Skip to main content

Advertisement

Log in

Review of Crashworthiness Studies on Cellular Structures

  • Published:
Automotive Innovation Aims and scope Submit manuscript

Abstract

The application of lightweight structures with excellent energy absorption performance is crucial for enhancing vehicle safety and energy efficiency. Cellular structures, inspired by the characteristics observed in natural organisms, have exhibited exceptional structural utilization in terms of energy absorption compared with traditional structures. In recent years, various innovative cellular structures have been proposed to meet different engineering needs, resulting in significant performance improvements. This paper provides a comprehensive overview of novel cellular structures for energy absorption applications. In particular, it outlines the application forms and design concepts of cellular structures under typical loading conditions in vehicle collisions, including axial loading, oblique loading, bending loading, and blast loading. Cellular structures have evolved to meet the demands of complex loading conditions and diverse research methods, focusing on achieving high-performance characteristics across multiple load cases. Moreover, this review discusses manufacturing techniques and strategies for enhancing the manufacturing performance of cellular structures. Finally, current key challenges and future research directions for cellular structures are discussed. The aim of this study is to provide valuable guidelines for researchers and engineers in the development of next-generation lightweight cellular structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Abbreviations

AL:

Aluminum alloy

CVH:

Center-vertex honeycomb

DMA:

Dual-mechanism auxetic

FDM:

Fused deposition method

NPR:

Negative Poisson's ratio

PLA:

Polylactic acid

SEA:

Specific energy absorption

References

  1. Shaisundaram, V.S., Chandrasekaran, M., Raj, M.S.: Control of carbon dioxide emission in automobile vehicles using CO2 scrubber. Int. J. Ambient Energy 40(7), 699–703 (2019)

    Google Scholar 

  2. Dey, S., Chandra, D.G.: Controlling carbon monoxide emissions from automobile vehicle exhaust using copper oxide catalysts in a catalytic converter. Mater. Today Chem. 17, 100282 (2020)

    Google Scholar 

  3. Su, T., He, T., Yang, R.Q., et al.: Topology optimization and lightweight design of stamping dies for forming automobile panels. Int. J. Adv. Manuf. Tech. 121(7–8), 4691–4702 (2022)

    Google Scholar 

  4. Ma, F.W., Zhao, Y., Wang, G.W., et al.: Crashworthiness optimization design of thin-walled tube filled with re-entrant triangles honeycombs. Automot. Innov. 2(1), 1–13 (2019)

    Google Scholar 

  5. Ma, F.W., Zhao, Y., Liang, H.Y., et al.: Effects of cell micro-topology on the in-plane dynamic crushing analysis of re-entrant square cellular material. Automot. Innov. 1(1), 24–34 (2018)

    Google Scholar 

  6. Zhang, J., Lv, D., Simeone, A.: Artificial neural network-based multi-sensor monitoring system for collision damage assessment of lithium-ion battery cells. Energ. Technol. 8(5), 1–12 (2020)

    Google Scholar 

  7. Gao, Q., Zhao, X., Wang, C., et al.: Multi-objective crashworthiness optimization for an auxetic cylindrical structure under axial impact loading. Mater. Des. 143, 120–130 (2018)

    Google Scholar 

  8. Zhao, X., Gao, Q., Wang, L., et al.: Dynamic crushing of double-arrowed auxetic structure under impact loading. Mater. Des. 160, 527–537 (2018)

    Google Scholar 

  9. Gao, Q., Ge, C., Zhuang, W., et al.: Crashworthiness analysis of double-arrowed auxetic structure under axial impact loading. Mater. Des. 161, 22–34 (2019)

    Google Scholar 

  10. Sun, Y.W., Quan, J., Salvador, H., et al.: Ausforming and tempering of a novel ultra-high strength steel. Mat. Sci. Eng. A-Struct. 838, 142750 (2022)

    Google Scholar 

  11. Azizi, H., Samei, J., Zurob, H.S., et al.: A novel approach to producing architectured ultra-high strength dual phase steels. Mat. Sci. Eng. A-Struct. 833, 142582 (2022)

    Google Scholar 

  12. Zhao, Y., Zheng, S.Q., Yan, M.H., et al.: Experimental analysis on mechanical properties of BF/PLA composites and its lightweight design on power battery box. P. I. Mech. Eng. D-J. Aut. 236(13), 2894–2913 (2022)

    Google Scholar 

  13. Yang, M., Ma, F.W., Pu, Y.F., et al.: Response of carbon-basalt hybrid fiber reinforcement polymer under flexural load. Mater. Res. Express 5(8), 085602 (2019)

    Google Scholar 

  14. Pu, Y.F., Liu, B.C., Xue, G.L., et al.: Carbon/basalt fibers hybrid composites: hybrid design and the application in automobile engine hood. Polymers 14(18), 14183917 (2022)

    Google Scholar 

  15. Sun, G., Pang, T., Xu, C., et al.: Energy absorption mechanics for variable thickness thin-walled structures. Thin-Walled Struct. 118, 214–228 (2017)

    Google Scholar 

  16. Sun, G., Zhang, H., Fang, J., et al.: Multi-objective and multi-case reliability-based design optimization for tailor rolled blank (TRB) structures. Struct. Multidiscip. Optim. 55(5), 1899–1916 (2017)

    Google Scholar 

  17. Peng, X.L., Swantje, B.: A novel hybrid-honeycomb structure: enhanced stiffness, tunable auxeticity and negative thermal expansion. Int. J. Mech. Sci. 190, 106021 (2021)

    Google Scholar 

  18. Ajdari, A., Canavan, P., Nayeb-Hashemi, H., et al.: Mechanical properties of functionally graded 2-D cellular structures: a finite element simulation. Mat. Sci. Eng. A-Struct. 499(1–2), 434–439 (2019)

    Google Scholar 

  19. Wang, H., Lu, Z.X., Yang, Z.Y., et al.: In-plane dynamic crushing behaviors of a novel auxetic honeycomb with two plateau stress regions. Int. J. Mech. Sci. 151, 746–759 (2019)

    Google Scholar 

  20. Sun, Y., Li, Q.M.: Dynamic compressive behaviour of cellular materials: a review of phenomenon, mechanism and modelling. Int. J. Impact Eng. 1(112), 74–115 (2018)

    Google Scholar 

  21. Luo, H.C., Ren, X., Zhang, Y., et al.: Mechanical properties of foam-filled hexagonal and re-entrant honeycombs under uniaxial compression. Compos. Struct. 280, 114922 (2022)

    Google Scholar 

  22. Duan, Y.C., Cui, Z., Xie, X., et al.: Mechanical characteristics of composite honeycomb sandwich structures under oblique impact. Theor. Appl. Mech. Lett. 19, 100379 (2022)

    Google Scholar 

  23. Li, Z., Wang, T., Jiang, Y., et al.: Design-oriented crushing analysis of hexagonal honeycomb core under in-plane compression. Compos. Struct. 187, 429–438 (2018)

    Google Scholar 

  24. Qiao, J., Chen, C.: In-plane crushing of a hierarchical honeycomb. Int. J. Solids Struct. 85–86, 57–66 (2016)

    Google Scholar 

  25. Xu, J., Gao, X., Zhang, C., et al.: Flax fiber-reinforced composite lattice cores: a low-cost and recyclable approach. Mater. Des. 133, 444–454 (2017)

    Google Scholar 

  26. Ma, Z.D.: Bushings and bumpers based upon NPR (negative Poisson’s ratio) structures. US Patent 13, 940–845 (2013)

    Google Scholar 

  27. Wang, X., Chen, Y., Ma, L.: The manufacture and characterization of composite three-dimensional re-entrant auxetic cellular structures made from carbon fiber reinforced polymer. J. Compos. Mater. 52(23), 3265–3273 (2018)

    Google Scholar 

  28. Chen, B.C., Zou, M., Liu, G.M., et al.: Experimental study on energy absorption of bionic tubes inspired by bamboo structures under axial crushing. Int. J. Impact Eng. 115, 48–57 (2018)

    Google Scholar 

  29. Wang, C., Li, Y., Zhao, W., et al.: Structure design and multi-objective optimization of a novel crash box based on biomimetic structure. Int. J. Mech. Sci. 138–139, 489–501 (2018)

    Google Scholar 

  30. Nia, A.A., Sadeghi, M.Z.: An experimental investigation on the effect of strain rate on the behaviour of bare and foam-filled aluminium honeycombs. Mater. Des. 52, 748–756 (2013)

    Google Scholar 

  31. Xu, S., Beynon, J.H., Dong, R., et al.: Experimental study of the out-of-plane dynamic compression of hexagonal honeycombs. Compos. Struct. 94(8), 2326–2336 (2012)

    Google Scholar 

  32. Belouettar, S., Abbadi, A., Azari, Z., et al.: Experimental investigation of static and fatigue behaviour of composites honeycomb materials using four-point bending tests. Steel Construct. 87(3), 265–273 (2009)

    Google Scholar 

  33. Wang, Z., Li, Z., Xiong, W.: Experimental investigation on bending behavior of honeycomb sandwich panel with ceramic tile face-sheet. Compos. Part B-Eng. 164, 280–286 (2019)

    Google Scholar 

  34. Jeon, K.W., Shin, K.B.: An experimental investigation on low-velocity impact responses of sandwich panels with the changes of impact location and the wall partition angle of honeycomb core. Int. J. Precis. Eng. Manuf. 13(10), 1789–1796 (2012)

    Google Scholar 

  35. Chen, X., Sun, Y., Gong, X.: Design, manufacture, and experimental analysis of 3D honeycomb textile composites, part ii: experimental analysis. Textil. Res. J. 78(11), 1011–1121 (2008)

    Google Scholar 

  36. Mao, M., Hu, W., Choi, Y.T., et al.: Experimental validation of a magnetorheological energy absorber design analysis. J. Intell. Mater. Syst. Struct. 25(3), 352–363 (2014)

    Google Scholar 

  37. Song, Z.Y., Liang, H.Y., Ding, H.T., et al.: Structure design and mechanical properties of a novel anti-collision system with negative Poisson’s ratio core. Int. J. Mech. Sci. 239, 107864 (2023)

    Google Scholar 

  38. Zhu, G.H., Sun, G.Y., Yu, H., et al.: Energy absorption of metal, composite and metal/composite hybrid structures under oblique crushing loading. Int. J. Mech. Sci. 135, 458–483 (2018)

    Google Scholar 

  39. Zhang, J.Y., Zheng, D.F., Lu, B.Q., et al.: Energy absorption performance of hybrid cross section tubes under oblique loads. Thin-Walled Struct. 159, 107133 (2021)

    Google Scholar 

  40. Wang, Z., Li, Z., Xiong, W.: Numerical study on three-point bending behavior of honeycomb sandwich with ceramic tile. Compos. Part B-Eng. 167, 63–70 (2019)

    Google Scholar 

  41. Khoshravan, M.R., Pour, M.N.: Numerical and experimental analyses of the effect of different geometrical modeling on predicting compressive strength of honeycomb core. Thin-Walled Struct. 84, 423–431 (2014)

    Google Scholar 

  42. Meran, A.P., Toprak, T., Muğan, A.: Numerical and experimental study of crashworthiness parameters of honeycomb structures. Thin-Walled Struct. 78, 87–94 (2014)

    Google Scholar 

  43. Wang, Z.G.: Recent advances in novel metallic honeycomb structure. Compos. Part B-Eng. 166, 731–741 (2019)

    Google Scholar 

  44. Li, Y., Hoang, M.P., Abbes, B., et al.: Analytical homogenization for stretch and bending of honeycomb sandwich plates with skin and height effects. Compos. Struct. 120, 406–416 (2015)

    Google Scholar 

  45. Xu, X., Qiao, P., Davalos, J.F.: Transverse shear stiffness of composite honeycomb core with general configuration. J. Eng. Mech. Asce. 127(11), 1144–1151 (2001)

    Google Scholar 

  46. Shi, G., Tong, P.: Equivalent transverse shear stiffness of honeycomb cores. Int. J. Solids Struct. 32(10), 1383–1393 (1995)

    MATH  Google Scholar 

  47. Wierzbicki, T.: Crushing analysis of metal honeycombs. Int. J. Impact Eng. 1(2), 157–174 (1983)

    Google Scholar 

  48. Zhang, X., Cheng, G., Zhang, H.: Theoretical prediction and numerical simulation of multi-cell square thin-walled structures. Thin-Walled Struct. 44, 1185–1191 (2006)

    Google Scholar 

  49. Zhang, X., Zhang, H.: Numerical and theoretical studies on energy absorption of three-panel angle elements. Int. J. Impact Eng. 46, 23–40 (2012)

    Google Scholar 

  50. Hales, T.C.: The honeycomb conjecture. Discrete Comput. Geom. 25, 1–22 (2011)

    MathSciNet  MATH  Google Scholar 

  51. Jin, X., Li, G., Gao, S., et al.: Optimal design and modeling of variable-density triangular honeycomb structures. In: 8th international conference on mechanical and intelligent manufacturing technologies, Cape Town, South Africa, 2017

  52. Nedoushan, R.J., An, Y., Yu, W., et al.: Novel triangular auxetic honeycombs with enhanced stiffness. Compos. Struct. 277, 114605 (2021)

    Google Scholar 

  53. Zhang, Z., Zhang, Q., Zhang, D., et al.: Enhanced mechanical performance of brazed sandwich panels with high density square honeycomb-corrugation hybrid cores. Thin-Walled Struct. 151, 106757 (2020)

    Google Scholar 

  54. Li, Z., Shen, L., Wei, K., et al.: Compressive behaviors of fractal-like honeycombs with different array configurations under low velocity impact loading. Thin-Walled Struct. 163, 107759 (2021)

    Google Scholar 

  55. Hu, L.L., He, X.L., Wu, G.P., et al.: Dynamic crushing of the circular-celled honeycombs under out-of-plane impact. Int. J. Impact Eng. 75, 150–161 (2015)

    Google Scholar 

  56. Xu, G., Wang, Z., Li, Z., et al.: Theoretical and numerical analyses on mechanical performance of octagonal honeycomb structures subjected to out-of-plane compression. Mech. Adv. Mater. Struc. 27(17), 1461–1472 (2020)

    Google Scholar 

  57. Nguyen, T., Nguyen, H.: Lightweight panel for building construction based on honeycomb paper composite/core-fiberglass composite/face materials. Nano Hybrids Compos. 32, 15–23 (2021)

    Google Scholar 

  58. Zhou, H., Xu, P., Xie, S.: Composite energy-absorbing structures combining thin-walled metal and honeycomb structures. P. I. Mech. Eng. F-J. Rai. 231(4), 394–405 (2017)

    Google Scholar 

  59. Wu, H., Liu, Y., Zhang, X., et al.: Effects of distribution of microstructure types on the in-plane dynamic crushing of composite honeycomb structures. J. Mater. Eng. Perform. 30(2), 850–861 (2021)

    Google Scholar 

  60. Xue, X., Zhang, C., Chen, W., et al.: Study on the impact resistance of honeycomb sandwich structures under low-velocity/heavy mass. Compos. Struct. 226, 111223 (2019)

    Google Scholar 

  61. Ruan, D., Lu, G., Wang, B., et al.: In-plane dynamic crushing of honeycombs—a finite element study. Int. J. Impact Eng. 28(2), 161–182 (2003)

    Google Scholar 

  62. Karagiozova, D., Yu, T.: Plastic deformation modes of regular hexagonal honeycombs under in-plane biaxial compression. Int. J. Mech. Sci. 46(10), 1489–1515 (2004)

    MATH  Google Scholar 

  63. Zhang, X.C., Liu, Y.: Effect of defects in-plane of metal honeycomb on its dynamic impact properties. Chin. J. High Press. Phys. 26, 645–652 (2012)

    Google Scholar 

  64. Liu, Y., Zhang, X.C.: The influence of cell micro-topology on the in-plane dynamic crushing of honeycombs. Int. J. Impact Eng. 36(1), 98–109 (2009)

    Google Scholar 

  65. Zhang, D., Fei, Q., Zhang, P.: In-plane dynamic crushing behavior and energy absorption of honeycombs with a novel type of multi-cells. Thin-Walled Struct. 117, 199–210 (2017)

    Google Scholar 

  66. Kovacik, J., Marsavina, L., Linul, E.: Poisson’s ratio of closed-cell aluminium foams. Materials 11(10), 1904–1910 (2018)

    Google Scholar 

  67. Cui, S.T., Wang, B., Zhang, K.: Mechanical behavior and energy absorption of honeycomb with negative Poisson’s ratio under in-plane dynamic compression. Chin. J. Appl. Mech. 34, 920–924 (2017)

    Google Scholar 

  68. Zhao, C., Zhou, Z., Liu, X., et al.: The in-plane stretching and compression mechanics of negative Poisson’s ratio structures: concave hexagon, star shape, and their combination. J. Alloy Compd. 859, 157840 (2021)

    Google Scholar 

  69. Li, Z., Wang, X., Yang, J., et al.: Mechanical response and auxetic properties of composite double-arrow corrugated sandwich panels with defects. Mech. Adv. Mater. Struc. 29(27), 6517–6529 (2021). https://doi.org/10.1080/15376494.2021.1980926

    Article  Google Scholar 

  70. Hu, L.L., Zhou, M.Z., Deng, H.: Dynamic crushing response of auxetic honeycombs under large deformation: theoretical analysis and numerical simulation. Thin-Walled Struct. 131, 373–384 (2018)

    Google Scholar 

  71. Ingrole, A., Hao, A., Liang, R.: Design and modeling of auxetic and hybrid honeycomb structures for in-plane property enhancement. Mater. Design 117, 72–83 (2017)

    Google Scholar 

  72. Li, D., Yin, J., Dong, L., et al.: Strong re-entrant cellular structures with negative Poisson’s ratio. J. Mater. Sci. 53(5), 3493–3499 (2018)

    Google Scholar 

  73. Wang, H., Lu, Z., Yang, Z., et al.: A novel re-entrant auxetic honeycomb with enhanced in-plane impact resistance. Compos. Struct. 208, 758–770 (2019)

    Google Scholar 

  74. Zhao, Y., Zhang, Q., Li, Y., et al.: Theoretical, emulation and experimental analysis on auxetic re-entrant octagonal honeycombs and its applications on pedestrian protection of engine hood. Compos. Struct. 260, 113534 (2021)

    Google Scholar 

  75. Zhang, W., Ma, Z.D., Hu, P.: Mechanical properties of a cellular vehicle body structure with negative Poisson’s ratio and enhanced strength. J. Reinf. Plast. Comp. 33, 342–349 (2014)

  76. Yang, X., Yu, Y., Zhang, W., et al.: Optimization design of automobile crash box based on 3D cellular structure. J. Dalian Univ. Tech. 57(4), 331–336 (2017)

    Google Scholar 

  77. Shao, Y., Meng, J., Ma, G., et al.: Insight into the negative Poisson’s ratio effect of the gradient auxetic reentrant honeycombs. Compos. Struct. 274, 114366 (2021)

    Google Scholar 

  78. He, Q., Ma, D.W., Zhang, Z.D., et al.: Research on the in-plane dynamic crushing of functionally graded honeycombs. Eng. Mech. 33(02), 172–178 (2016)

    Google Scholar 

  79. Deng, J.Z.: A research on impact dynamic response of layered functionally gradient honeycomb. Dissertation, Chang’an University (2019)

  80. Zhang, X., An, L., Ding, H.: Dynamic crushing behavior absorption of honeycombs with density gradient. J. Sandw. Struct. Mater. 16(2), 125–147 (2014)

    Google Scholar 

  81. Qiao, J.X., Chen, C.Q.: Impact resistance of uniform and functionally graded auxetic double arrowhead honeycombs. Int. J. Impact Eng. 83, 47–58 (2015)

    Google Scholar 

  82. Zhang, W., Hou, W.B., Hu, P.: Mechanical properties of new negative Poisson’s ratio crush box with cellular structure in plateau stage. Acta Mater. Compos. Sinica 32(2), 534–541 (2015)

    Google Scholar 

  83. He, Q., Feng, J., Chen, Y., et al.: Mechanical properties of spider-web hierarchical honeycombs subjected to out-of-plane impact loading. J. Sandw. Struct. Mater. 22(3), 771–796 (2020)

    Google Scholar 

  84. Zhang, X., Shen, Z., Wu, H., et al.: In-plane dynamic crushing behaviors of joint-based hierarchical honeycombs with different topologies. J. Sandw. Struct. Mater. 23(8), 4218–4251 (2021)

    Google Scholar 

  85. Chen, Y., Jia, Z., Wang, L.: Hierarchical honeycomb lattice metamaterials with improved thermal resistance and mechanical properties. Compos. Struct. 152, 395–402 (2016)

    Google Scholar 

  86. Chen, Y., Li, T., Jia, Z., et al.: 3D Printed hierarchical honeycombs with shape integrity under large compressive deformations. Mater. Design 137, 226–234 (2018)

    Google Scholar 

  87. Wang, Z., Wang, Z., Lei, Z., et al.: Mechanical reinforcement mechanism of a hierarchical kagome honeycomb. Thin-Walled Struct. 167, 108235 (2021)

    Google Scholar 

  88. Chen, Q., Pugno, N.M.: In-plane elastic buckling of hierarchical honeycomb materials. Eur. J. Mech. A-Solid 34, 120–129 (2012)

    MATH  Google Scholar 

  89. Liang, H., Wang, Q., Pu, Y., et al.: In-plane compressive behavior of a novel self-similar hierarchical honeycomb with design-oriented crashworthiness. Int. J. Mech. Sci. 209, 1–12 (2021)

    Google Scholar 

  90. Liang, H., Hao, W., Xue, G., et al.: Parametric design strategy of a novel self-similar hierarchical honeycomb for multi-stage energy absorption demand. Int. J. Mech. Sci. 217, 107029 (2022)

    Google Scholar 

  91. Andreassen, E., Lazarov, B.S., Sigmund, O.: Design of manufacturable 3D extremal elastic microstructure. Mech. Mater. 69(1), 1–10 (2014)

    Google Scholar 

  92. Yuan, S., Shen, F., Bai, J., et al.: 3D Soft auxetic lattice structures fabricated by selective laser sintering: Tpu powder evaluation and process optimization. Mater. Design 120, 317–327 (2017)

    Google Scholar 

  93. Shen, J., Zhou, S., Huang, X., et al.: Simple cubic three-dimensional auxetic metamaterials. Phys. Status Solidi B. 251(8), 1515–1522 (2014)

    Google Scholar 

  94. Shen, J., Zhou, S., Huang, X., et al.: Inertia effect on buckling-induced auxetic metamaterials. Int. J. Prot. Struct. 6(2), 311–322 (2015)

    Google Scholar 

  95. Ren, X., Shen, J., Ghaedizadeh, A., et al.: Experiments and parametric studies on 3D metallic auxetic metamaterials with tuneable mechanical properties. Smart Mater. Struct. 24(9), 095016 (2015)

    Google Scholar 

  96. Ren, X., Shen, J., Phuong, T., et al.: Design and characterisation of a tuneable 3D buckling-induced auxetic metamaterial. Mater. Design 139, 336–342 (2018)

    Google Scholar 

  97. Fu, M., Chen, Y., Zhang, W., et al.: Experimental and numerical analysis of a novel three-dimensional auxetic metamaterial. Phys. Status Solid. B. 253(8), 1565–1575 (2016)

    Google Scholar 

  98. Yang, L.: Structural design, optimization and application of three-dimensional re-entrant auxetic structures. Dissertation, North Carolina State University (2011)

  99. Wang, T., Li, Z., Wang, L., et al.: Dynamic crushing analysis of a three-dimensional re-entrant auxetic cellular structure. Materials 12(3), 1–12 (2019)

    Google Scholar 

  100. Jiang, S., Sun, F., Zhang, X., et al.: Interlocking orthogrid: an efficient way to construct lightweight lattice-core sandwich composite structure. Compos. Struct. 176, 55–71 (2017)

    Google Scholar 

  101. Yang, W., Xiong, J., Feng, L., et al.: Fabrication and mechanical properties of three-dimensional enhanced lattice truss sandwich structures. J. Sandw. Struct. Mater. 22(5), 1594–1611 (2020)

    Google Scholar 

  102. Wang, T., Xie, Y., Wang, L.M., et al.: Size effects of elastic properties for auxetic cellular structures: bending energy-based method. Mater. Today Commun. 31, 103585 (2022)

    Google Scholar 

  103. Liu, Y., Ma, Z.D.: Nonlinear analysis and design investigation of a negative Poisson's ratio material. In: ASME international mechanical engineering congress and exposition, Seattle, WA, 2008

  104. Wang, X., Li, X., Ma, L.: Interlocking assembled 3D auxetic cellular structures. Mater. Design 99, 467–476 (2016)

    Google Scholar 

  105. Wang, X., Wang, B., Li, X., et al.: Mechanical properties of 3D re-entrant auxetic cellular structures. Int. J. Mech. Sci. 131–132, 396–407 (2017)

    Google Scholar 

  106. Wang, X., Wang, B., Wen, Z., et al.: Fabrication and mechanical properties of cfrp composite three-dimensional double-arrow-head auxetic structures. Compos. Sci. Technol. 164, 92–102 (2018)

    Google Scholar 

  107. Najafi, A., Rais-Rohani, M.: Mechanics of axial plastic collapse in multi-cell, multi-corner crush tubes. Thin-Walled Struct. 49(1), 1–12 (2011)

    Google Scholar 

  108. Chen, W.G., Wierzbicki, T.: Relative merits of single-cell, multi-cell and foam-filled thin-walled structures in energy absorption. Thin-Walled Struct. 39(4), 287–306 (2001)

    Google Scholar 

  109. Kim, H.S.: New extruded multi-cell aluminum profile for maximum crash energy absorption and weight efficiency. Thin-Walled Struct. 40(4), 311–327 (2002)

    Google Scholar 

  110. Sun, G., Liu, T., Fang, J., et al.: Configurational optimization of multi-cell topologies for multiple oblique loads. Struct. Multidiscip. O. 57(2), 469–488 (2018)

    MathSciNet  Google Scholar 

  111. Yao, S., Tian, Y., Li, Z., et al.: Crushing characteristic of polygonal tubes with hierarchical triangular cells. Thin-Walled Struct. 157, 107031 (2020)

    Google Scholar 

  112. Ma, W., Li, Z., Xie, S.: Crashworthiness analysis of thin-walled bio-inspired multi-cell corrugated tubes under quasi-static axial loading. Eng. Struct. 204, 110069 (2020)

    Google Scholar 

  113. Tang, Z., Liu, S., Zhang, Z.: Analysis of energy absorption characteristics of cylindrical multi-cell columns. Thin-Walled Struct. 62, 75–84 (2013)

    Google Scholar 

  114. Hong, W., Fan, H., Xia, Z., et al.: Axial crushing behaviors of multi-cell tubes with triangular lattices. Int. J. Impact Eng. 63, 106–117 (2014)

    Google Scholar 

  115. Krolak, M., Kowal, M.K., Mania, R., et al.: Experimental tests of stability and load carrying capacity of compressed thin-walled multi-cell columns of triangular cross-section. Thin-Walled Struct. 45(10–11), 883–887 (2007)

    Google Scholar 

  116. Zhang, X., Wen, Z., Zhang, H.: Axial crushing and optimal design of square tubes with graded thickness. Thin-Walled Struct. 84, 263–274 (2014)

    Google Scholar 

  117. Zhang, X., Zhang, H.: Crush resistance of square tubes with various thickness configurations. Int. J. Mech. Sci. 107, 58–68 (2016)

    Google Scholar 

  118. Baykasoglu, C., Cetin, M.T.: Energy absorption of circular aluminium tubes with functionally graded thickness under axial impact loading. Int. J. Crashworthines. 20(1), 95–106 (2015)

    Google Scholar 

  119. Fang, J., Gao, Y., Sun, G., et al.: Dynamic crashing behavior of new extrudable multi-cell tubes with a functionally graded thickness. Int. J. Mech. Sci. 103, 63–73 (2015)

    Google Scholar 

  120. Zou, M., Xu, S., Wei, C., et al.: A bionic method for the crashworthiness design of thin-walled structures inspired by bamboo. Thin-Walled Struct. 101, 222–230 (2016)

    Google Scholar 

  121. Wang, Z., Zhang, X., Li, Z.: Bending collapse of multi-cell tubes. Int. J. Mech. Sci. 134, 445–459 (2017)

    Google Scholar 

  122. Fu, J., Liu, Q., Liufu, K., et al.: Design of bionic-bamboo thin-walled structures for energy absorption. Thin-Walled Struct. 135, 400–413 (2019)

    Google Scholar 

  123. Ma, J., Chen, W., Zhao, L., et al.: Elastic buckling of bionic cylindrical shells based on bamboo. J. Bionic Eng. 5(3), 231–238 (2008)

    Google Scholar 

  124. Hu, D., Wang, Y., Song, B., et al.: Energy-absorption characteristics of a bionic honeycomb tubular nested structure inspired by bamboo under axial crushing. Compos. Part B-Eng. 162, 21–32 (2019)

    Google Scholar 

  125. Yin, H., Xiao, Y., Wen, G., et al.: Crushing analysis and multi-objective optimization design for bionic thin-walled structure. Mater. Des. 87, 825–834 (2015)

    Google Scholar 

  126. Yin, H., Xiao, Y., Wen, G., et al.: Multi-objective robust optimization of foam-filled bionic thin-walled structures. Thin-Walled Struct. 109, 332–343 (2016)

    Google Scholar 

  127. Wu, J., Zhang, Y., Zhang, F., et al.: A bionic tree-liked fractal structure as energy absorber under axial loading. Eng. Struct. 245, 1–12 (2021)

    MathSciNet  Google Scholar 

  128. Wang, Z., Zhang, J., Li, Z., et al.: On the crashworthiness of bio-inspired hexagonal prismatic tubes under axial compression. Int. J. Mech. Sci. 186, 105893 (2020)

    Google Scholar 

  129. Huang, W., Zhang, Y., Xu, Y., et al.: Out-of-plane mechanical design of bi-directional hierarchical honeycombs. Compos. Part B-Eng. 221, 1–12 (2021)

    Google Scholar 

  130. Xu, T., Liu, N., Yu, Z., et al.: Crashworthiness design for bionic bumper structures inspired by cattail and bamboo. Appl. Bionics Biomech. 2017, 5894938 (2017)

    Google Scholar 

  131. Zhao, Z., Huang, W., Li, B., et al.: Synergistic effects of chiral morphology and reconfiguration in cattail leaves. J. Bionic Eng. 12(4), 634–642 (2015)

    Google Scholar 

  132. Liu, Q., Ma, J., He, Z., et al.: Energy absorption of bio-inspired multi-cell cfrp and aluminum square tubes. Compos. Part B-Eng. 121(3), 134–144 (2017)

    Google Scholar 

  133. Wegst, U.G.K.: Bending efficiency through property gradients in bamboo, palm, and wood-based composites. J. Mech. Behav. Biomed. 4(5), 744–755 (2011)

    Google Scholar 

  134. Tsang, H.H., Raza, S.: Impact energy absorption of bio-inspired tubular sections with structural hierarchy. Compos. Struct. 195, 199–210 (2018)

    Google Scholar 

  135. Ahmed, N., Xue, P., Zafar, N.: Dynamic axial crushing of bitubular tubes with curvy polygonal inner-tube sections. Int. J. Comput. Mat. Sci. 6(3), 1–13 (2017)

    Google Scholar 

  136. Rahi, A.: Controlling energy absorption capacity of combined bitubular tubes under axial loading. Thin-Walled Struct. 123, 222–231 (2018)

    Google Scholar 

  137. Kamran, M., Xue, P., Ahmed, N., et al.: Axial crushing of uni-sectional bi-tubular inner tubes with multiple outer cross-sections. Lat. Am. J. Solids Stru. 14(12), 2198–2220 (2017)

    Google Scholar 

  138. Li, Y.: Structure design and multi-objective optimization of a novel crash box based on biomimetic structure. Dissertation, Nanjing University of Aeronautics and Astronautics (2019)

  139. Zhou, G.: Study on key techniques of NPR structure and its application in vehicle body design. Dissertation, Hunan University (2015)

  140. Mankovits, T., Budai, I., Balogh, G., et al.: Structural analysis and its statistical evaluation of a closed-cell metal foam. Int. Rev. Appl. Sci. Eng. 5(2), 135–143 (2014)

    Google Scholar 

  141. Duarte, I., Vesenjak, M., Krstulovic, O.L., et al.: Manufacturing and bending behaviour of in situ foam-filled aluminium alloy tubes. Mater. Des. 66, 532–544 (2015)

    Google Scholar 

  142. Duarte, I., Vesenjak, M., Krstulovic, O.L., et al.: Static and dynamic axial crush performance of in-situ foam-filled tubes. Compos. Struct. 124, 128–139 (2015)

    Google Scholar 

  143. Duarte, I., Krstulovic, O.L., Vesenjak, M.: Characterisation of aluminium alloy tubes filled with aluminium alloy integral-skin foam under axial compressive loads. Compos. Struct. 121, 154–162 (2015)

    Google Scholar 

  144. Duarte, I., Vesenjak, M., Krstulovic, O.L.: Dynamic and quasi-static bending behaviour of thin-walled aluminium tubes filled with aluminium foam. Compos. Struct. 109, 48–56 (2014)

    Google Scholar 

  145. Mankovits, T., Varga, T.A., Mano, S., et al.: Compressive response determination of closed-cell aluminium foam and linear-elastic finite element simulation of Mu Ct-based directly reconstructed geometrical models. Stroj. Vestn-J. Mech. E. 64(2), 105–113 (2018)

    Google Scholar 

  146. Rajak, D.K., Mahajan, N.N., Linul, E.: Crashworthiness performance and microstructural characteristics of foam-filled thin-walled tubes under diverse strain rate. J. Alloy Compd. 775, 675–689 (2019)

    Google Scholar 

  147. Garai, F., Beres, G., Weltsch, Z.: Development of tubes filled with aluminium foams for lightweight vehicle manufacturing. Mat. Sci. Eng. A-Struct. 790, 139743 (2020)

    Google Scholar 

  148. Ma, F., Liang, H., Pu, Y., et al.: Multi-objective optimization of crash box filled with three-dimensional cellular structure under multi-angle impact loading. P. I. Mech. Eng. D-J Aut. 235(9), 2397–2412 (2021)

    Google Scholar 

  149. Xiong, F., Wang, D., Yin, S.: Optimization analysis of novel foam-filled elliptical columns under multiple oblique impact loading. Mater. Design 156, 198–214 (2018)

    Google Scholar 

  150. Sun, G., Li, G., Hou, S., et al.: Crashworthiness design for functionally graded foam-filled thin-walled structures. Mat. Sci. Eng. A-Struct. 527(7–8), 1911–1919 (2010)

    Google Scholar 

  151. Azimi, M.B., Asgari, M., Salaripoor, H.: A new homo-polygonal multi-cell structures under axial and oblique impacts; considering the effect of cell growth in crashworthiness. Int. J. Crashworthines. 25(6), 628–647 (2020)

    Google Scholar 

  152. Sadjad, P., Mohammad, H.E., Sobhan, E.: Crashworthiness of double-cell conical tubes with different cross sections subjected to dynamic axial and oblique loads. J. Cent. South. Univ. 25(3), 632–645 (2018)

    Google Scholar 

  153. Wang, Z., Lu, Z., Yao, S., et al.: Deformation mode evolutional mechanism of honeycomb structure when undergoing a shallow inclined load. Compos. Struct. 147, 211–219 (2016)

    Google Scholar 

  154. Ma, F., Liang, H., Pu, Y., et al.: Crashworthiness analysis and multi-objective optimization for honeycomb structures under oblique impact loading. Int. J. Crashworthines. 1128, 1–12 (2021)

    Google Scholar 

  155. Liang, H.Y., Sun, B.H., Hao, W.Q., et al.: Crashworthiness of lantern-like lattice structures with a bidirectional gradient distribution. Int. J. Mech. Sci. (2022). https://doi.org/10.1016/j.ijmecsci.2022.107746

    Article  Google Scholar 

  156. Qiu, N., Gao, Y., Fang, J., et al.: Crashworthiness analysis and design of multi-cell hexagonal columns under multiple loading cases. Finite Elem. Anal. Des. 104, 89–101 (2015)

    Google Scholar 

  157. TrongNhan, T., Baroutaji, A.: Crashworthiness optimal design of multi-cell triangular tubes under axial and oblique impact loading. Eng. Fail. Anal. 93, 241–256 (2018)

    Google Scholar 

  158. Pirmohammad, S., Nikkhah, H.: Crashworthiness investigation of bitubal columns reinforced with several inside ribs under axial and oblique impact loads. P. I. Mech. Eng. D-J Aut. 232(3), 367–383 (2018)

    Google Scholar 

  159. Liang, H., Hao, W., Sun, H., et al.: On design of novel bionic bamboo tubes for multiple compression load cases. Int. J. Mech. Sci. 218, 107067 (2022)

    Google Scholar 

  160. Reyes, A., Hopperstad, O.S., Langseth, M.: Aluminum foam-filled extrusions subjected to oblique loading: experimental and numerical study. Int. J. Solids Struct. 41(5–6), 1645–1675 (2004)

    Google Scholar 

  161. Yang, S., Qi, C.: Multi-objective optimization for empty and foam-filled square columns under oblique impact loading. Int. J. Impact Eng. 54, 177–191 (2013)

    Google Scholar 

  162. Zarei, H., Kroeger, M.: Optimum honeycomb filled crash absorber design. Mater. Design 29(1), 193–204 (2008)

    Google Scholar 

  163. Mohammadiha, O., Beheshti, H., Aboutalebi, F.H.: Multi-objective optimization of functionally graded honeycomb filled crash boxes under oblique impact loading. Int. J. Crashworthines. 20(1), 44–59 (2015)

    Google Scholar 

  164. Li, G., Zhang, Z., Sun, G., et al.: Comparison of functionally-graded structures under multiple loading angles. Thin-Walled Struct. 94, 334–347 (2015)

    Google Scholar 

  165. Zhang, Y., Lu, M., Sun, G., et al.: On functionally graded composite structures for crashworthiness. Compos. Struct. 132, 393–405 (2015)

    Google Scholar 

  166. Zhu, G., Li, S., Sun, G., et al.: On design of graded honeycomb filler and tubal wall thickness for multiple load cases. Thin-Walled Struct. 109, 377–389 (2016)

    Google Scholar 

  167. Huang, Z., Zhang, X.: Three-point bending collapse of thin-walled rectangular beams. Int. J. Mech. Sci. 144, 461–479 (2018)

    Google Scholar 

  168. Huang, Z., Zhang, X.: Three-point bending of thin-walled rectangular section tubes with indentation mode. Thin-Walled Struct. 137, 231–250 (2019)

    Google Scholar 

  169. Wang, Z., Li, Z., Zhang, X.: Bending resistance of thin-walled multi-cell square tubes. Thin-Walled Struct. 107, 287–299 (2016)

    Google Scholar 

  170. Zheng, D.F., Zhang, J.Y., Lu, B.Q., et al.: Energy absorption of fully clamped multi-cell square tubes under transverse loading. Thin-Walled Struct. 169, 108334 (2021)

    Google Scholar 

  171. Abdullahi, H.S., Gao, S.: A novel multi-cell square tubal structure based on voronoi tessellation for enhanced crashworthiness. Thin-Walled Struct. 150, 106690 (2020)

    Google Scholar 

  172. Huang, Z., Zhang, X., Yang, C.: Experimental and numerical studies on the bending collapse of multi-cell aluminum/CFRP hybrid tubes. Compos. Part B-Eng. 181, 107527 (2020)

    Google Scholar 

  173. Bai, J., Meng, G., Wu, H., et al.: Bending collapse of dual rectangle thin-walled tubes for conceptual design. Thin-Walled Struct. 135, 185–195 (2019)

    Google Scholar 

  174. Du, Z., Duan, L., Cheng, A., et al.: Theoretical prediction and crashworthiness optimization of thin-walled structures with single-box multi-cell section under three-point bending loading. Int. J. Mech. Sci. 157, 703–714 (2019)

    Google Scholar 

  175. Chen, G., Zhang, P., Deng, N., et al.: Paper tube-guided blast response of sandwich panels with auxetic re-entrant and regular hexagonal honeycomb cores–an experimental study. Eng. Struct. 253, 113790 (2022)

    Google Scholar 

  176. Xia, F.K., Durandet, Y., Tan, P.J., et al.: Three-point bending performance of sandwich panels with various types of cores. Thin-Walled Struct. 179, 109723 (2022)

    Google Scholar 

  177. Zhang, J.W., Ding, S., Yanagimoto, J.: Bending properties of sandwich sheets with metallic face sheets and additively manufactured 3D CFRP lattice cores. J. Mater. Process. Tech. 300, 117437 (2022)

    Google Scholar 

  178. Shirbhate, P.A., Goel, M.D.: A critical review of blast wave parameters and approaches for blast load mitigation. Arch. Comput. Methods Eng. 28, 1713–1730 (2021)

    MathSciNet  Google Scholar 

  179. Li, B., Liu, Y., Tan, K.T.: A novel meta-lattice sandwich structure for dynamic load mitigation. J. Sandw. Struct. Mater. 21, 1880–1905 (2019)

    Google Scholar 

  180. Vo, N.H., Pham, T.M., Bi, K., et al.: Stress wave mitigation properties of dualmeta panels against blast loads. Int. J. Impact Eng. 154, 103877 (2021)

    Google Scholar 

  181. Vo, N.H., Pham, T.M., Bi, K., et al.: Model for analytical investigation on meta-lattice truss for low-frequency spatial wave manipulation. Wave Motion 103, 102735 (2021)

    MathSciNet  MATH  Google Scholar 

  182. Kueh, A.B.H., Siaw, Y.Y.: Impact resistance of bio-inspired sandwich beam with sidearched and honeycomb dual-core. Compos. Struct. 275, 114439 (2021)

    Google Scholar 

  183. Bohara, R.P., Linforth, S., Nguyen, T., et al.: Dual-mechanism auxetic-core protective sandwich structure under blast loading. Compos. Struct. 299, 116088 (2022)

    Google Scholar 

Download references

Acknowledgements

This work was financially supported by National Key Research and Development Program of China (2022YFB2503502) and National Natural Science Foundation of China (51975244).

Funding

National Key Research and Development Program of China,2022YFB2503502,Dengfeng Wang,National Natural Science Foundation of China,51975244,Dengfeng Wang

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dengfeng Wang.

Ethics declarations

Competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, H., Zhao, Y., Chen, S. et al. Review of Crashworthiness Studies on Cellular Structures. Automot. Innov. 6, 379–403 (2023). https://doi.org/10.1007/s42154-023-00237-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42154-023-00237-0

Keywords

Navigation