Skip to main content
Log in

Ionic Electroactive Polymers Used in Bionic Robots: A Review

  • Published:
Journal of Bionic Engineering Aims and scope Submit manuscript

Abstract

Ionic electroactive polymers (IEAPs) are a category of intelligent soft materials exhibiting large displacement under electric excitation, based on inner ion or solvent transport. Due to their unique advantages such as flexibility, low driving voltage, large bending displacement and aquatic-environment adaptability, IEAPs have been documented as very promising actuators for the applications in bionic robots. This review presents an analysis to the current research status of IEAPs exploited in bionic robots. According to the specific bionic parts, those robots are divided into four classes: imitation of fins, limbs, joints and trunks. Their dimension, weight, voltage amplitude, frequency and maximum speed were summarized to show the optimum design range. The results show that the approach velocity of the current robots were higher (> 35 mm·s-1) when the robot weighted 60 g–180 g and the body was 90 mm–130 mm long. For voltage from 1 V–3 V and frequencies from 0.7 Hz–1.2 Hz, the speed was relatively higher (> 35 mm·s-1). To some extent, the maximum speed decreases when the area of the IEAP material used in bionic robot increases. For underwater circumstances, IEAP materials are most suitable for designing bionic robots swimming with Body and/or Caudal Fin (BCF). This review provides important guidance for the design of IEAP bionic robots.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bao G J, Fang H, Chen L F, Wan Y H, Xu F, Yang Q H, Zhang L B. Soft robotics: Academic insights and perspectives through bibliometric analysis. Soft Robotics, 2018, 5, 229–241.

    Article  Google Scholar 

  2. Yu J Z, Wang M, Dong H F, Zhang Y L, Wu Z X. Motion control and motion coordination of bionic robotic fish: A review. Journal of Bionic Engineering, 2018, 15, 579–598.

    Article  Google Scholar 

  3. Yan H S. Historical trace and restoration of ancient Chinese walking machines. Journal of the Chinese Society of Mechanical Engineers, 2005, 26, 133–137

    Google Scholar 

  4. Gakutensoku, [2018-08-01], https://doi.org/en.wikipedia.org/wiki/Gakutensoku

  5. Robots, [2018-08-01], https://doi.org/www.bostondynamics.com/

  6. Claeyssen F, Lhermet N, Letty R L, Bouchilloux P. Actuators, transducers and motors based on giant magnetostrictive materials. Journal of Alloys & Compounds, 1997, 258, 61–73.

    Article  Google Scholar 

  7. Crawley E F, Luis J D. Use of piezoelectric actuators as elements of intelligent structures. AIAA Journal, 1987, 25, 1373–1385.

    Article  Google Scholar 

  8. Liu R, Zong G H. Artificial muscle drive characteristic research. Chinese High Technology Letters, 1998, 8, 34–38. (in Chinese)

    Google Scholar 

  9. Palacios J L, Smith E C, Zhu Y, Rose J L, Morrow P. Global ultrasonic shear wave anti-Icing actuator for helicopter blades. Proceedings of American Helicopter Society 63rd Annual Forum, Virginia Beach, VA, USA, 2007.

    Google Scholar 

  10. Wang L H, Zhou H. The research status and development direction of bionic robot. Journal of Shanghai Normal University (Natural Science Edition), 2007, 36, 58–62. (in Chinese)

    Google Scholar 

  11. Baughman R H. Muscles made from metal. Science, 2003, 300, 268–269.

    Article  Google Scholar 

  12. Baughman R H. Playing nature’s game with artificial muscles. Science, 2005, 308, 63–65.

    Article  Google Scholar 

  13. Madden J D. Mobile robots: Motor challenges and materials solutions. Science, 2007, 318, 1094–1097.

    Article  Google Scholar 

  14. Stuart M A C, Huck W T S, Genzer J, Müller M, Ober C, Stamm M, Sukhorukov G B, Szleifer I, Tsukruk V V, Urban M, Winnik F, Zauscher S, Luzinov I, Minko S. Emerging applications of stimuli-responsive polymer materials. Nature Materials, 2010, 9, 101–113.

    Article  Google Scholar 

  15. Asaka K, Oguro K, Nishimura Y, Mizuhata M, Takenaka H. Bending of polyelectrolyte membrane platinum composites by electric stimuli I. Response characteristics to various waveforms. Polymer Journal, 1995, 27, 436–440.

    Article  Google Scholar 

  16. Baughman R H. Conducting polymer artificial muscles. Synthetic Metals. 1996, 78, 339–353.

    Article  Google Scholar 

  17. Stilwell D E, Park S M. Electrochemistry of conductive polymers II. Electrochemical studies on growth properties of polyaniline. Journal of Electrochemical Society, 1988, 135, 2254–2262.

    Article  Google Scholar 

  18. Fukushima T, Asaka K, Kosaka A, Aida T. Fully plastic actuator through layer-by-layer casting with ionic-liquid-based bucky gel. Angewandte Chemie-International Edition, 2005, 44, 2410–2413.

    Article  Google Scholar 

  19. Tanaka T, Nishio I, Sun S T, Ueno-Nishio S. Collapse of gels in an electric field. Science, 1982, 218, 467–469.

    Article  Google Scholar 

  20. Yu M, Shen H, Dai Z D. Manufacture and performance of ionic polymer-metal composites. Journal of Bionic Engineering, 2007, 4, 143–149.

    Article  Google Scholar 

  21. Shahinpoor M, Kim K J. Ionic polymer-metal composites: I. Fundamentals. Smart Materials & Structures, 2001, 10, 819–833.

    Article  Google Scholar 

  22. Tiwari R, Garcia E. The state of understanding of ionic polymer metal composite architecture: A review. Smart Materials & Structures, 2011, 20, 083001.

    Article  Google Scholar 

  23. Bhandari B, Lee G Y, Ahn S H. A review on IPMC material as actuators and sensors: Fabrications, characteristics and applications. International Journal of Precision Engineering and Manufacturing, 2012, 13 141–163.

    Article  Google Scholar 

  24. Jo C, Pugal D, Oh I K, Kim K J, Asaka K. Recent advances in ionic polymer–metal composite actuators and their modeling and applications. Progress in Polymer Science, 2013, 38, 1037–1066.

    Article  Google Scholar 

  25. Smela E. Conjugated polymer actuators for biomedical applications. Advanced Materials, 2003, 15, 481–494.

    Article  Google Scholar 

  26. Mirfakhrai T, Madden J D W, Baughman R H. Polymer artificial muscles. Materials Today, 2007, 10, 30–38.

    Article  Google Scholar 

  27. Hara S, Zama T, Takashima W, Kaneto K. Artificial muscles based on polypyrrole actuators with large strain and stress induced electrically. Polymer Journal, 2004, 36, 151–161.

    Article  Google Scholar 

  28. Entezami A A, Massoumi B. Artificial muscles, biosensors and drug delivery systems based on conducting polymers: A review. Iranian Polymer Journal, 2006, 15, 13–30.

    Google Scholar 

  29. Alexander-Madden P G. Development and Modeling of Conducting Polymer Actuators and the Fabrication of a Conducting Polymer based Feedback Loop, PhD thesis, Massachusetts Institute of Technology, Cambridge, USA, 2003.

    Google Scholar 

  30. Fuchiwaki M, Tanaka K, Kaneto K. Planate conducting polymer actuator based on polypyrrole and its application. Sensors & Actuators A Physical, 2009, 150, 272–276.

    Article  Google Scholar 

  31. Chen H L, Zhu Z C, Chang L F, Wang Y J. Ionic Polymenr-Metal Composite Material Deformation Mechanism and its Basic Characteristics, Science Press, Beijing, China, 2016. (in Chinese)

    Google Scholar 

  32. Glazer P J, Van Erp M, Embrechts A, Lemay S G, Mendes E. Role of pH gradients in the actuation of electro-responsive polyelectrolyte gels. Soft Matter, 2012, 8, 4421–4426.

    Article  Google Scholar 

  33. Alici G, Spinks G, Huynh N N, Sarmadi L, Minato R. Establishment of a biomimetic device based on tri-layer polymer actuators-propulsion fins. Bioinspiration & Biomimetics, 2007, 2, S18–S30.

    Article  Google Scholar 

  34. Firouzeh A, Ozmaeian M, Alasty A, Zad A I. An IPMC-made deformable-ring-like robot. Smart Materials & Structures, 2012, 21, 65011–65021.

    Article  Google Scholar 

  35. Osada Y, Okuzaki H, Hori H. A polymer gel with electrically driven motility. Nature, 1992, 355, 242–244.

    Article  Google Scholar 

  36. Nakabo Y, Mukai T, Asaka K. Kinematic modeling and visual sensing of multi-DOF robot manipulator with patterned artificial muscle. Proceedings of IEEE International Conference on Robotics and Automation, Barcelona, Spain, 2005, 4315–4320.

    Google Scholar 

  37. Konyo M, Tadokoro S. IPMC based tactile displays for pressure and texture presentation on a human finger. In: Carpi F, Smela E, eds., Biomedical Applications of Electroactive Polymer Actuators, John Wiley and Sons, 2009, 161–174.

    Chapter  Google Scholar 

  38. Krishen K. Space applications for ionic polymer-metal composite sensors, actuators, and artificial muscles. Acta Astronautica, 2009, 64, 1160–1166.

    Article  Google Scholar 

  39. Colozza A, Smith C, Shahinpoor M, Jenkins P, Isaac K, DalBello T. Solid state aircraft concept overview. Proceedings of the NASA/DoD Conference on Evolvable Hardware (EH’04), New York, USA, 2004, 318–324.

    Google Scholar 

  40. Tadokoroa S, Fukuhlara M, Bar-Cohen Y, Oguro K, Takamori T. CAE approach in application of Nafion-Pt composite (ICPF) actuators: Analysis for surface wipers of NASA MUSES-CN nanorovers. Proceedings of SPIE, 2000, 3987, 262–272.

    Article  Google Scholar 

  41. Kato Y, Sekitani T, Takamiya M, Doi M, Asaka K, Sakurai T, Someya T. Sheet-type braille displays by integrating organic field-effect transistors and polymeric actuators. IEEE Transactions on Electron Devices, 2007, 54, 202–209.

    Article  Google Scholar 

  42. Cai B H, Lei C, Wang Z J. Preparation, properties and application of conductive polymer polypyrrole. Chemical Technology Market, 2010, 33, 11–16. (in Chinese)

    Google Scholar 

  43. Lee H K, Choi N J, Jung S, Lee S, Jung H, Ryu J W, Park K H. Application of ionic polymer-metal composites for auto-focusing compact camera modules. Proceedings of SPIE, San Diego, CA, USA, 2008, 6927, 69271N.

    Google Scholar 

  44. Shahinpoor M, Kwang J K, Ionic polymer–metal composites: IV. Industrial and medical applications. Smart Materials and Structures, 2005, 14, 197–214.

    Article  Google Scholar 

  45. Zhou Z Q, Wang Z L, Zhang X Y, Huang H H. Design of bionic machine fish and its motion control research. Microcomputer Information, 2006, 22, 252–254. (in Chinese)

    Google Scholar 

  46. Webb B P W, Weihs D. Fish Biomechanics, Praeger Publishers, New York, USA, 1983, 312–338.

    Google Scholar 

  47. Yu J Z, Chen E K, Wang S, Tan M. Progress and analysis of bionic machine fish research. Journal of System Science and Mathematical Sciences, 2012, 20, 485–491. (in Chinese)

    Google Scholar 

  48. Jung J, Kim B, Tak Y, Park J O. Undulatory tadpole robot (TadRob) using ionic polymer metal composite (IPMC) ac tuator. Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Las Vegas, USA, 2003, 2133–2138.

    Google Scholar 

  49. Mcgovern S, Alici G, Truong V T, Spinks G. Finding NEMO (novel electromaterial muscle oscillator): A polypyrrole powered robotic fish with real-time wireless speed and directional control. Smart Materials and Structures, 2009, 18, 7566–7579.

    Article  Google Scholar 

  50. Chen Z, Shatara S, Tan X. Modeling of robotic fish propelled by an ionic polymer-metal composite caudal fin. Proceedings of SPIE, San Diego, USA, 2009, 7287, 72871M.

    Article  Google Scholar 

  51. Guo S, Ge Y, Li L, Liu S. Underwater swimming micro robot using IPMC actuator. Proceedings of IEEE International Conference on Mechatronics and Automation. Luoyang, China, 2006, 249–254.

    Google Scholar 

  52. Wang H, Tjahyono S S, Macdonald B, Kilmartin P A, Travas-Sejdic J, Keifer R. Robotic fish based on a polymer actuator. Australasian Conference on Robotics and Automation, Brisbane, Australia, 2009.

    Google Scholar 

  53. Shen Q, Wang T, Liang J, Wen L. Hydrodynamic performance of a biomimetic robotic swimmer actuated by ionic polymer–metal composite. Smart Materials & Structures, 2013, 22, 075035.

    Article  Google Scholar 

  54. Tan X, Kim D, Usher N, Laboy D. An autonomous robotic fish for mobile sensing. IEEE/RSJ International Conference on Intelligent Robots and Systems, Beijing, China, 2006, 5424–5429.

    Google Scholar 

  55. Anton M, Punning A, Aabloo A, Listak M, Kruusmaa M. Towards a biomimetic EAP robot. Proceedings of TAROS, UK, 2004, 1–7.

    Google Scholar 

  56. Punning A, Anton M, Kruusmaa M, Aabloo A. A biologically inspired ray-like underwater robot with electroactive polymer pectoral fins. Proceedings of the International IEEE Conference Mechatronics and Robotics, Aachen, Germany, 2004.

    Google Scholar 

  57. Takagi K, Yamamura M, Luo Z W, Onishi M. Development of a rajiform swimming robot using ionic polymer artificial muscles. Proceedings of the IEEE/RSJ, Beijing, China, 2006, 1861–1866.

    Google Scholar 

  58. Chen Z, Um T I, Bart-Smith H. A novel fabrication of ionic polymer–metal composite membrane actuator capable of 3-dimensional kinematic motions. Sensors & Actuators A Physical, 2011, 168, 131–139.

    Article  Google Scholar 

  59. Chen Z, Um T I, Bart-Smith H. Bio-inspired robotic manta ray powered by ionic polymer metal composite artificial muscles. International Journal of Smart & Nano Materials, 2012, 3, 1–13.

    Article  Google Scholar 

  60. Su Y D, Ye X F, Guo S X. IPMC actuator-based autonomous micro-machine fish. Robotics, 2010, 32, 262–270. (in Chinese)

    Google Scholar 

  61. Hubbard J J, Fleming M, Palmre V, Pugal D, Kim K J, Leang K K. Monolithic IPMC fins for propulsion and maneuvering in bioinspired underwater robotics. IEEE Journal of Oceanic Engineering, 2014, 39, 540–551.

    Article  Google Scholar 

  62. Yang T, Chen Z. Development of 2D maneuverable robotic fish propelled by multiple ionic polymer-metal composite artificial fins. IEEE International Conference on Robotics and Biomimetics, Zhuhai, China, 2017, 1, 255–260.

    Google Scholar 

  63. Wang G B, Chen D S, Chen K W, Zhang Z Q. Research status and development trend of bionic robot. Chinese Journal of Mechanical Engineering, 2015, 51, 27–44. (in Chinese)

    Article  Google Scholar 

  64. Otake M, Kagami Y, Inaba M, Inoue H. Motion design of a starfish-shaped gel robot made of electro-active polymer gel. Robotics & Autonomous Systems, 2002, 40, 185–191.

    Article  Google Scholar 

  65. Hong H X. Gellyfish. Bulletin of Biology, 2002, 37, 13–16. (in Chinese)

    Google Scholar 

  66. Ye X F, Hu Y N, Guo S X, Su Y D. Driving mechanism of a new jellyfish-like microrobot. Proceeding of IEEE International Conference on Mechatronics and Automation, Harbin, China, 2008, 563–568.

    Google Scholar 

  67. Akle B, Najem J, Leo D, Blottman J. Design and development of bio-inspired underwater jellyfish like robot using ionic polymer metal composite (IPMC) actuators. Proceedings of SPIE, San Diego, CA, USA, 2011, 7976, UNSP 797624.

    Google Scholar 

  68. Tadesse Y, Brennan J, Smith C, Long TE, Priya S. Synthesis and characterization of polypyrrole composite actuator for jellyfish unmanned undersea vehicle. Proceedings of SPIE, San Diego, CA, USA, 2010, 7642, UNSP 764222.

    Google Scholar 

  69. Yeom S W, Oh I K. A biomimetic jellyfish robot based on ionic polymer metal composite actuators. Smart Materials & Structures, 2009, 18, 085002.

    Article  Google Scholar 

  70. Najem J, Leo D J. A bio-inspired bell kinematics design of a jellyfish robot using ionic polymer metal composites actuators. Proceedings of SPIE, Blackburg, USA, 2012, 8340, 83401Q.

    Article  Google Scholar 

  71. Shi L W, Guo S X, Li M X, Mao S L, Xiao N, Gao B F, Song Z B, Asaka K. A novel soft biomimetic microrobot with two motion attitudes. Sensors, 2011, 12, 16732.

    Article  Google Scholar 

  72. Shi L W, Guo S X, Mao S L, Li M X, Asaka K. Development of a lobster-inspired underwater microrobot. International Journal of Advanced Robotic Systems, 2013, 10, 44.

    Article  Google Scholar 

  73. Li M, Guo S, Guo J, Hirata H, Ishihara H. Development of a biomimetic underwater microrobot for a father–son robot system. Microsystem Technologies, 2017, 23, 1–13.

    Article  Google Scholar 

  74. Yamakita M, Kamamichi N, Kozuki T, Asaka K, Luo Z W. Control of biped walking robot with IPMC linear actuator. Proceedings of IEEE/ASME International Conference on Advanced Intelligent Mechatronics, California, USA, 2005, 48–53.

    Google Scholar 

  75. Nguyen K T, Ko S Y, Park J O, Park S. Terrestrial walking robot with 2DOF ionic polymer–metal composite (IPMC) legs. IEEE/ASME Transactions on Mechatronics, 2015, 20, 2962–2972.

    Article  Google Scholar 

  76. Chang Y C, Kim W J. Aquatic ionic-polymer-metalcomposite insectile robot with multi-DOF legs. IEEE/ASME Transactions on Mechatronics, 2013, 18, 547–555.

    Article  Google Scholar 

  77. Kim B, Ryu J, Jeong Y, Tak Y, Kim B, Park J O. A ciliary based 8-legged walking micro robot using cast IPMC actuators. International Symposium on Micromechatronics & Human Science, 2003, 3, 85–91.

    Google Scholar 

  78. Guo S X, Shi L W, Xiao N, Asaka K. A biomimetic underwater microrobot with multifunctional locomotion. Robotics and Autonomous Systems, 2012, 60, 1472–1483.

    Article  Google Scholar 

  79. Kamamichi N, Yamakita M, Asaka K, Luo Z W. A snake-like swimming robot using IPMC actuator/sensor. Proceedings of IEEE International Conference on Robotics and Automation, Florida, USA, 2006, 1812–1817.

    Google Scholar 

  80. Ahmed M, Billah M M. Smart material-actuated flexible tendon-based snake robot. International Journal of Advanced Robotic Systems, 2016, 13, 89.

    Article  Google Scholar 

  81. Sang J L, Man J H, Kim S J, Jho J Y, Lee H Y, Kim Y H. A new fabrication method for IPMC actuators and application to artificial fingers. Smart Materials & Structures, 2006, 15, 1217–1224.

    Article  Google Scholar 

  82. Bhattacharya S, Bepari B, Bhaumik S. Novel approach of IPMC actuated finger for micro-gripping. Proceedings of IEEE - International Conference on Informatics, Electronics & Vision, Fukuoka, Japan, 2015, 1–6.

    Google Scholar 

  83. Bhattacharya S, Bepari B, Bhaumik S. Soft robotic finger fabrication with PDMS and IPMC actuator for gripping. Proceedings of SAI Computing Conference, London, UK, 2016, 403–408.

    Google Scholar 

  84. Shiga T, Hirose Y, Okada A, Kurauchi T. Electrically driven polymer gel finger working in the air. Journal of Intelligent Material Systems & Structures, 1993, 4, 553–557.

    Article  Google Scholar 

  85. Secord T W, Asada H H. A humanoid foot with polypyrrole conducting polymer artificial muscles for energy dissipation and storage. Proceedings of IEEE International Conference on Robitcs and Automation, Roma, Italy, 2007, 2904–2909.

    Google Scholar 

  86. Arena P, Bonomo C, Fortuna L, Frasca M, Graziani S. Design and control of an IPMC wormlike robot. IEEE Transactions on Systems Man & Cybernetics Part B Cybernetics, 2006, 36, 1044–1052.

    Article  Google Scholar 

  87. Nakabo Y, Mukai T, Asaka K. Biomimetic soft robots with artificial muscles. Proceedings of SPIE, Sydney, Australia, 2004, 5648, 132–144.

    Article  Google Scholar 

  88. Okuzaki H, Kuwabara T, Funasaka K, Saido T. Humidity-sensitive polypyrrole films for electro-active polymer actuators. Advanced Functional Materials, 2013, 23, 4400–4407.

    Article  Google Scholar 

  89. Shahinpoor M. Biomimetic robotic Venus flytrap (Dionaea muscipula Ellis) made with ionic polymer metal composites. Bioinspiration & Biomimetics, 2011, 6, 046004.

    Article  Google Scholar 

  90. Shi L, Guo S, Kudo H, Asaka K. Development of a Venus flytrap-inspired robotic flytrap. Proceedings of IEEE International Conference on Robotics and Biomimetics, Guangzhou, China, 2012, 551–556.

    Google Scholar 

  91. Shi L, He Y, Guo S, Kudo H, Li M, Asaka K. IPMC actuator-based a movable robotic venus flytrap. Proceedings of ICME International Conference on Complex Medical Engineering, Beijing, China, 2013, 375–378.

    Google Scholar 

  92. Chu W S, Lee K T, Song S H, Han M W, Lee J Y, Kim H S, Kim M S, Park Y J, Cho K J, Ahn S H. Review of biomimetic underwater robots using smart actuators. International Journal of Precision Engineering and Manufacturing, 2012, 13, 1281–1292.

    Article  Google Scholar 

  93. Tadokoro S, Yamagami S, Takamori T, Oguro K. Modeling of Nafion-Pt composite actuators (ICPF) by ionic motion. Smart Structures and Materials: Electroactive Polymer Actuators and Devices (EAPAD), 2000, 3987, 92–102.

    Google Scholar 

  94. Nemat-Nasser S, Jiang Y L. Electromechanical response of ionic polymer-metal composites. Journal of Applied Physics, 2000, 87, 3321–3331.

    Article  Google Scholar 

  95. Bonomo C, Fortuna L, Giannone P, Graziani S. A circuit to model the electrical behavior of an ionic polymer-metal composite. IEEE Transactions on Circuits and Systems I-Regular Papers, Vancouver, Canada, 2006, 53, 338–350.

    Article  Google Scholar 

  96. Weiland L M, Leo D J. Applying a computational micromechanics model to the hypothesis of polarization response in ionic polymers. Proceedings of SPIE, San Diego, CA, USA, 2004, 5383, 122–133.

    Google Scholar 

  97. Kim D, Kim K J, Nam J D, Palmre V. Electro-chemical operation of ionic polymer-metal composites. Sensors and Actuators B-Chemical, 2011, 155, 106–111.

    Article  Google Scholar 

  98. Gong Y Q, Fan J P, Tang C Y, Tsui C P. Numerical simula tion of dynamic electro-mechanical response of ionic polymer-metal composites. Journal of Bionic Engineering, 2011, 8, 263–272.

    Article  Google Scholar 

  99. Tiwari R, Kim K J. Effect of metal diffusion on mechanoelectric property of ionic polymer-metal composite. Applied Physics Letters, 2010, 97, 244104.

    Article  Google Scholar 

  100. Richardson R C, Levesley M C, Brown M D, Hawkes J A, Watterson K, Walker P G. Control of ionic polymer metal composites. IEEE/ASME Transactions on Mechatronics, 2003, 8, 245–253.

    Article  Google Scholar 

  101. Kang S, Shin J, Kim S J, Kim H J, Kim Y H. Robust control of ionic polymer–metal composites. Smart Materials and Structures, 2007, 16, 2457–2463.

    Article  Google Scholar 

  102. Zheng C, Xiaobo T, Shahinpoor M. Quasi-static positioning of ionic polymer–metal composite (IPMC) actuators. Proceedings of the IEEE/ASME-AIM, Monterey, CA, USA, 2005, 60–65.

    Google Scholar 

  103. Kang S, Kim W, Kim H J, Park J. Adaptive feed forward control of ionic polymer metal composites with disturbance cancellation. Journal of Mechanical Science and Technology 2012, 26, 205–212.

    Article  Google Scholar 

  104. Vokoun D, He Q S, Heller L, Yu M, Dai Z D. Modeling of IPMC cantilever’s displacements and blocking forces. Journal of Bionic Engineering, 2015, 12, 142–151.

    Article  Google Scholar 

  105. Guo D J, Ding H T, Wei H, He Q S, Yu Min, Dai Z D. Hybrids perfluorosulfonic acid ionomer and silicon oxide membrane for application in ion-exchange polymer-metal composite actuators. Science China Technological Sciences, 2009, 52, 3061–3070.

    Article  Google Scholar 

  106. Shahinpoor M, Bar-Cohen Y, Simpson J O, Smith J. Ionic polymer–metal composites (IPMCs) as biomimetic sensors, actuators and artificial muscles - A review. Smart Materials and Structures, 1998, 7, R15–R30.

    Article  Google Scholar 

  107. Franklin J W. Electromechanical Modeling of Encapsulated Ionic Polymer Transducers, Master’s Thesis, Faculty of the Virginia Polytechnic Institute and State University, USA, 2003.

    Google Scholar 

  108. Malone E, Lipson H. Freeform fabrication of electroactive polymer actuators and electromechanical devices. Proceedings of the 15th Solid Freeform Fabrication Symposium, Austin, TX, USA, 2004, 697–708.

    Google Scholar 

  109. Barramba J, Silva J, Branco P J C. Evaluation of dielectric gel coating for encapsulation of ionic polymer–metal composite (IPMC) actuators. Sensors & Actuators A Physical, 2007, 140, 232–238.

    Article  Google Scholar 

  110. Yamakita M, Sera A, Kamamichi N, Asaka K. Integrated design of an ionic polymer–metal composite actuator/sensor. Advanced Robotics, 2008, 22, 913–928.

    Article  Google Scholar 

  111. Feng G H, Hou S Y. Investigation of tactile bump array actuated with ionic polymer–metal composite cantilever beams for refreshable braille display application. Sensors & Actuators A Physical, 2018, 275, 137–147.

    Article  Google Scholar 

Download references

Acknowledgment

The authors acknowledge the financial support from the National Natural Science Foundation of China (No. 51605131), National Natural Science Foundation of China (No. 11674354), Natural Science Foundation of Anhui Province, China (No. 1608085QE100), and Fundamental Research Funds for the Central Universities (No. JZ2016HGTB0711).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yucheng Wu or Ying Hu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, L., Liu, Y., Yang, Q. et al. Ionic Electroactive Polymers Used in Bionic Robots: A Review. J Bionic Eng 15, 765–782 (2018). https://doi.org/10.1007/s42235-018-0065-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42235-018-0065-1

Keywords

Navigation