Journal of Plant Pathology

, Volume 100, Issue 2, pp 191–196 | Cite as

Resistance in potato to two haplotypes of ‘Candidatus Liberibacter solanacearum’

  • María Guadalupe Hernández-Deheza
  • Reyna Isabel Rojas-Martínez
  • Antonio Rivera-Peña
  • Emma Zavaleta-Mejía
  • Daniel Leobardo Ochoa-Martínez
  • Alfredo Carrillo-Salazar
Original Article


The disease zebra chip (ZC) caused by the bacterium Candidatus Liberibacter solanacearum causes important economic losses in potato in New Zealand, the United States, Mexico and Central America; in Mexico, haplotypes LsoA and LsoB of the bacterium have been found in chili and potato. The pathogen is transmitted by the psyllid Bactericera cockerelli, and the presence of internal marking in the form of necrotic striation in the medulla of the tubers is considered a typical diagnostic symptom. The potato cultivars currently grown in Mexico are susceptible to this bacterium. The present study evaluates the responses of potato cultivars Atlantic (highly susceptible control), Milagros, one new entry, Real 14, and the experimental clones Bajio 143 and T05–20-11 to inoculation with two haplotypes of the bacterium over two production cycles. The plants inoculated with the mixture of LsoA and LsoB haplotypes, compared with inoculation with only LsoB, showed greater severity of foliar damage and area below the curve of progress of the disease, but not of necrosis in tubers (with exception of cv. Milagros). The cv. Real 14 showed a lower percentage of tuber discolouration than three other tested cultivars after inoculation with the mixture of haplotypes, and less than cvs Atlantic and Bajio 143, after inoculation with LsoB. The same cultivar expressed significantly less severe plant symptoms than cv. Atlantic. The clone T05–20-11 showed significantly less severe tuber symptoms than cv. Atlantic, after inoculation with mixed haplotypes and less severe symptoms than cvs Atlantic and Bajio 143 after, inoculation with LsoB.


Bactericera cockerelli LsoA LsoB LsoA+LsoB Resistance Zebra chip 



We appreciate the help of Dr. Ken Evans, Rothamsted Experimental Station, Harpenden, UK, for reviewing the English.


  1. Agrios G (2005) Plant Pahotlogy, 5th edn. Elsevier Academic Press Inc., San DiegoGoogle Scholar
  2. Begon M, Towsend CR, Harper JL (2006) Ecology: individuals, populations and communities. Blackwell Science, LondonGoogle Scholar
  3. Canaday CH, Wyatt JE, Mullins JA (1991) Resistance of broccoli to bacterial soft rot caused by Pseudomonas marginalis and fluorescent Pseudomonas species. Plant Dis 75:715–720. CrossRefGoogle Scholar
  4. FAO (Food and Agriculture Organization) (2016). Crops.
  5. Frías GA, Muñiz JA, Parga UM, Flores A (2001) Reacción de 18 genotipos de papa (Solanum tuberosum) a los tizones tardio y temprano y evalucación de la diversidad de razas de Phytophthora infestans en Coahuila y Nuevo León. Rev Mex Fitopatol 19:19–22Google Scholar
  6. Holm S (1979) A simple sequentially rejective multiple test procedure. Scand J Stat 6:65–70Google Scholar
  7. Khairulmazmi A, Kamaruzaman S, Habibuddin H, Jugah K, Syed O (2008) Occurrence and spread of Candidatus Liberibacter asiaticus, the causal agent of Huanglongbing disease of citrus in Malaysia. Res J Agric Biol Sci 4:103–111Google Scholar
  8. Liefting LW, Perez-Egusquiza C, Clover G, Anderson J (2008) A new Candidatus Liberibacter species in Solanum tuberosum in New Zealand. Plant Dis 92:1474CrossRefGoogle Scholar
  9. Liefting LW, Sutherland PW, Ward LI, Paice KL, Weir BS, Clover GRG (2009) A new ‘Candidatus Liberibacter’ species associated with diseases of Solanaceous crops. Plant Dis 93:208–214CrossRefGoogle Scholar
  10. Mendoza-Navarrete MA, 2010. Evaluación a punta morada de la papa en segregantes de primera generación clonal derivados de polinización libre de genotipos de papa (Solanum tuberosum L.). Tesis de Licenciatura. Universidad Autónoma del Estado de México. Toluca, Estado de México, MéxicoGoogle Scholar
  11. Munyaneza JE (2015) Zebra Chip disease, Candidatus Liberibacter, and potato psyllid: a global threat to the potato industry. Am J Potato Res 92:230–235CrossRefGoogle Scholar
  12. Munyaneza JE, Crosslin J, Upton J (2007) Association of Bactericera cockerelli (Homoptera: Psyllidae) with “Zebra Chip,” a new potato disease in southwestern United States and Mexico. J Econ Entomol 100:656–663CrossRefPubMedGoogle Scholar
  13. Munyaneza JE, Buchman J, Fisher T, Sengoda V, Pearson C (2011) Susceptibility of selected potato varieties to zebra chip potato disease. Am J Potato Res 88:435–440CrossRefGoogle Scholar
  14. Munyaneza JE, Sengoda VG, Buchman JL, Fisher TW (2012) Effects of temperature on ‘Candidatus Liberibacter solanacearum’ and zebra chip potato disease symptom development. Plant Dis 96:18–23CrossRefGoogle Scholar
  15. Nelson WR, Fisher TW, Munyaneza JE (2011) Haplotypes of “Candidatus Liberibacter solanacearum” suggest long-standing separation. Eur J Plant Pathol 130:5–12CrossRefGoogle Scholar
  16. Nelson WR, Sengoda G, Alfaro-Fernandez AO, Font MI, Crosslin JM, Munyaneza JE (2012) A new haplotype of “Candidatus Liberibacter solanacearum” identified in the Mediterranean region. Eur J Plant Pathol 135:633CrossRefGoogle Scholar
  17. Poiatti VAD, Dalmas FR, Astarita LV (2009) Defense mechanisms of Solanum tuberosum L. in response to attack by plant-pathogenic bacteria. Biol Res 42:205–215CrossRefPubMedGoogle Scholar
  18. Rashed A, Nash TD, Paetzold L, Workneh F, Rush CM (2012) Transmission efficiency of ‘Candidatus Liberibacter solanacearum’ and potato zebra chip disease progress in relation to pathogen titer, vector numbers, and feeding sites. Phytopathology 102:1079–1085CrossRefPubMedGoogle Scholar
  19. Rashed A, Wallis CM, Paetzold L, Workneh F, Rush CM (2013) Zebra chip disease and potato biochemistry: tuber physiological changes in response to ‘Candidatus Liberibacter solanacearum’ infection over time. Phytopathology 103(5):419–426CrossRefPubMedGoogle Scholar
  20. Rashed A, Workneh F, Paetzold L, Gray J, Rush CM (2014) Zebra chip disease development in relation to plant age and time of ‘Candidatus Liberibacter solanacearum’ infection. Plant Dis 98:24–31CrossRefGoogle Scholar
  21. Rojas-Martínez R, Camacho-Tapia M, Zavaleta-Mejía E, Levy J (2016) First report of the presence of haplotypes A and B of Candidatus Liberibacter solanacearum in chili (Capsicum annuum L.) in the central region of Mexico. J Plant Pathol 98:111–115Google Scholar
  22. Saygili H, Aysan Y, Ustun N, Mirik M, Sahin F (2008) Tomato pith necrosis disease caused by Pseudomonas Species in Turkey. In: Fatmi MB, Collmer A, Iacobellis NS (eds) Pseudomonas syringae Pathovars and related pathogens identification, epidemiology and genomics. Springer, Berlin, pp 357–366CrossRefGoogle Scholar
  23. Shaner G, Finney RE (1977) The effect of nitrogen fertilization on the expression of slow mildewing resistance in knot wheat. Phytopathology 67:1051–1026CrossRefGoogle Scholar
  24. SIAP (Servicio de Información Agroalimentaria y Pesquera), 2016. Cierre de la producción agrícola por cultivo
  25. Van der Plank JE (1984) Disease resistance in plants, 2nd edn. Academic Press, New YorkGoogle Scholar
  26. Wen A, Johnson C, Gudmestad NC (2013) Development of a PCR assay for the rapid detection and differentiation of ‘Candidatus Liberibacter solanacearum’ haplotypes and their spatiotemporal distribution in the United States. Am J Potato Res 90:229–236CrossRefGoogle Scholar
  27. Woodward S, Pegg GF (1986) Rishitin accumulation elicited in resistant and susceptible isolines of tomato by mycelial extracts and filtrates from cultures of Verticillium alboratrum. Physiol Mol Plant Pathol 29:337–347CrossRefGoogle Scholar

Copyright information

© Società Italiana di Patologia Vegetale (S.I.Pa.V.) 2018

Authors and Affiliations

  • María Guadalupe Hernández-Deheza
    • 1
  • Reyna Isabel Rojas-Martínez
    • 1
  • Antonio Rivera-Peña
    • 2
  • Emma Zavaleta-Mejía
    • 1
  • Daniel Leobardo Ochoa-Martínez
    • 1
  • Alfredo Carrillo-Salazar
    • 3
  1. 1.Postgrado en Fitosanidad-Fitopatología, Colegio de PostgraduadosTexcocoMexico
  2. 2.Campo experimental MetepecInstituto Nacional de Investigaciones Forestales y Agrícolas y PecuariasMetepecMexico
  3. 3.Postgrado en Recursos Genéticos, Colegio de PostgraduadosTexcocoMéxico

Personalised recommendations