Skip to main content

A Bio-inspired Climbing Robot with Flexible Pads and Claws


Many animals exhibit strong mechanical interlocking in order to achieve efficient climbing against rough surfaces by using their claws in the pads. To maximally use the mechanical interlocking, an innovative robot which utilizes flexible pad with claws is designed. The mechanism for attachments of the claws against rough surfaces is further revealed according to the theoretical analysis. Moreover, the effects of the key parameters on the performances of the climbing robots are obtained. It indicates that decreasing the size of the tip of the claws while maintaining its stiffness unchanged can effectively improve the attachment ability. Furthermore, the structure of robot body and two foot trajectories are proposed and the new robot is presented. Using experimental tests, it demonstrates that this robot has high stability and adaptability while climbing on vertical rough surfaces up to a speed of 4.6 cm·s−1.

This is a preview of subscription content, access via your institution.


  1. [1]

    Aravind S R, Mary A, Raju S N, Ravi A G, Sharma V, Bala G. A novel design technique to develop a low cost and highly stable wall climbing robot. International Conference on Intelligent Systems, Modelling and Simulation, 2013, 360–363.

    Google Scholar 

  2. [2]

    Rosa G L, Messina M, Muscato G, Sinatra R. A low-cost lightweight climbing robot for the inspection of vertical surfaces. Mechatronics, 2002, 12, 71–96.

    Article  Google Scholar 

  3. [3]

    Zhu J, Sun D, Tso S K. Development of a tracked climbing robot. Journal of Intelligent & Robotic Systems, 2002, 35, 427–443.

    Article  Google Scholar 

  4. [4]

    Kim H, Kim D, Yang H, Lee K, Seo K, Chang D, Kim J. Development of a wall-climbing robot using a tracked wheel mechanism. Journal of Mechanical Science and Technology, 2008, 22, 1490–1498.

    Article  Google Scholar 

  5. [5]

    Balaguer C, Gimenez A, Pastor J M, Padron V M, Abderrahim M. A climbing autonomous robot for inspection applications in 3d complex environments. Robotica, 2000, 18, 287–297.

    Article  Google Scholar 

  6. [6]

    Ma P, Chen J, Yu X. A wall-climbing robot for labeling scale of oil tank’s volume. Robotica, 2002, 20, 209–212.

    Article  Google Scholar 

  7. [7]

    Hirose S, Tsutsumitake H. Disk rover: A wall-climbing robot using permanent. Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Raleigh, USA, 1992, 2074–2079.

    Chapter  Google Scholar 

  8. [8]

    Shen W, Gu J, Shen Y. Proposed wall climbing robot with permanent magnetic tracks for inspecting oil tanks. Proceedings of IEEE International Conference on Mechatronics and Automation, Niagara Falls, Canada, 2005, 2072–2077.

    Google Scholar 

  9. [9]

    Kim S, Spenko M, Trujillo S, Heyneman B, Mattoli V, Cutkosky M R. Whole body adhesion: Hierarchical, directional and distributed control of adhesive forces for a climbing robot. IEEE International Conference on Robotics & Automation, Roma, Italy, 2007, 1268–1273.

    Google Scholar 

  10. [10]

    Henrey M, Ahmed A, Boscariol P, Shannon L, Menon C. Abigaille-III: A versatile, bioinspired hexapod for scaling smooth vertical surfaces. Journal of Bionic Engineering, 2014, 11, 1–17.

    Article  Google Scholar 

  11. [11]

    Peyvandi A, Soroushian P, Lu J. A new self-loading locomotion mechanism for wall climbing robots employing biomimetic adhesives. Journal of Bionic Engineering, 2013, 10, 12–18.

    Article  Google Scholar 

  12. [12]

    Dan S, Li Y, Menon C. Multi-scale compliant foot designs and fabrication for use with a spider-inspired climbing robot. Journal of Bionic Engineering, 2008, 5, 189–196.

    Article  Google Scholar 

  13. [13]

    Ji A, Han L, Dai Z. Adhesive contact in animal: Morphology, mechanism and bio-inspired application. Journal of Bionic Engineering, 2011, 8, 345–356.

    Article  Google Scholar 

  14. [14]

    Dai Z D, Gorb S. Contact mechanics of pad of grasshopper (Insecta: ORTHOPTERA) by finite element methods. Chinese Science Bulletin, 2009, 54, 549–555.

    Article  Google Scholar 

  15. [15]

    Federle W, Barnes W J, Baumgartner W, Drechsler P, Smith J M. Wet but not slippery: Boundary friction in tree frog adhesive toe pads. Journal of the Royal Society Interface, 2006, 3, 689–697.

    Article  Google Scholar 

  16. [16]

    Jiao Y, Gorb S, Scherge M Jiao Y K. Adhesion measured on the attachment pads of Tettigonia viridissima (Orthoptera, insecta). Journal of Experimental Biology, 2000, 203, 1887–1895.

    Google Scholar 

  17. [17]

    Autumn K, Sitti M, Liang Y A, Peattie A M, Hansen W R, Sponberg S, Kenny T W, Fearing R, Israelachvili J N, Full R J. Evidence for van der Waals adhesion in gecko setae. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 12252–12256.

    Article  Google Scholar 

  18. [18]

    Autumn K, Liang Y A, Hsieh S T, Zesch W, Chan W P, Kenny T W, Fearing R, Full R J. Adhesive force of a single gecko foot-hair. Nature, 2000, 405, 681–685.

    Article  Google Scholar 

  19. [19]

    Roth L M, Willis E R. Tarsal structure and climbing ability of cockroaches. Journal of Experimental Zoology, 1952, 119, 483–517.

    Article  Google Scholar 

  20. [20]

    Kim S, Asbeck A T, Cutkosky M R, Provancher W R. SpinybotII: Climbing hard walls with compliant microspines. Proceedings of 12th International Conference on Advanced Robotics, Seattle, USA, 2005, 601–606.

    Google Scholar 

  21. [21]

    Asbeck A T, Kim S, McClung A, Parness A, Cutkosky M R. Climbing walls with microspines. Proceedings of the IEEE International Conference on Robotics and Automation, Orlando, USA, 2006, 449–458.

    Google Scholar 

  22. [22]

    Autumn K, Buehler M, Cutkosky M, Fearing R, Full R J, Goldman D, Groff R, Provancher W, Rizzi A A, Saranli U, Saunders A, Koditschek D E. Robotics in scansorial environments. SPIE Proceedings, 2005, 5804, 291–302.

    Article  Google Scholar 

  23. [23]

    Saunders A, Goldman D I, Full R J, Buehler M. The RiSE climbing robot: Body and leg design. SPIE Proceedings, 2006, 6230, 623017.

    Article  Google Scholar 

  24. [24]

    Spenko M J, Haynes G C, Saunders J A, Cutkosky M R, Rizzi A A, Full R J, Koditschek D E. Biologically inspired climbing with a hexapedal robot. Journal of Field Robotics, 2008, 25, 223–242.

    Article  Google Scholar 

  25. [25]

    Haynes G C, Khripin A, Lynch G, Amory J, Saunders A, Rizzi A A, Koditschek D E. Rapid pole climbing with a quadrupedal robot. Proceedings of IEEE International Conference on Robotics and Automation, Kobe, Japan, 2009, 2767–2772.

    Google Scholar 

  26. [26]

    Cutkosky M R, Kim S. Design and fabrication of multi-material structures for bioinspired robots. Philosophical Transactions of the Royal Society a Mathematical Physical & Engineering Sciences, 2009, 367, 1799–1813.

    Article  Google Scholar 

  27. [27]

    Liu Y, Sun S, Wu X, Mei T. A wheeled wall-climbing robot with bio-inspired spine mechanisms. Journal of Bionic Engineering, 2015, 12, 17–28.

    Article  Google Scholar 

  28. [28]

    Frantsevich L, Gorb S. Structure and mechanics of the tarsal chain in the hornet, Vespa crabro (Hymenoptera: Vespidae): Implications on the attachment mechanism. Arthropod Structure & Development, 2004, 33, 77–89.

    Article  Google Scholar 

  29. [29]

    Dai Z D, Gorb S U, Schwarz U. Roughness-dependent friction force of the tarsal claw system in the beetle Pachnoda marginata (Coleoptera, Scarabaeidae). Journal of Experimental Biology, 2002, 205, 2479–2488.

    Google Scholar 

  30. [30]

    Asbeck A T, Kim S, Cutkosky M R, Provancher W R, Lanzetta M. Scaling hard vertical surfaces with compliant microspine arrays. International Journal of Robotics Research, 2006, 25, 1165–1179.

    Article  Google Scholar 

  31. [31]

    Wang Z, Dai Z, Ji A, Ren L, Xing Q, Dai L. Biomechanics of gecko locomotion: The patterns of reaction forces on inverted, vertical and horizontal substrates. Bioinspiration & Biomimetics, 2015, 10, 016019.

    Article  Google Scholar 

Download references


This work was supported by the National Natural Science Foundation of China (51375232) and Key Plan of Research and Development of Jiangsu Province (BE2017766).

Author information



Corresponding author

Correspondence to Aihong Ji.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ji, A., Zhao, Z., Manoonpong, P. et al. A Bio-inspired Climbing Robot with Flexible Pads and Claws. J Bionic Eng 15, 368–378 (2018).

Download citation


  • bionic climbing robot
  • mechanical interlocking
  • claw
  • rough surface