Skip to main content
Log in

Dissecting the process of xylem colonization through biofilm formation in Erwinia amylovora

  • Review
  • Published:
Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Erwinia amylovora is the causal agent of fire blight, an economically-important disease affecting apple and pear production worldwide. Initial contact and infection of the host by E. amylovora mainly occurs in flowers, or in young leaves at actively-growing shoot tips. Infection via shoot tips encompasses several distinct steps which include the utilization of a Type III secretion system (T3SS) to establish bacterial populations within the apoplast, infection of the parenchyma, invasion of the xylem, attachment to xylem vessels, biofilm formation, and the eventual colonization of the xylem which manifests outwardly as wilting symptoms in the plant. After E. amylovora gains entry into the xylem, initial attachment to the xylem vessels is mediated by type I fimbriae. Conversely, the small RNA (sRNA) chaperone Hfq and associated sRNA ArcZ negatively regulate attachment and promote biofilm maturation. Attachment and biofilm formation within the xylem are enhanced by the mechanical force emerging from the flow of xylem sap. The second messenger molecule cyclic-di-GMP (c-di-GMP) regulates the transition into the biofilm phase of the infection process of E. amylovora. C-di-GMP also regulates the production of critical exopolysaccharides amylovoran and cellulose, that lend to the structural stability and growth of biofilms within the xylem vessels. In this review, we provide an in-depth evaluation of the process of biofilm formation occurring within the host, as a result of E. amylovora infection. We also provide a model encompassing the different physical and signaling factors involved in biofilm initiation and maturation in E. amylovora, and highlight what needs to be done in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Allison DG, Ruiz B, SanJose C, Jaspe A, Gilbert P (1998) Extracellular products as mediators of the formation and detachment of Pseudomonas fluorescens biofilms. FEMS Microbiol Lett 167:179–184

    Article  CAS  PubMed  Google Scholar 

  • Andersson RA, Eriksson AR, Heikinheimo R, Mäe A, Pirhonen M, Kõiv V, Hyytiäinen H, Tuikkala A, Palva ET (2000) Quorum sensing in the plant pathogen Erwinia carotovora subsp. carotovora: the role of expREcc. Molecular Plant Microbe interactions 13:384–393

    Article  CAS  PubMed  Google Scholar 

  • Aragón IM, Pérez-Mendoza D, Gallegos MT, Ramos C (2015) The c-di-GMP phosphodiesterase BifA is involved in the virulence of bacteria from the Pseudomonas syringae complex. Mol Plant Pathol 16:604–615

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Barken KB, Pamp SJ, Yang L, Gjermansen M, Bertrand JJ, Klausen M, Givskov M, Whitchurch CB, Engel JN, Tolker-Nielsen T (2008) Roles of type IV pili, flagellum-mediated motility and extracellular DNA in the formation of mature multicellular structures in Pseudomonas aeruginosa biofilms. Environ Microbiol 10:2331–2343

    Article  CAS  PubMed  Google Scholar 

  • Bernhard F, Coplin DL, Geider K (1993) A gene cluster for amylovoran synthesis in Erwinia amylovora: characterization and relationship to cps genes in Erwinia stewartii. Mol Gen Genet 239:158–168

    Article  CAS  PubMed  Google Scholar 

  • Bogs J, Bruchmüller I, Erbar C, Geider K (1998) Colonization of host plants by the fire blight pathogen Erwinia amylovora marked with genes for bioluminescence and fluorescence. Phytopathology 88:416–421

    Article  CAS  PubMed  Google Scholar 

  • Bubán T, Orosz-Kovács Z (2003) The nectary as the primary site of infection by Erwinia amylovora: a mini review. Plant Syst Evol 238:183–194

    Article  Google Scholar 

  • Buhtz A, Kolasa A, Arlt K, Walz C, Kehr J (2004) Xylem sap protein composition is conserved among different plant species. Planta 219:610–618

    Article  CAS  PubMed  Google Scholar 

  • Burr T, Barnard AM, Corbett MJ, Pemberton CL, Simpson NJ, Salmond GP (2006) Identification of the central quorum sensing regulator of virulence in the enteric phytopathogen, Erwinia carotovora: the VirR repressor. Mol Microbiol 59:113–125

    Article  CAS  PubMed  Google Scholar 

  • Caldwell D, Kim BS, Iyer-Pascuzzi AS (2017) Ralstonia solanacearum differentially colonizes roots of resistant and susceptible tomato plants. Phytopathology 107:528–536

    Article  CAS  PubMed  Google Scholar 

  • Castiblanco LF, Sundin GW (2016) New insights on molecular regulation of biofilm formation in plant-associated bacteria. J Integr Plant Biol 58:362–372

    Article  CAS  PubMed  Google Scholar 

  • Castiblanco LF, Sundin GW (2018) Cellulose production, activated by cyclic di-GMP through BcsA and BcsZ, is a virulence factor and an essential determinant of the three-dimensional architectures of biofilms formed by Erwinia amylovora Ea1189. Mol Plant Pathol 19:90–103

    Article  CAS  PubMed  Google Scholar 

  • Chatterjee S, Killiny N, Almeida RP, Lindow SE (2010) Role of cyclic di-GMP in Xylella fastidiosa biofilm formation, plant virulence, and insect transmission. Molecular Plant Microbe Interactions 23:1356–1363

    Article  CAS  PubMed  Google Scholar 

  • Cobine PA, Cruz LF, Navarrete F, Duncan D, Tygart M, De La Fuente L (2013) Xylella fastidiosa differentially accumulates mineral elements in biofilm and planktonic cells. PLoS One 8:e54936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crosse JE, Goodman RN, Shaffer WH (1972) Leaf damage as a predisposing factor in the infection of apple shoots by Erwinia amylovora. Phytopathology 62:176–182

    Article  Google Scholar 

  • De La Fuente L, Parker JK, Oliver JE, Granger S, Brannen PM, van Santen E, Cobine PA (2013) The bacterial pathogen Xylella fastidiosa affects the leaf ionome of plant hosts during infection. PLoS One 8

  • De Souza AA, Ionescu M, Baccari C, da Silva AM, Lindow SE (2013) Phenotype overlap in Xylella fastidiosa is controlled by the cyclic di-GMP phosphodiesterase Eal in response to antibiotic exposure and diffusible signal factor-mediated cell-cell signaling. Appl Environ Microbiol 79:3444–3454

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dellagi A, Brisset MN, Paulin JP, Expert D (1998) Dual role of desferrioxamine in Erwinia amylovora pathogenicity. Molecular Plant Microbe Interactions 11:734–742

    Article  CAS  PubMed  Google Scholar 

  • Dow JM, Crossman L, Findlay K, He YQ, Feng JX, Tang JL (2003) Biofilm dispersal in Xanthomonas campestris is controlled by cell–cell signaling and is required for full virulence to plants. Proceedings of the National Academy of Sciences USA 100:10995–11000

    Article  CAS  Google Scholar 

  • Edmunds AC, Castiblanco LF, Sundin GW, Waters CM (2013) Cyclic di-GMP modulates the disease progression of Erwinia amylovora. J Bacteriol 195:2155–2165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Flavier AB, Ganova-Raeva LM, Schell MA, Denny TP (1997) Hierarchical autoinduction in Ralstonia solanacearum: control of acyl-homoserine lactone production by a novel autoregulatory system responsive to 3-hydroxypalmitic acid methyl ester. J Bacteriol 179:7089–7097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao Y, Song J, Hu B, Zhang L, Liu Q, Liu F (2009) The luxS gene is involved in AI-2 production, pathogenicity, and some phenotypes in Erwinia amylovora. Curr Microbiol 58:1–10

    Article  CAS  PubMed  Google Scholar 

  • Goodman RN, White JA (1981) Xylem parenchyma plasmolysis and vessel wall disorientation caused by Erwinia amylovora. Phytopathology 71:844–852

    Article  Google Scholar 

  • Gross M, Geier G, Rudolph K, Geider K (1992) Levan and levansucrase synthesized by the fire blight pathogen Erwinia amylovora. Physiol Mol Plant Pathol 40:371–381

    Article  CAS  Google Scholar 

  • Hall CW, Mah TF (2017) Molecular mechanisms of biofilm-based antibiotic resistance and tolerance in pathogenic bacteria. FEMS Microbiol Rev 41:276–301

    Article  CAS  PubMed  Google Scholar 

  • Hossain MM, Tsuyumu S (2006) Flagella-mediated motility is required for biofilm formation by Erwinia carotovora subsp. carotovora. J Gen Plant Pathol 72:34–39

    Article  CAS  Google Scholar 

  • Ionescu M, Baccari C, Da Silva AM, Garcia A, Yokota K, Lindow SE (2013) Diffusible signal factor (DSF) synthase RpfF of Xylella fastidiosa is a multifunction protein also required for response to DSF. J Bacteriol 195:5273–5284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jenal U, Reinders A, Lori C (2017) Cyclic di-GMP: second messenger extraordinaire. Nat Rev Microbiol 15:271

    Article  CAS  PubMed  Google Scholar 

  • Johnson KB, Stockwell VO, Burgett DM, Sugar D, Loper JE (1993) Dispersal of Erwinia amylovora and Pseudomonas fluorescens by honey bees from hives to apple and pear blossoms. Phytopathology 83:478–484

    Article  Google Scholar 

  • Johnson KB, Sawyer TL, Temple TN (2006) Rates of epiphytic growth of Erwinia amylovora on flowers common in the landscape. Plant Dis 90:1331–1336

    Article  CAS  PubMed  Google Scholar 

  • Kai K, Ohnishi H, Shimatani M, Ishikawa S, Mori Y, Kiba A, Ohnishi K, Tabuchi M, Hikichi Y (2015) Methyl 3-hydroxymyristate, a diffusible signal mediating phc quorum sensing in Ralstonia solanacearum. ChemBioChem 16:2309–2318

    Article  CAS  PubMed  Google Scholar 

  • Kanchiswamy CN, Mohanta TK, Capuzzo A, Occhipinti A, Verrillo F, Maffei ME, Malnoy M (2013) Differential expression of CPKs and cytosolic Ca 2+ variation in resistant and susceptible apple cultivars (Malus x domestica) in response to the pathogen Erwinia amylovora and mechanical wounding. BMC Genomics 14:760

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Karam GN (2005) Biomechanical model of the xylem vessels in vascular plants. Ann Bot 95:1179–1186

    Article  PubMed  PubMed Central  Google Scholar 

  • Kharadi RR, Sundin GW (2019) Physiological and microscopic characterization of cyclic-di-GMP-mediated autoaggregation in Erwinia amylovora. Front Microbiol 10:468

    Article  PubMed  PubMed Central  Google Scholar 

  • Kharadi RR, Castiblanco LF, Waters CM, Sundin GW (2019) Phosphodiesterase genes regulate amylovoran production, biofilm formation, and virulence in Erwinia amylovora. Appl Environ Microbiol 85:e02233–e02218

    Article  CAS  PubMed  Google Scholar 

  • Khokhani, D., Lowe-Power, T.M., Tran, T.M. and Allen, C., 2017. A single regulator mediates strategic switching between attachment/spread and growth/virulence in the plant pathogen Ralstonia solanacearum. mBio 8: 00895-17

  • Klee SM, Sinn JP, Finley M, Allman EL, Smith PB, Aimufua O, Sitther V, Lehman BL, Krawczyk T, Peter KA, McNellis TW (2019) Erwinia amylovora auxotrophic mutant exometabolomics and virulence on apples. Appl Environ Microbiol 85:e00935–e00919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koczan JM, McGrath MJ, Zhao Y, Sundin GW (2009) Contribution of Erwinia amylovora exopolysaccharides amylovoran and Levan to biofilm formation: implications in pathogenicity. Phytopathology 99:1237–1244

    Article  CAS  PubMed  Google Scholar 

  • Koczan JM, Lenneman BR, McGrath MJ, Sundin GW (2011) Cell surface attachment structures contribute to biofilm formation and xylem colonization by Erwinia amylovora. Appl Environ Microbiol 77:7031–7039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lai JL, Tang DJ, Liang YW, Zhang R, Chen Q, Qin ZP, Ming ZH, Tang JL (2018) The RNA chaperone Hfq is important for the virulence, motility and stress tolerance in the phytopathogen Xanthomonas campestris. Environ Microbiol Rep 10:542–554

    Article  CAS  PubMed  Google Scholar 

  • Lowe-Power TM, Hendrich CG, von Roepenack-Lahaye E, Li B, Wu D, Mitra R, Dalsing BL, Ricca P, Naidoo J, Cook D, Jancewicz A (2018a) Metabolomics of tomato xylem sap during bacterial wilt reveals Ralstonia solanacearum produces abundant putrescine, a metabolite that accelerates wilt disease. Environ Microbiol 20:1330–1349

    Article  CAS  PubMed  Google Scholar 

  • Lowe-Power TM, Khokhani D, Allen C (2018b) How Ralstonia solanacearum exploits and thrives in the flowing plant xylem environment. Trends Microbiol 26:929–942

    Article  CAS  PubMed  Google Scholar 

  • Lu XH, An SQ, Tang DJ, McCarthy Y, Tang JL, Dow JM, Ryan RP (2012) RsmA regulates biofilm formation in Xanthomonas campestris through a regulatory network involving cyclic di-GMP and the Clp transcription factor. PLoS One 7

  • Meng Y, Li Y, Galvani CD, Hao G, Turner JN, Burr TJ, Hoch HC (2005) Upstream migration of Xylella fastidiosa via pilus-driven twitching motility. J Bacteriol 187:5560–5567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miller TD, Schroth MN (1972) Monitoring the epiphytic population of Erwinia amylovora. Phytopathology 62:1175–1182

    Article  Google Scholar 

  • Mina IR, Jara NP, Criollo JE, Castillo JA (2019) The critical role of biofilms in bacterial vascular plant pathogenesis. Plant Pathol 68:1439–1447

    Article  Google Scholar 

  • Momol MT, Norelli JL, Piccioni DE, Momol EA, Gustafson HL, Cummins JN, Aldwinckle HS (1998) Internal movement of Erwinia amylovora through symptomless apple scion tissues into the rootstock. Plant Dis 82:646–650

    Article  CAS  PubMed  Google Scholar 

  • Monds RD, O’Toole GA (2009) The developmental model of microbial biofilms: ten years of a paradigm up for review. Trends Microbiol 17:73–87

    Article  CAS  PubMed  Google Scholar 

  • Navarrete F, De La Fuente L (2015) Zinc detoxification is required for full virulence and modification of the host leaf ionome by Xylella fastidiosa. Molecular Plant Microbe Interactions 28:497–507

    Article  CAS  PubMed  Google Scholar 

  • Newman KL, Almeida RP, Purcell AH, Lindow SE (2003) Use of a green fluorescent strain for analysis of Xylella fastidiosa colonization of Vitis vinifera. Applied and Environmental Microbioogy 69:7319–7327

    Article  CAS  Google Scholar 

  • Nimtz M, Mort A, Domke T, Wray V, Zhang Y, Qiu F, Coplin D, Geider K (1996) Structure of amylovoran, the capsular exopolysaccharide from the fire blight pathogen Erwinia amylovora. Carbohydr Res 287:59–76

    Article  CAS  PubMed  Google Scholar 

  • Nino-Liu DO, Ronald PC, Bogdanove AJ (2006) Xanthomonas oryzae pathovars: model pathogens of a model crop. Mol Plant Pathol 7:303–324

    Article  CAS  PubMed  Google Scholar 

  • O'Toole GA, Kolter R (1998) Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development. Mol Microbiol 30:295–304

    Article  CAS  PubMed  Google Scholar 

  • Peeters N, Guidot A, Vailleau F, Valls M (2013) Ralstonia solanacearum, a widespread bacterial plant pathogen in the post-genomic era. Mol Plant Pathol 14:651–662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pfeilmeier S, Saur IML, Rathjen JP, Zipfel C, Malone JG (2016) High levels of cyclic-di-GMP in plant-associated Pseudomonas correlate with evasion of plant immunity. Mol Plant Pathol 17:521–531

    Article  CAS  PubMed  Google Scholar 

  • Pompili V, Dalla Costa L, Piazza S, Pindo M, Malnoy M (2020) Reduced fire blight susceptibility in apple cultivars using a high-efficiency CRISPR/Cas9-FLP/FRT-based gene editing system. Plant Biotechnol J 18:845–858

    Article  CAS  PubMed  Google Scholar 

  • Prigent-Combaret C, Prensier G, Le Thi TT, Vidal O, Lejeune P, Dorel C (2000) Developmental pathway for biofilm formation in curli-producing Escherichia coli strains: role of flagella, curli and colanic acid. Environ Microbiol 2:450–464

    Article  CAS  PubMed  Google Scholar 

  • Rezzonico F, Duffy B (2007) The role of luxS in the fire blight pathogen Erwinia amylovora is limited to metabolism and does not involve quorum sensing. Molecular Plant Microbe Interactions 20:1284–1297

    Article  CAS  PubMed  Google Scholar 

  • Roper MC (2011) Pantoea stewartii subsp. stewartii: lessons learned from a xylem-dwelling pathogen of sweet corn. Mol Plant Pathol 12:628–637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rudolph KW, Gross M, Ebrahim-Nesbat F, Nöllenburg M, Zomorodian A, Wydra K, Neugebauer M, Hettwer U, El-Shouny W, Sonnenberg B, Klement Z (1994) The role of extracellular polysaccharides as virulence factors for phytopathogenic pseudomonads and xanthomonads. Molecular Mechanisms of Bacterial Virulence:357–378

  • Ryan RP, Fouhy Y, Lucey JF, Jiang BL, He YQ, Feng JX, Tang JL, Dow JM (2007) Cyclic di-GMP signaling in the virulence and environmental adaptation of Xanthomonas campestris. Mol Microbiol 63:429–442

    Article  CAS  PubMed  Google Scholar 

  • Salt DE, Baxter I, Lahner B (2008) Ionomics and the study of the plant ionome. Annu Rev Plant Biol 59:709–733

    Article  CAS  PubMed  Google Scholar 

  • Shin GY, Schachterle JK, Shyntum DY, Moleleki LN, Coutinho TA, Sundin GW (2019) Functional characterization of a global virulence regulator Hfq and identification of Hfq-dependent sRNAs in the plant pathogen Pantoea ananatis. Front Microbiol 10:2075

    Article  PubMed  PubMed Central  Google Scholar 

  • Slack SM, Zeng Q, Outwater CA, Sundin GW (2017) Microbiological examination of Erwinia amylovora exopolysaccharide ooze. Phytopathology 107:403–411

    Article  CAS  PubMed  Google Scholar 

  • Suhayda CG, Goodman RN (1981a) Infection courts and systemic movement of P-32 laveled Erwinia amylovora in apple petioles and stems. Phytopathology 71:656–660

    Article  Google Scholar 

  • Suhayda CG, Goodman RN (1981b) Early proliferation and migration and subsequent xylem occlusion by Erwinia amylovora and the fate of its extracellular polysaccharide (EPS) in apple shoots. Phytopathology 71:697–707

    Article  Google Scholar 

  • Tabei H, Mukoo H (1960) Anatomical studies of Rice plant leaves affected with bacterial leaf blight, in particular reference to the structure of water exudation system. Bulletin of the National Institute of Agricultural Sciences, Tokyo 11:37–43

    Google Scholar 

  • Thomson SV, Gouk SC (2003) Influence of age of apple flowers on growth of Erwinia amylovora and biological control agents. Plant Dis 87:502–509

    Article  CAS  PubMed  Google Scholar 

  • Vasse J, Frey P, Trigalet A (1995) Microscopic studies of intercellular infection and protoxylem invasion of tomato roots by Pseudomonas solanacearum. Molecular Plant Microbe Interactions 8:241–251

    Article  CAS  Google Scholar 

  • Vogt I, Wohner T, Richter K, Flachowsky H, Sundin GW, Wensing A, Savory EA, Geider K, Day B, Hanke M-V, Peil A (2013) Gene-for-gene relationship in the host-pathogen system Malus x robusta 5 – Erwinia amylovora. New Phytol 197:1262–1275

    Article  CAS  PubMed  Google Scholar 

  • Wohner TW, Richter K, Sundin GW, Zhao Y, Stockwell VO, Sellmann J, Flachowsky H, Hanke M-V, Peil A (2018) Inoculation of Malus genotypes with a set of Erwinia amylovora strains indicates a gene-for-gene relationship between the effector gene eop1 and both Malus floribunda 821 and Malus ‘Evereste’. Plant Pathol 67:938–947

    Article  CAS  Google Scholar 

  • Wright KJ, Seed PC, Hultgren SJ (2005) Uropathogenic Escherichia coli flagella aid in efficient urinary tract colonization. Infect Immun 73:7657–7668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zeng Q, Sundin GW (2014) Genome-wide identification of Hfq-regulated small RNAs in the fire blight pathogen Erwinia amylovora discovered small RNAs with virulence regulatory function. BMC Genomics 15:414

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zeng Q, McNally RR, Sundin GW (2013) Global small RNA chaperone Hfq and regulatory small RNAs are important virulence regulators in Erwinia amylovora. J Bacteriol 195:1706–1717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao YF, Sundin GW (2017) Exploring linear and cyclic (di)-nucleotides as messengers for regulation of T3SS and biofilm formation in Erwinia amylovora. J Plant Pathol 99:25–35

    Google Scholar 

Download references

Acknowledgments

Funding for the writing of this review was provided by Michigan State University AgBioResearch. Roshni Kharadi is a Michigan State University Plant Science Initiative graduate fellow.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George W. Sundin.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kharadi, R.R., Sundin, G.W. Dissecting the process of xylem colonization through biofilm formation in Erwinia amylovora. J Plant Pathol 103 (Suppl 1), 41–49 (2021). https://doi.org/10.1007/s42161-020-00635-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42161-020-00635-x

Keywords

Navigation