Biochemical changes in Oenothera biennis plants infected by ‘Candidatus Phytoplasma solani’

Abstract

The aim of the present paper was to study the response of Oenothera biennis L. to ‘Candidatus Phytoplasma solani’ (Stolbur) infection by analyzing total sugars, polyphenols, photosynthetic pigments content and the antioxidant capacity in leaves and roots of healthy and infected plants. The infection caused a significant increase in peroxidation of lipids, phenylalanine ammonia-lyase activity, total sugar, polyphenols and anthocyanins content (2.8, 2.6, 1.8, 1.4, 6.8 fold, respectively), as well as a decrease in photosynthetic pigments (2–6 fold) and total flavonoids (1.5 fold) in the leaves of Oe. biennis. Changes in these parameters were insignificant in the roots except for the total polyphenols content that was 2.7 times higher in the infected ones. Reduced gluthatione content in both tested organs was not affected by the infection (3.7 and 1.7 μmol/g fresh weight of leaves and roots, respectively). The elevated content of total sugars, flavonoids and polyphenols, as well as the reduction of photosynthetic pigments and anthocyanins in infected plants are indicative of changes in the metabolism of Oe. biennis affected by the Stolbur phytoplasma. In addition to reduction of chlorophyll and carotenoids, the phytoplasma accelerated leaf senescence. Plants responded to the infection via enhanced superoxide anion scavenging, even though this reaction did not prevent, apparently, membrane damage in analysed leaves. This investigation presents new data on the effect of a phytoplasma infection on its host.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2

References

  1. Adamović D, Djalović I, Mitrović P, Kojić S, Starović M, Purar B, Jošić D (2014) First report of 16SrXII-A subgroup Phytoplasma (Stolbur) associated with reddening of Oenothera biennis in Serbia. Plant Dis 98:841

    Article  Google Scholar 

  2. Agrios GN (1997) Plant pathology, 4th edn. Academic Press, San Diego, California

    Google Scholar 

  3. Ahmed D, Saman Z, Hira B (2013) In vitro analysis of antioxidant activities of Oxalis corniculata Linn. Fractions in various solvents. Afr J Tradit Complement Altern Med 10:158–165

    CAS  Google Scholar 

  4. Albalasmeh AA, Berhe AA, Ghezzehei TA (2013) A new method for rapid determination of carbohydrate and total carbon concentrations using UV spectrophotometry. Carbohydr Polym 97:253–261

    Article  PubMed  CAS  Google Scholar 

  5. Barre DE (2001) Potential of evening primrose, borage, black currant and fungal oils in human health. Ann Nutr Metab 45:47–57

    Article  PubMed  CAS  Google Scholar 

  6. Bertamini M, Grando MS, Muthuchelian K, Nedunchezhian N (2002a) Effect of phytoplasmal infection on photosystem II efficiency and thylakoid membrane protein changes in field grown apple (Malus pumila) leaves. Physiol Mol Plant Pathol 61:349–356

    Article  CAS  Google Scholar 

  7. Bertamini M, Grando MS, Nedunchezhian N (2003) Effects of phytoplasma infection on pigments. Chlorophyllprotein complex and photosynthetic activities in field grown apple leaves. Biol Plant 47:237–242

    Article  CAS  Google Scholar 

  8. Bertamini M, Nedunchezhian N, Tomasi F, Grando MS (2002b) Phytoplasma [Stolbur-subgroup (bois noir-BN)] infection inhibits photosynthetic pigments, ribulose-1.5-bisphosphate carboxylase and photosynthetic activities in field grown grapevine (Vitis vinifera L. cv. Chardonnay) leaves. Physiol Mol Plant Pathol 61:357–366

    Article  CAS  Google Scholar 

  9. Gerasimova NG, Pridvorova SM, Ozeretskovskaya OL (2005) Role of L-phenylalanine ammonia lyase in the induced resistance and susceptibility of potato plants. Appl Biochem Microbiol 41:103–105

    CAS  Google Scholar 

  10. Himeno M, Kitazawa Y, Yoshida T, Maeijima K, Yamaji Y, Oshima K, Namba S (2014) Purple top symptoms are associated with reduction of leaf cell death in phytoplasma-infected plants. Sci Rep 4:4111

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Hodges DM, DeLong JM, Forney CF, Prange RK (1999) Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta 207:604–611

    Article  CAS  Google Scholar 

  12. Hogenhout SA, Oshima K, Ammar e-D, Kakizawa S, Kingdom HN, Namba S (2008) Phytoplasmas: bacteria that manipulate plants and insects. Mol Plant Pathol 9:403–423

    Article  PubMed  CAS  Google Scholar 

  13. Jović J., Cvrković T., Mitrović M., Krnjajić S., Petrović A., Redinbaugh G.M., Pratt C.R., Hogenhout A.S and I. Toševski I., 2009. Stolbur Phytoplasma Transmission to Maize by Reptalus panzeri and the Disease Cycle of Maize Redness in Serbia. Phytopathlogy Vol.99,N9:1053–1061

  14. Junqueira A, Bedendo I, Pascholati S (2004) Biochemical changes in corn plants infected by the maize bushy stunt phytoplasma. Physiol Mol Plant Pathol 65:181–185

    Article  CAS  Google Scholar 

  15. Lee IM, Davis RE, Gundersen-Rindal DE (2000) Phytoplasma: phytopathogenic mollicutes. Annu Rev Microbiol 54:221–255

    Article  PubMed  CAS  Google Scholar 

  16. Lee J, Durst RW, Wrolstad RE (2005) Determination of total monomeric anthocyanin pigment content of fruit juices, beverages, natural colorants and wines by the pH differential method: collaborative study. J AOAC Int 88:1269–1278

    PubMed  CAS  Google Scholar 

  17. Lepka P, Stitt M, Moll E, Seemüller E (1999) Effect of phytoplasmal infection on concentration and translocation of carbohydrates and amino acids in periwinkle and tobacco. Physiol Mol Plant Pathol 55:59–68

    Article  CAS  Google Scholar 

  18. Makkar HPS (2003) Quantification of tannins in tree and shrub foliage: a laboratory manual. Springer Kluwer Academic Publishers, The Netherlands

    Google Scholar 

  19. Maust BE, Espadas F, Talavera C, Aguilar M, Santamarıa JM, Oropeza C (2003) Changes in carbohydrate metabolism in coconut palms infected with the lethal yellowing phytoplasma. Phytopathology 93:976–981

    Article  PubMed  CAS  Google Scholar 

  20. Mitrović P, Trkulja V, Adamović D, Đalović I, Milovac Ž, Kovačić-Jošić D, Mihić SJ (2016) First report of Stolbur Phytoplasma on Мentha x piperita in Serbia. Plant Dis 100:853

    Article  Google Scholar 

  21. Musetti R, Favali MA, Pressacco L (2000) Histopathology and polyphenol content in plants infected by phytoplasmas. Cytobios 102:133–147

    PubMed  CAS  Google Scholar 

  22. Musetti R (2010) Biochemical changes in plants infected by Phytoplasmas. In: Weintraub PG, Jones P (eds) Phytoplasmas, genomes, plant hosts and vectors. CAB International, Wallingford, Oxfordshire, UK, pp 132–147

    Google Scholar 

  23. Oshima K, Maejima K, Namba S (2013) Genomic and evolutionary aspects of phytoplasmas. Front Microbiol 4:230–238

    Article  PubMed  PubMed Central  Google Scholar 

  24. Panda SK (2012) Assay guided comparison for enzymatic and non-enzymatic antioxidant activities with special reference to medicinal plants. Antioxidant Enzyme 14:382–400

    Google Scholar 

  25. Pékal A, Pyrzynska K (2014) Evaluation of aluminium complexation reaction for flavonoid content assay. Food Analysis Methods 7:1776–1782

    Article  Google Scholar 

  26. Rahman I, Aruna K, Saibal KB (2006) Assay for quantitative determination of glutathione and glutathione disulfide levels using enzymatic recycling method. Nat Protoc 1:3159–3165

    Article  PubMed  CAS  Google Scholar 

  27. Romanazzi G., Prota V.A., Casati P., Murolo S., Silletti M.R., Di Giovanni R., Landi L., Zorloni A., D’Ascenzo D., Virgili S., Garau R., Savino V., Bianco P.A., 2007. Incidenza del recovery in viti infette da fitoplasmi in diverse condizioni climatiche e varietali italiane e tentativi di comprensione ed induzione del fenomeno. Atti Convegno Nazionale ‘Nuove possibilità di lotta contro le fitoplasmosi della vite e dei fruttiferi basate su recovery. resistenze indotte e antagonisti’, Ancona, Italy, 17–18 September 2007, pp. 9–11

  28. Sánchez-Moreno C (2002) Methods used to evaluate the free radical scavenging activity in foods and biological systems. Food Sci Technol Int 8:121–137

    Article  Google Scholar 

  29. Seemüller E, Garnier M, Schneider B (2002) Mycoplasmas of plants and insects. In: Razin S, Herrmann R (eds) Molecular biology and pathology of mycoplasmas. Kluwer Academic/Plenum Publishers, London, pp 91–116

    Google Scholar 

  30. Small E, Catling PM (1999) Canadian Medicinal Crops. NRC Research Press, Ottawa, Ontario, Canada, 240 p

    Google Scholar 

  31. Starović M, Pavlović S, Stojanović S, Jošić D (2015) Fitoplazmoze lekovitih biljaka (Medicinal plants phytoplasma). Zaštita Bilja 66:7–31 (in Serbian)

    Article  Google Scholar 

  32. Strauss E (2009) Microbiology, Phytoplasmas research begins to bloom. Science 325:388–390

    Article  PubMed  CAS  Google Scholar 

  33. Torres MA, Jonathan DG, Dangl JL (2006) Reactive oxygen species signaling in response to pathogen. Plant Physiol 141:373–378

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Wettstein D (1957) Chlorophyll-letale und submikroskopische Formwechsel der Plastiden. Exp Cell Res 12:427–433

    Article  Google Scholar 

Download references

Acknowledgements

This study was carried out within a project of the Ministry of Education, Science and Technological Development of the Republic of Serbia. Grant No TR-31025.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Tatjana Popović.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kiprovski, B., Đalović, I., Adamović, D. et al. Biochemical changes in Oenothera biennis plants infected by ‘Candidatus Phytoplasma solani’. J Plant Pathol 100, 209–214 (2018). https://doi.org/10.1007/s42161-018-0068-0

Download citation

Keywords

  • Antioxidants
  • Pigments
  • Polyphenols
  • Sugars