Agrios GN (2005) Plant pathology. Elsevier Academic Press, New York, p 922
Google Scholar
Anjam MS, Ludwig Y, Hochholdinger F, Miyaura C, Inada M, Siddique S, Grundler FMW (2016) An improved procedure for isolation of high-quality RNA from nematode-infected Arabidopsis roots through laser capture microdissection. Plant Method 12:25. https://doi.org/10.1186/s13007-016-0123-9
CAS
Article
Google Scholar
Artès EP, Tena M (1990) Purification and characterization of pectic enzymes from two races of Fusarium oxysporum f. sp. ciceri differing in virulence to chickpea (Cicer arietinum L.). Physiol Mol Plant Pathol 1:107–124. https://doi.org/10.1016/0885-5765(90)90003-G
Article
Google Scholar
Asano T, Masumura T, Kusano H, Kikuchi S, Kurita A, Shimada H, Kadowaki K (2002) Construction of a specialized cDNA library from plant cells isolated by laser capture microdissection: toward comprehensive analysis of the genes expressed in the rice phloem. Plant J 32:401–408. https://doi.org/10.1046/j.1365-313x.2002.01423.x
CAS
Article
PubMed
Google Scholar
Barcala M, Garcia A, Cabrera J, Casson S, Lindsey K, Favery B, Garcia- Casado G, Solano R, Fenoll C, Escobar C (2010) Early transcriptomic events in microdissected Arabidopsis nematode-induced giant cells. Plant J 61:698–712. https://doi.org/10.1111/j.1365-313x.2009.04098.x
CAS
Article
PubMed
Google Scholar
Beckman CH, Roberts EM (1995) On the nature and genetic basis for resistance and tolerance to wilt disease of plants. Adv Bot Res 21:35–77. https://doi.org/10.1016/S0065-2296(08)60008-7
Article
Google Scholar
Beckman CM (1987) The Nature of Wilt Disease of Plants. APS Press, St Paul, Minnesota
Google Scholar
Bonner RF, Emmert-Buck M, Cole K, Pohida T, Chuaqui R, Goldstein S et al (1997) Laser capture microdissection: molecular analysis of tissue. Science 278:1481–1483. https://doi.org/10.1126/science.278.5342.1481
CAS
Article
PubMed
Google Scholar
Carpita N, McCann M (2002) The cell wall. In: Buchanan BB, Gruissem W, Jones RL (eds) Biochemistry and Molecular Biology of Plants. American Society of Plant Biologists, Rockville, MD, pp 52–108
Google Scholar
Chatterjee M, Gupta S, Bhar A, Chakraborti D, Basu D, Das S (2014) Analysis of root proteome unravels differential molecular responses during compatible and incompatible interaction between chickpea (Cicer arietinum L.) and Fusarium oxysporum f. sp. ciceri Race1 (Foc1). BMC Genomics 15:949. https://doi.org/10.1186/1471-2164-15-949
CAS
Article
PubMed
PubMed Central
Google Scholar
Cho S, Muehlbauer FJ (2004) Genetic effect of differentially regulated fungal response genes on resistance to necrotrophic fungal pathogens in chickpea (Cicer arietinum L.). Physiol Mol Plant Pathol 64:57–66. https://doi.org/10.1016/j.pmpp.2004.07.003
CAS
Article
Google Scholar
Emrich SJ, Barbazuk WB, Li L, Schnable PS (2007) Gene discovery and annotation using LCM-454 transcriptome sequencing. Genome Res 17:69–73. https://doi.org/10.1101/gr.5145806
CAS
Article
PubMed
PubMed Central
Google Scholar
Espina V, Wulfkuhle JD, Calvert VS, VanMeter A, Zhou W, Coukos G et al (2006) Laser-capture microdissection. Nat Protoc 1:586–603. https://doi.org/10.1038/nprot.2006.85
CAS
Article
PubMed
Google Scholar
Gautam V, Sarkar AK (2015) Laser assisted microdissection, an efficient technique to understand tissue specific gene expression patterns and functional genomics in plants. Mol Biotechnol 57:299–308. https://doi.org/10.1007/s12033-014-9824-3
CAS
Article
PubMed
Google Scholar
Gautam V, Singh A, Singh S, Sarkar K (2016) An efficient LCM-based method for tissue specific expression analysis of genes and miRNAs. Sci Rep 6:21577. https://doi.org/10.1038/srep21577
CAS
Article
PubMed
PubMed Central
Google Scholar
Gupta S, Bhar A, Chatterjee M, Ghosh A, Das S (2017) Transcriptomic dissection reveals wide spread differential expression in chickpea during early time points of Fusarium oxysporum f. sp. ciceri Race 1 attack. PLoS One 2:e0178164. https://doi.org/10.1371/journal.pone.0178164
CAS
Article
Google Scholar
Gupta S, Chakraborti D, Sengupta A, Basu D, Das S (2010) Primary metabolism of chickpea is the initial target of wound inducing early sensed Fusarium oxysporum f. sp. ciceri race I. PLoS One 5:e9030. https://doi.org/10.1371/journal.pone.0009030
CAS
Article
PubMed
PubMed Central
Google Scholar
Gupta S, Chakraborti SD, Rangi RK, Basu D, Das S (2009) A molecular insight into the early events of chickpea (Cicer arietinum) and Fusarium oxysporum f. sp. ciceri (Race 1) interaction through cDNA-AFLP analysis. Phytopathol 99:1245–1257. https://doi.org/10.1094/phyto-99-11-1245
CAS
Article
Google Scholar
Halila MH, Strange RN (1996) Identification of the causal agent of wilt of chickpea in Tunisia as Fusarium oxysporum f. sp. ciceri race 0. Phytopathol Mediterr 35:67–74. http://www.jstor.org/stable/42685246. Accessed 8 Apr 2016
Haware MP, Nene YL (1982) Races of Fusarium oxysporum. Plant Dis 66:809–810
Article
Google Scholar
Horneffer V, Linz N, Vogel A (2007) Principles of laser-induced separation and transport of living cells. J Biomed Opt 12:054016. https://doi.org/10.1117/1.2799194
Article
PubMed
Google Scholar
Inada N, Wildermuth MC (2005) Novel tissue preparation method and cell specific marker for laser microdissection of Arabidopsis mature leaf. Planta 221:9–16. https://doi.org/10.1007/s00425-004-1427-y
CAS
Article
PubMed
Google Scholar
Jimeńez-Gasco MM, Navas-Cortes JA, Jimènez-Diaz RM (2004) The Foc/Cicer a pathosystem: a case study of the evolution of plant-pathogenic fungi into races and pathotypes. Int Microbiol 7:95–104
PubMed
Google Scholar
Jingade P, Ravikumar RL (2015) Development of molecular map and identification of QTLs linked to Fusarium wilt resistance in chickpea. J Genet 94:723–729. https://doi.org/10.1007/s12041-015-0589-7
CAS
Article
PubMed
Google Scholar
Kalunke RM, Tundo S, Benedetti M, Cervone F, De Lorenzo G, D’Ovidio R (2015) An update on polygalacturonase-inhibiting protein (PGIP), a leucine-rich repeat protein that protects crop plants against pathogens. Front Plant Sci 6:146. https://doi.org/10.3389/fpls.2015.00146
Article
PubMed
PubMed Central
Google Scholar
Kerk NM, Ceserani T, Tausta SL, Sussex IM, Nelson TM (2003) Laser capture microdissection of cells from plant tissues. Plant Physiol 132:27–35. https://doi.org/10.1104/pp.102.018127
CAS
Article
PubMed
PubMed Central
Google Scholar
Klink VP, Alkharouf N, MacDonald M, Matthews B (2005) Laser capture microdissection (LCM) and expression analyses of Glycine max (soybean) syncytium containing root regions formed by the plant pathogen Heterodera glycines (soybean cyst nematode). Plant Mol Biol 59:965–979. https://doi.org/10.1007/s11103-005-2416-7
CAS
Article
PubMed
Google Scholar
Klink VP, Thibaudeau G (2014) Laser microdissection of semi-thin sections from plastic-embedded tissue for studying plant–organism developmental processes at single-cell resolution. J Plant Interact 9:610–617. https://doi.org/10.1080/17429145.2013.879677
CAS
Article
Google Scholar
Kubo T, Fujita M, Takahashi H, Nakazono M, Tsutsumi N, Kurata N (2013) Transcriptome analysis of developing ovules in rice isolated by laser microdissection. Plant Cell Physiol 54:750–765. https://doi.org/10.1093/pcp/pct029
CAS
Article
PubMed
Google Scholar
Kumar Y, Dholakia BB, Panigrahi P, Kadoo NY, Giri AP, Gupta VS (2015) Metabolic profiling of chickpea-Fusarium interaction identifies differential modulation of disease resistance pathways. Phytochemistry 116:120–129. https://doi.org/10.1016/j.phytochem.2015.04.001
CAS
Article
PubMed
Google Scholar
Kumar Y, Zhang L, Panigrahi P, Dholakia BB, Dewangan V, Chavan SG et al (2016) Fusarium oxysporum mediates systems metabolic reprogramming of chickpea roots as revealed by a combination of proteomics and metabolomics. Plant Biotechnol J 14:1589–1603. https://doi.org/10.1111/pbi.12522
CAS
Article
PubMed
PubMed Central
Google Scholar
Landa BB, Navas-Cortés JA, Jiménez-Díaz RM (2004) Influence of temperature on plant–rhizobacteria interactions related to biocontrol potential for suppression of fusarium wilt of chickpea. Plant Pathol 53:341–352. https://doi.org/10.1111/j.0032-0862.2004.01008.x
Longuespée R, Fléron M, Pottier C, Quesada-Calvo F, Meuwis MA, Baiwir MD, Smargiasso N, Mazzucchelli G, DeM P-G, Delvenne P, Pauw DW (2014) Tissue proteomics for the next decade? Towards a molecular dimension in histology. OMICS 18:539–552. https://doi.org/10.1089/omi.2014.0033
CAS
Article
PubMed
Google Scholar
McGhee JD, Von Hippel PH (1975) Formaldehyde as a probe of DNA structure. Biochemistry 14:1281–1303. https://doi.org/10.1021/bi00634a002
CAS
Article
PubMed
Google Scholar
Mohamed OE, Hamwieh A, Ahmed S, Ahmed NE (2015) Genetic Variability of Fusarium oxysporum f.sp. ciceris Population Affecting Chickpea in the Sudan. J Phytopathol 163:941–946. https://doi.org/10.1111/jph.12396
Article
Google Scholar
Nakazono M, Qiu F, Borsuk LA, Schnable PS (2003) Laser-capture microdissection, a tool for the global analysis of gene expression in specific plant cell types: identification of genes expressed differentially in epidermal cells or vascular tissues of maize. Plant Cell 15:583–596. https://doi.org/10.1105/tpc.008102
CAS
Article
PubMed
PubMed Central
Google Scholar
Ohtsu K, Smith MB, Emrich SJ, Borsuk LA, Zhou RL, Chen TL, Zhang XL, Timmermans MC, Beck J, Buckner B, Janick-Buckner D, Nettleton D, Scanlon MJ, Schnable PS (2007) Global gene expression analysis of the shoot apical meristem of maize (Zea mays L.). Plant J 52:391–404. https://doi.org/10.1111/j.1365-313X.2007.03244.x
CAS
Article
PubMed
PubMed Central
Google Scholar
Portillo M, Lindsey K, Casson S, GarciaCasado G, Solano R, Fenoll C, Escobar C (2009) Isolation of RNA from laser-capture-microdissected giant cells at early differentiation stages suitable for differential transcriptome analysis. Mol Plant Pathol 10:523–535. https://doi.org/10.1111/j.1364-3703.2009.00552.x
CAS
Article
PubMed
PubMed Central
Google Scholar
Rajhi I, Yamauchi T, Takahashi H, Nishiuchi S, Shiono K, Watanabe R, Mliki A, Nagamura Y, Tsutsumi N, Nishizawa NK, Nakazono M (2011) Identification of genes expressed in maize root cortical cells during lysigenous aerenchyma formation using laser microdissection and microarray analyses. New Phytol 190:351–368. https://doi.org/10.1111/j.1469-8137.2010.03535.x
CAS
Article
PubMed
Google Scholar
Scanlon MJ, Ohtsu K, Timmermans MC, Schnable PS (2009) Laser microdissection-mediated isolation and in vitro transcriptional amplification of plant RNA. Protoc Mol Biol Curr. https://doi.org/10.1002/0471142727.mb25a03s87
Article
Google Scholar
Sivaramakrishnan S, Kannan S, Singh SD (2002) Genetic variability of Fusarium wilt pathogen isolates of chickpea (Cicer arietinum L.) assessed by molecular markers. Mycopathologia 155:171–178. https://doi.org/10.1023/A:1020479512034
CAS
Article
PubMed
Google Scholar
Srinivasan M, Sedmak D, Jewell S (2002) Effect of fixatives and tissue processing on the content and integrity of nucleic acids. Am J Pathol 161:1961–1971. https://doi.org/10.1016/s0002-9440(10)64472-0
CAS
Article
PubMed
PubMed Central
Google Scholar
Summerell B, Salleh B, Leslie JF (2003) A utilitarian approach to Fusarium identification. Plant Dis 87:117–128. https://doi.org/10.1094/PDIS.2003.87.2.117
Article
PubMed
Google Scholar
Suwabe K, Suzuki G, Takahashi H, Shiono K, Endo M, Yano K et al (2008) Separated transcriptomes of male gametophyte and tapetum in rice: validity of a laser microdissection (LM) microarray. Plant Cell Physiol 49:1407–1416. https://doi.org/10.1093/pcp/pcn124
CAS
Article
PubMed
PubMed Central
Google Scholar
Takahashi H, Kamakura H, Sato Y, Shiono K, Abiko T, Tsutsumi N, Nagamura Y, Nishizawa NK, Nakazono M (2010) A method for obtaining high quality RNA from paraffin sections of plant tissues by laser microdissection. J Plant Res 123:807–813. https://doi.org/10.1007/s10265-010-0319-4
CAS
Article
PubMed
Google Scholar
Taxak PC, Khanna SM, Bharadwaj C, Gaikwad K, Kaur S, Chopra M, Kumar D, Tondon G, Jaswal S, Iquebal MA, Rai A, Srinivasan Jain PK (2017) Transcriptomic signature of Fusarium toxin in chickpea unveiling wilt pathogenicity pathways and marker discovery. Physiol Mol Plant Pathol 100:163–177. https://doi.org/10.1016/j.pmpp.2017.09.006
CAS
Article
Google Scholar
Upasani ML, Limaye BM, Gurjar GS, Kasibhatla SM, Joshi RR, Kadoo NY, Gupta VS (2017) Chickpea-Fusarium oxysporum interaction transcriptome reveals differential modulation of plant defense strategies. Sci Rep 7:7746. https://doi.org/10.1038/s41598-017-07114-x
CAS
Article
PubMed
PubMed Central
Google Scholar
Vandewoestyne M, Goossens K, Burvenich C, Van Soom A, Peelman L, Deforce D (2013) Laser capture microdissection: should an ultraviolet or infrared laser be used?. Anal Biochem 439:88–98. https://doi.org/10.1016/j.ab.2013.04.023
CAS
Article
PubMed
Google Scholar
Williams C, Ponten F, Moberg C, Soderkvist P, Uhlen M, Ponten J, Sitbon G, Lundeberg J (1996) A high frequency of sequence alterations is due to formalin fixation of archival specimens. Am J Pathol 155:1467–1471. https://doi.org/10.1016/S0002-9440(10)65461-2
Article
Google Scholar
Zhu Y, Li H, Bhatti S, Zhou S, Yang Y, Fish T, Thannhauser TW (2016) Development of a laser capture microscope-based single-cell-type proteomics tool for studying proteomes of individual cell layers of plant roots. Hortic Res 3:16026–16034. https://doi.org/10.1038/hortres.2016.26
CAS
Article
PubMed
PubMed Central
Google Scholar