brümmer F, Marin F. The test skeletal matrix of the black sea urchin Arbacia lixula. Comparative Biochemistry & Physiology Part D: Genomics & Proteomics, 2015, 13, 24–34.

    Google Scholar 

  34. Presser V, Gerlach K, Vohrer A, Nickel K G, Dreher W F. Determination of the elastic modulus of highly porous samples by nanoindentation: A case study on sea urchin spines. Journal of Materials Science, 2010, 45, 2408–2418.

    Article  Google Scholar 

  35. Wang X Q, Schubnel A, Fortin J, David E C, Guéguen Y, Ge H K. High Vp/Vs ratio: Saturated cracks or anisotropy effects? Geophysical Research Letters, 2012, 39, L11307.

  36. Yu H, Chen Y, Guo X, Luo L, Li J, Li W, Xu Z, Li T, Wu G. Study on mechanical properties of hot pressing sintered Mullite-ZrO2, composites with finite element method. Ceramics International, 2018, 44, 7509–7514.

    Article  Google Scholar 

  37. Yu H, Hou Z H, Guo X D, Chen Y J, Li J L, Luo L J, Li J B, Yang T. Finite element analysis on flexural strength of Al2O3-ZrO2 composite ceramics with different proportions. Materials Science & Engineering A, 2018, 738, 213–218.

    Article  Google Scholar 

  38. Gandham V D, Brochu A B W, Reichert W M. Microencapsulation of Liquid Cyanoacrylate via In Situ Polymerization for Self-healing Bone Cement Application. Master thesis, Duke University, Durham, USA, 2011.

    Google Scholar 

  39. Ding Y, Sun C Q, Zhou Y C. Nanocavity hardening: Impact of broken bonds at the negatively curved surfaces. Journal of Applied Physics, 2008, 103, 1–24.

    Article  Google Scholar 

  40. Biener J, Hodge A M, Hayes J R, Volkert C A, Zepeda-Ruiz L A, Hamza A V, Abraham F F. Size effects on the mechanical behavior of nanoporous Au. Nano Letters, 2006, 6, 2379–2382.

    Article  Google Scholar 

  41. Li J, Bai G, Jiang D, Tan S. Microstructure and mechanical properties of in situ produced TiC/TiB2/MoSi2 composites. Journal of the American Ceramic Society, 2005, 88, 1659–1661.

    Article  Google Scholar 

Download references

Acknowledgement

The work is supported by the National Natural Science Foundation of China (NO. 51662006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianbao Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, H., Lin, T., Xin, Y. et al. Strengthening the Mechanical Performance of Sea Urchin Skeleton by Tube Feet Pore. J Bionic Eng 16, 66–75 (2019). https://doi.org/10.1007/s42235-019-0007-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42235-019-0007-6

Keywords

Navigation