Yablonovitch E. Inhibited spontaneous emission in solid-state physics and electronics. Physical Review Letters, 1987, 58, 2059–2062.
Article
Google Scholar
John S. Strong localization of photons in certain disordered dielectric superlattices. Physical Review Letters, 1987, 58, 2486–2489.
Article
Google Scholar
Fan S H, Villeneuve P R, Joannopoulos J D, Schubert E F. High extraction efficiency of spontaneous emission from slabs of photonic crystals. Physical Review Letters, 1997, 78, 3294–3295.
Article
Google Scholar
Weily A R, Esselle K P, Sanders B C. Photonic crystal horn and array antennas. Physical Review E, 2003, 68, 016609.
Article
Google Scholar
Horii Y, Tsutsumi M. Harmonic control by photonic bandgap on microstrip patch antenna. IEEE Microwave and Guided Wave Letters, 1999, 9, 13–15.
Article
Google Scholar
Weily A R, Esselle K P, Sanders B C. Layer-by-layer photonic crystal horn antenna. Physical Review E, 2004, 70, 037602.
Article
Google Scholar
Gralak B, Enoch S, Tayeb G. Anomalous refractive properties of photonic crystals. Journal of the Optical Society of America A–Optics Image Science and Vision, 2000, 17, 1012–1020.
Article
Google Scholar
Foteinopoulou S, Soukoulis C M. Electromagnetic wave propagation in two-dimensional photonic crystals: A study of anomalous refractive effects. Physical Review B, 2005, 72, 165112.
Article
Google Scholar
Yang S, Xu T, Ruda H. Numerical study of anomalous refraction in photonic crystals. Physical Review B, 2005, 72, 075128.
Article
Google Scholar
Notomi M. Theory of light propagation in strongly modulated photonic crystals: Refractionlike behavior in the vicinity of the photonic band gap. Physical Review B, 2000, 62, 10696–10705.
Article
Google Scholar
Cubukcu E, Aydin K, Ozbay E, Foteinopoulou S, Soukoulis C M. Electromagnetic waves: Negative refraction by photonic crystals. Nature, 2003, 423, 604–605.
Article
Google Scholar
Ao X Y, He S L. Three-dimensional photonic crystal of negative refraction achieved by interference lithography. Optics Letters, 2004, 29, 2542–2544.
Article
Google Scholar
Kosaka H, Kawashima T, Tomita A, Notomi M, Tamamura T, Sato T, Kawakami S. Self-collimating phenomena in photonic crystals. Applied Physics Letters, 1999, 74, 1212–1214.
Article
Google Scholar
Matthews A F, Morrison S K, Kivshar Y S. Self-collimation and beam splitting in low-index photonic crystals. Optics Communications, 2007, 279, 313–319.
Article
Google Scholar
Kosaka H, Kawashima T, Tomita A, Tamamura T, Sato T, Kawakami S. Superprism phenomena in photonic crystals. Physical Review B, 1999, 58, 10096–10099.
Article
Google Scholar
Yang S Y, Wu J Y, Horng H E, Hong C Y, Yang H C. Direct observations for the superprism effect in photonic crystals utilizing negative refraction. Journal of Applied Physics, 2008, 103, 053110.
Article
Google Scholar
Zhou X, Pfeiffer M, Blochwitz J, Werner A, Nollau A, Fritz T, Leo K. Very-low-operating-voltage organic light-emitting diodes using a p-doped amorphous hole injection layer. Applied Physics Letters, 2001, 78, 410–412.
Article
Google Scholar
Knight J C, Birks T A, Russell P St J, Atkin D M. All-silica single-mode optical fiber with photonic crystal cladding. Optics Letters, 1996, 21, 484–485.
Google Scholar
Whitesides G M, Mathias J P, Seto C T. Molecular self-assembly and nanochemistry: A chemical strategy for the synthesis of nanostructures. Science, 1991, 254, 1312–1319.
Article
Google Scholar
Jiang P, Mcfarland M J. Large-scale fabrication of wafer-size colloidal crystals, macroporous polymers and nanocomposites by spin-coating. Journal of the American Chemical Society, 2004, 126, 13778–13786.
Article
Google Scholar
Ding T, Song K, Clays K, Tung C H. Fabrication of 3D photonic crystals of ellipsoids: Convective self-assembly in magnetic field. Advanced Materials, 2009, 21, 1936–1940.
Article
Google Scholar
Mayoral R, Requena J, Moya J S, Lopez C, Cintas A, Miguez H, Meseguer F, Vazquez L, Holgado M, Blanco A. 3D long-range ordering in an SiO2 submicrometer-sphere sintered superstructure. Advanced Materials, 1997, 9, 257–260.
Article
Google Scholar
Míguez H, Tetreault N, Hatton B, Yang S M, Perovic D, Ozin G A. Mechanical stability enhancement by pore size and connectivity control in colloidal crystals by layer-bylayer growth of oxide. Chemical Communications, 2002, 22, 2736–2737.
Article
Google Scholar
Wang J X, Wen Y Q, Ge H L, Sun Z W, Zheng Y M, Song Y L, Jiang L. Simple fabrication of full color colloidal crystal films with tough mechanical strength. Macromolecular Chemistry and Physics, 2006, 207, 596–604.
Article
Google Scholar
Sun C, Yao Y H, Gu Z Z. Fabrication of elastic colloidal crystal films from pure soft spheres. Colloids and Surfaces A, 2012, 402, 102–107.
Article
Google Scholar
Duan L L, You B, Wu L M, Chen M. Facile fabrication of mechanochromic-responsive colloidal crystal films. Journal of Colloid and Interface Science, 2011, 353, 163–168.
Article
Google Scholar
Tang B T, Zheng X X, Lin T, Zhang S F. Hydrophobic structural color films with bright color and tunable stop-bands. Dyes and Pigments, 2014, 104, 146–150.
Article
Google Scholar
Wang Q, Li J X, Song Y, Wang X K. Facile synthesis of high-quality plasma-reduced graphene oxide with ultrahigh 4,4′-dichlorobiphenyl desorption capacity. Chemistry–An Asian Journal, 2013, 8, 225–231.
Article
Google Scholar
Teyssier J, Saenko S V, Marel D V D, Milinkovitch M C. Photonic crystals cause active colour change in chameleons. Nature Communications, 2015, 6, 6368.
Article
Google Scholar
Alibardi L, Toni M. Cytochemical, biochemical and molecular aspects of the process of keratinization in the epidermis of reptilian scales. Progress in Histochemistry and Cytochemistry, 2006, 40, 73–134.
Article
Google Scholar
Fang J F, Xuan Y M, Li Q. Preparation of polystyrene spheres in different particle sizes and assembly of the PS colloidal crystals. Science China Technological Sciences, 2010, 53, 3088–3093.
Article
Google Scholar
Meng X D, Al-Salman R, Zhao J P, Borissenko N, Li Y, Endres F. Electrodeposition of 3D ordered macroporous germanium from ionic liquids: A feasible method to make photonic crystals with a high dielectric constant. Angewandte Chemie-Intrnational Edition, 2009, 48, 2703–2707.
Article
Google Scholar
Zhang H J, Chi Y J, Sun B, Wang X B, Xia N. Preparation of soy protein isolate-based food packaging films. Food Science, 2010, 4, 280–285.
Google Scholar
Van der Leeden M C, Rutten A A C M, Frens G. How to develop globular proteins into adhesives. Journal of Biotechnology, 2000, 79, 211–221.
Article
Google Scholar
Lieberman E R, Gilbert S G. Gas permeation of collagen films as affected by cross-linkage, moisture, and plasticizer content. Journal of Polymer Science, 1973, 41, 33–43.
Google Scholar
Kristo E, Biliaderis C G, Zampraka A. Water vapor barrier and tensile properties of composite caseinat-pullulan films: Biopolymer composition effects and impact of beeswax lamination. Food Chemistry, 2007, 101, 753–764.
Article
Google Scholar
Mchugh T H, Aujard J F, Krochta J M. Plasticized whey protein edible films: Water vapor permeability properties. Journal of Food Science, 1994, 59, 416–419.
Article
Google Scholar
Fang Y, Tung M A, Britt I J, Yada S, Dalgleigh D G. Tensile and barrier properties of edible films made from whey protein. Journal of Food Science, 2002, 67, 188–193.
Article
Google Scholar
Gu L H, Coulombe P A. Keratin function in skin epithelia: A broadening palette with surprising shades. Current Opinion in Cell Biology, 2007, 19, 13–23.
Article
Google Scholar
Floris R, Bodnár L, Weinbreck F, Alting A C. Dynamic rearrangement of disulfide bridges influences solubility of whey protein coatings. International Dairy Journal, 2008, 18, 566–573.
Article
Google Scholar
Pierro P Di, Chico B, Villalonga R, Mariniello L, Damiao A E, Masi P, Porta R. Chitosan-whey protein edible films produced in the absence or presence of transglutaminase: Analysis of their mechanical and barrier properties. Biomacromolecules, 2006, 7, 744–749.
Article
Google Scholar
Mahmoud R, Savello P A. Mechanical properties of and water vapor transferability through whey protein film. Journal of Dairy Science, 1992, 75, 942–946.
Article
Google Scholar