Cassie A B D, Baxter S. Wettability of porous surfaces. Transactions of the Faraday Society, 1994, 40, 546–551.
Article
Google Scholar
Rijke A M. The water repellency and feature structure of cormorants, phalogrocorcidae. Journal of Experimental Biology, 1968, 48, 185–189.
Google Scholar
Rijike A M, Jesser W A, Evans S W, Bouwman H. Water repellency and feather structure of the Blue Swallow Hirundo atrocaerulea. Ostrich, 2000, 71, 143–145.
Article
Google Scholar
Grémillet D, Chauvin C, Wilson R P, Maho Y L, Wanless S. Unusual feather structure allows partial plumage wettability in diving great cormorants Phalacrocorax carbo. Journal of Avian Biology, 2005, 36, 57–63.
Article
Google Scholar
Ribak G, Weihs D, Arad Z. Water retention in the plumage of diving great cormorants Phalacrocorax carbo sinensis. Journal of Avian Biology, 2005, 36, 89–95.
Article
Google Scholar
Srinivasan S, Chhatre S S, Guardado J O, Park K C, Parker A R, Rubner M F, McKinley G H, Cohen R E. Quantification of feather structure, wettability and resistance to liquid penetration. Journal of the Royal Society Interface, 2014, 11, 20140287.
Article
Google Scholar
Bormashenko E, Bormashenko Y, Stein T, Whyman G, Bormashenko E. Why do pigeon feathers repel water? Hydrophobicity of pennae, Cassie-Baxter wetting hypothesis and Cassie-Wenzel capillarity-induced wetting transition. Journal of Colloid and Interface Science, 2007, 311, 212–216.
Article
Google Scholar
Bormashenko E, Gendelman O, Whyman G. Superhydrophobicity of lotus leaves versus birds wings: Different physical mechanisms leading to similar phenomena. Langmuir, 2012, 28, 14992–14997.
Article
Google Scholar
Reneerkens J. Functional Aspects of Variation in Preen Wax Composition, Ph.D. dissertation, University of Groningen, the Netherlands, 2007.
Google Scholar
Damsté J S S, Dekker M, Dongen B E V, Schouten S, Piersma T. Structural identification of the diester preen-gland waxes of the Red Knot (Calidris canutus). Journal of Natural Products, 2000, 63, 381–384.
Article
Google Scholar
Elder W H. The oil gland of birds. Wilson Bulletin, 1954, 66, 6–31.
Google Scholar
Hou H C. Studies on the glandula uropygialis of birds. The Chinese Journal of Physiology, 1928, 2, 345–378.
Google Scholar
Odham G, Stenhagen E. On the chemistry of preen gland waxes of water fowl. Accounts of Chemical Research, 1971, 4, 121–128.
Article
Google Scholar
Ruiz-Rodríguez M, Valdivia E, Soler J J, Martín-Vivaldi M, Martín-Platero A M, Martínez-Bueno M. Symbiotic bacteria living in the hoopoe’s uropygial gland prevent feather degradation. Journal of Experimental Biology, 2009, 212, 3621–3626.
Article
Google Scholar
Salibian A, Montalti D. Physiological and biochemical aspects of the avian uropygial gland. Brazilian Journal of Medical and Biological Research, 2009, 69, 437–446.
Article
Google Scholar
Stephenson R, Andrews C A. The effect of water surface tension on feather wettability in aquatic birds. Canadian Journal of Zoology, 1997, 74, 288–294.
Article
Google Scholar
Choi W, Tuteja A, Chhatre S, Mabry J M, Cohen R E, McKinley G H. Fabrics with tunable oleophobicity. Advanced Materials, 2009, 21, 2190–2195.
Article
Google Scholar
Chen L, Xiao Z, Chan P C, Lee Y K, Li Z. A comparative study of droplet impact dynamics on a dual-scaled superhydrophobic surface and lotus leaf. Applied Surface Science, 2011, 257, 8857–8863.
Article
Google Scholar
Crick C R, Parkin I P. Water droplet bouncing–A definition for superhydrophobic surfaces. Chemical Communications, 2011, 47, 12059–12061.
Article
Google Scholar
Bird J C, Dhiman R, Kwon H M, Varanasi K K. Reducing the contact time of a bouncing drop. Nature, 2013, 503, 385–388.
Article
Google Scholar
Tsai P, Pacheco S, Pirat C, Lefferts L, Lohse D. Drop impact upon micro-and nanostructured superhydrophobic surfaces. Langmuir, 2009, 25, 12293–12298.
Article
Google Scholar
Ramachandran R, Sobolev K, Nosonovsky M. Dynamics of droplet impact on hydrophobic/icephobic concrete with the potential for superhydrophobicity. Langmuir, 2015, 31, 1437–1444.
Article
Google Scholar
Pereira P M M, Moita A S, Monteiro G A, Prazeres D M F. Characterization of the topography and wettability of English weed leaves and biomimetic replicas. Journal of Bionic Engineering, 2014, 11, 346–359.
Article
Google Scholar
Rioboo R, Tropea C, Marengo M. Outcomes from a drop impact on solid surfaces. Atomization and Sprays, 2001, 11, 155–165.
Article
Google Scholar
Moita A S, Moreira A L. Experimental study on fuel drop impacts onto rigid surfaces: Morphological comparisons, disintegration limits and secondary atomization. Proceedings of the Combustion Institute, 2007, 31, 2175–2183.
Article
Google Scholar
Moreira A L N, Moita A S, Panão M R. Advances and challenges in explaining fuel spray impingement: How much of single droplet impact research is useful?. Progress in Energy and Combustion Science, 2010, 36, 554–580.
Article
Google Scholar
Deng T, Varanasi K K, Hsu M, Bhate N, Keimel C, Stein J, Blohm M. Nonwetting of impinging droplets on textured surfaces. Applied Physics Letters, 2009, 94, 133109.
Article
Google Scholar
Yang X, Wang T, Liang J. Survey on the novel hybrid aquatic–aerial amphibious aircraft: Aquatic unmanned aerial vehicle (AquaUAV). Progress in Aerospace Science, 2014, 74, 131–151.
Article
Google Scholar
Richard D, Clanet C, Quéré D. Contact time of a bouncing drop. Nature, 2002, 417, 811.
Article
Google Scholar
Okumura K, Chevy F, Richard D, Quéré D, Clanet C. Water spring: A model for bouncing drops. Europhysics Letters, 2003, 62, 237–243.
Article
Google Scholar