Skip to main content
Log in

Mode Switching and Consistency Control for Electric-Hydraulic Hybrid Steering System

  • Published:
Automotive Innovation Aims and scope Submit manuscript

Abstract

Electric-hydraulic hybrid power steering (E-HHPS) system, a novel device with multiple modes for commercial electric vehicles, is designed to realize both superior steering feel and high energy efficiency. However, inconsistent steering performance occurs in the mode-switching process due to different dynamic characteristics of electric and hydraulic components, which even threatens driving safety. In this paper, mode-switching strategy and dynamic compensation control method are proposed for the E-HHPS system to eliminate the inconsistency of steering feel, which comprehensively considers ideal assistance characteristics and energy consumption of the system. Then, the influence of disturbances on system stability is analyzed, and H robust controller is employed to guarantee system robustness and stability. The experimental results demonstrate that the proposed strategy can provide a steering system with natural steering feel without apparent inconsistency and effectively minimize energy consumption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Abbreviations

DOF:

Degrees of freedom

ECU:

Electronic control unit

E-HHPS:

Electric-hydraulic hybrid power steering

EHPS:

Electro-hydraulic power steering

EPS:

Electric power steering

HPS:

Hydraulic power steering

References

  1. Li, L., Yang, C., Zhang, Y., et al.: Correctional dp-based energy management strategy of plug-in hybrid electric bus for city-bus route. IEEE Trans. Veh. Technol. 64, 2792–2803 (2015). https://doi.org/10.1109/TVT.2014.2352357

    Article  ADS  Google Scholar 

  2. Zhang, S., Xiong, R., Zhang, C.: Pontryagin’s minimum principle-based power management of a dual-motor-driven electric bus. Appl. Energy 159, 370–380 (2015). https://doi.org/10.1016/j.apenergy.2015.08.129

    Article  ADS  Google Scholar 

  3. Hur, J.: Characteristic Analysis of interior permanent-magnet synchronous motor in electrohydraulic power steering systems. IEEE Trans. Ind. Electron. 55, 2316–2323 (2008). https://doi.org/10.1109/TIE.2008.918402

    Article  Google Scholar 

  4. Hur, J.: Development of an electric motor-driven pump unit for electro-hydraulic power steering with 42V power-Net. Int. J. Automot. Technol. 11, 593–600 (2010). https://doi.org/10.1007/s12239-010-0071-8

    Article  Google Scholar 

  5. Lim, J., Jeon, J., Seong, J., et al.: Iterative electrical–thermal coupled simulation method of automotive power module used in electric power steering system. IEEE Access 9, 164712–164719 (2021). https://doi.org/10.1109/ACCESS.2021.3133530

    Article  Google Scholar 

  6. Jeong, Y., Chung, C., Kim, W.: Nonlinear hybrid impedance control for steering control of rack-mounted electric power steering in autonomous vehicles. IEEE Trans. Intell. Transport. Syst. 21, 2956–2965 (2020). https://doi.org/10.1109/TITS.2019.2921893

    Article  Google Scholar 

  7. Jang, J., Lee, J.M., Cho, S., et al.: Space-time kriging surrogate model to consider uncertainty of time interval of torque curve for electric power steering motor. IEEE Trans. Magn. 54, 1–4 (2018). https://doi.org/10.1109/TMAG.2017.2755459

    Article  Google Scholar 

  8. Lu, S., Cen, S., Zhang, Y.: Driver model-based fault-tolerant control of independent driving electric vehicle suffering steering failure. Automot. Innov. 1, 85–94 (2018). https://doi.org/10.1007/s42154-018-0013-0

    Article  Google Scholar 

  9. Peng, X., Shuo, H., Yaohua, L.: Study on a dual-motor driving electric power steering system for commercial vehicle. In: 2016 IEEE 11th Conference on Industrial Electronics and Applications (ICIEA), pp. 1949–1954. IEEE, Hefei (2016)

  10. Zhao, W., Luan, Z., Wang, C.: Parameter optimization design of vehicle E-HHPS system based on an improved MOPSO algorithm. Adv. Eng. Softw. 123, 51–61 (2018). https://doi.org/10.1016/j.advengsoft.2018.05.011

    Article  Google Scholar 

  11. Zhao, W., Luan, Z., Wang, C.: Parametric optimization of novel electric–hydraulic hybrid steering system based on a shuffled particle swarm optimization algorithm. J. Clean. Prod. 186, 865–876 (2018). https://doi.org/10.1016/j.jclepro.2018.03.180

    Article  Google Scholar 

  12. Zhao, W., Zhou, X., Wang, C., Luan, Z.: Energy analysis and optimization design of vehicle electro-hydraulic compound steering system. Appl. Energy 255, 113713 (2019). https://doi.org/10.1016/j.apenergy.2019.113713

    Article  Google Scholar 

  13. Guo, Z., Wu, H., Zhao, W., et al.: Coordinated control strategy for vehicle electro-hydraulic compound steering system. Proc. Inst. Mech. Eng. Part D J. Autom. Eng. 235, 732–743 (2021). https://doi.org/10.1177/0954407020949480

    Article  Google Scholar 

  14. Tran, X.B., Hafizah, N., Yanada, H.: Modeling of dynamic friction behaviors of hydraulic cylinders. Mechatronics 22, 65–75 (2012). https://doi.org/10.1016/j.mechatronics.2011.11.009

    Article  Google Scholar 

  15. Jang, S., Park, Y., Sung, S., et al.: Dynamic characteristics of a linear induction motor for predicting operating performance of magnetic levitation vehicles based on electromagnetic field theory. IEEE Trans. Magn. 47, 3673–3676 (2011). https://doi.org/10.1109/TMAG.2011.2153188

    Article  ADS  Google Scholar 

  16. Wilhelm, F., Tamura, T., Fuchs, R., et al.: Friction compensation control for power steering. IEEE Trans. Contr. Syst. Technol. 24, 1354–1367 (2016). https://doi.org/10.1109/TCST.2015.2483561

    Article  Google Scholar 

  17. Li, S., Niu, J., Cui, G., et al.: Research on friction compensation control for electric power steering system. Math. Probl. Eng. 2016, 1–5 (2016). https://doi.org/10.1155/2016/8470786

    Article  Google Scholar 

  18. Deng, C., Mao, Y., Ren, G.: MEMS inertial sensors-based multi-loop control enhanced by disturbance observation and compensation for fast steering mirror system. Sensors. 16, 1920–1930 (2016). https://doi.org/10.3390/s16111920

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  19. Wang, J., Wang, Q., Jin, L., et al.: Independent wheel torque control of 4WD electric vehicle for differential drive assisted steering. Mechatronics 21, 63–76 (2011). https://doi.org/10.1016/j.mechatronics.2010.08.005

    Article  Google Scholar 

  20. Nam, K., Oh, S., Fujimoto, H., et al.: Robust yaw stability control for electric vehicles based on active front steering control through a steer-by-wire system. Int. J Automot. Technol. 13, 1169–1176 (2012). https://doi.org/10.1007/s12239-012-0120-6

    Article  Google Scholar 

  21. Wang, H., Man, Z., Shen, W., et al.: Robust control for steer-by-wire systems with partially known dynamics. IEEE Trans. Ind. Inf. 10, 2003–2015 (2014). https://doi.org/10.1109/TII.2014.2338273

    Article  Google Scholar 

  22. Zou, S., Zhao, W.: Synchronization and stability control of dual-motor intelligent steer-by-wire vehicle. Mech. Syst. Signal Process. 145, 106925–106939 (2020). https://doi.org/10.1016/j.ymssp.2020.106925

    Article  Google Scholar 

  23. Wu, F.K., Yeh, T.J., Huang, C.F.: Motor control and torque coordination of an electric vehicle actuated by two in-wheel motors. Mechatronics 23, 46–60 (2013). https://doi.org/10.1016/j.mechatronics.2012.10.008

    Article  Google Scholar 

  24. Zhao, W.Z., Li, Y.J., Wang, C.Y., et al.: Research on control strategy for differential steering system based on H mixed sensitivity. Int. J Automot. Technol. 14, 913–919 (2013). https://doi.org/10.1007/s12239-013-0100-5

    Article  Google Scholar 

  25. Liang, Y., Li, Y., Yu, Y., et al.: Path-following control of autonomous vehicles considering coupling effects and multi-source system uncertainties. Automot. Innov. 4, 284–300 (2021). https://doi.org/10.1007/s42154-021-00155-z

    Article  Google Scholar 

  26. Lee, D., Yi, K., Chang, S., et al.: Robust steering-assist torque control of electric-power-assisted-steering systems for target steering wheel torque tracking. Mechatronics 49, 157–167 (2018). https://doi.org/10.1016/j.mechatronics.2017.12.007

    Article  Google Scholar 

  27. Zhao, W., Wang, C., Yu, L., et al.: Performance optimization of electric power steering based on multi-objective genetic algorithm. J. Cent. South Univ. 20, 98–104 (2013). https://doi.org/10.1007/s11771-013-1464-4

    Article  Google Scholar 

  28. Hamamoto, M., Ohta, Y., Hara, K., et al.: A fundamental study of wing actuation for a 6-in-wingspan flapping microaerial vehicle. IEEE Trans. Robot. 26, 244–255 (2010). https://doi.org/10.1109/TRO.2010.2041266

    Article  Google Scholar 

  29. Jung, S., Sinha, K., Suh, E.S.: Domain mapping matrix-based metric for measuring system design complexity. IEEE Trans. Eng. Manag. (2020). https://doi.org/10.1109/TEM.2020.3004561

    Article  Google Scholar 

  30. Zhu, Y., Ma, L.: Composite chattering-free discrete-time sliding mode controller design for active front steering system of electric vehicles. Nonlinear Dyn. 105, 301–313 (2021). https://doi.org/10.1007/s11071-021-06465-5

    Article  Google Scholar 

  31. Jiang, Y., Deng, W., Wu, J., et al.: Adaptive steering feedback torque design and control for driver–vehicle system considering driver handling properties. IEEE Trans. Veh. Technol. 68, 5391–5406 (2019). https://doi.org/10.1109/TVT.2019.2908987

    Article  Google Scholar 

  32. Wu, Y., Li, B., Zhang, N., et al.: Rear-steering based decentralized control of four-wheel steering vehicle. IEEE Trans. Veh. Technol. 69, 10899–10913 (2020). https://doi.org/10.1109/TVT.2020.3020154

    Article  Google Scholar 

  33. Du, H., Shi, J., Chen, J., et al.: High-gain observer-based integral sliding mode tracking control for heavy vehicle electro-hydraulic servo steering systems. Mechatronics 74, 102484–102493 (2021). https://doi.org/10.1016/j.mechatronics.2021.102484

    Article  Google Scholar 

  34. Qu, S., Fassbender, D., Vacca, A., et al.: A high-efficient solution for electro-hydraulic actuators with energy regeneration capability. Energy 216, 119291–119310 (2021). https://doi.org/10.1016/j.energy.2020.119291

    Article  Google Scholar 

  35. Shang, Y., Li, X., Qian, H., et al.: A novel electro hydrostatic actuator system with energy recovery module for more electric aircraft. IEEE Trans. Ind. Electron. 67, 2991–2999 (2020). https://doi.org/10.1109/TIE.2019.2905834

    Article  Google Scholar 

  36. Tao, Y.: A new control framework of electric power steering system based on admittance control. IEEE Trans. Contr. Syst. Technol. 23, 762–769 (2015). https://doi.org/10.1109/TCST.2014.2325892

    Article  Google Scholar 

  37. Jensen, M., Tolbert, A., Wagner, J., et al.: A customizable automotive steering system with a haptic feedback control strategy for obstacle avoidance notification. IEEE Trans. Veh. Technol. 60, 4208–4216 (2011). https://doi.org/10.1109/TVT.2011.2172472

    Article  Google Scholar 

  38. Li, Z., Zhao, Y., Xu, K., et al.: Research on stability control method of vehicle based on steering torque superposition. IEEE Access. 8, 80518–80526 (2020). https://doi.org/10.1109/ACCESS.2020.2990965

    Article  Google Scholar 

  39. Cao, M., Hu, C., Wang, R., et al.: Compensatory model predictive control for post-impact trajectory tracking via active front steering and differential torque vectoring. Proc. Inst. Mech. Eng. Part D: J. Autom. Eng. 235, 903–919 (2021). https://doi.org/10.1177/0954407020979087

    Article  Google Scholar 

  40. Liu, Y., Alsaadi, F., Yin, X., et al.: Robust H filtering for discrete nonlinear delayed stochastic systems with missing measurements and randomly occurring nonlinearities. Int. J. Gen Syst. 44, 169–181 (2015). https://doi.org/10.1080/03081079.2014.973730

    Article  MathSciNet  Google Scholar 

  41. Javed, S., Uppal, A., Samar, R., et al.: Design and implementation of multi-variable H robust control for the underground coal gasification project Thar. Energy 216, 119000–119012 (2021). https://doi.org/10.1016/j.energy.2020.119000

    Article  Google Scholar 

  42. Lee, Y., Moon, Y., Kwon, W., et al.: Delay-dependent robust H control for uncertain systems with a state-delay. Automatica 40, 65–72 (2004). https://doi.org/10.1016/j.automatica.2003.07.004

    Article  MathSciNet  Google Scholar 

  43. Misgeld, B., Werner, J., Hexamer, M.: Robust and self-tuning blood flow control during extracorporeal circulation in the presence of system parameter uncertainties. Med. Biol. Eng. Comput. 43, 589–598 (2005). https://doi.org/10.1007/BF02351032

    Article  CAS  PubMed  Google Scholar 

  44. Shen, Q., Wang, D., Zhu, S., et al.: Robust control allocation for spacecraft attitude tracking under actuator faults. IEEE Trans. Control Syst. Technol. 25, 1068–1075 (2017). https://doi.org/10.1109/TCST.2016.2574763

    Article  Google Scholar 

  45. Saadat, M., Shirazi, F., Li, P.: Modeling and control of an open accumulator compressed air energy storage (CAES) system for wind turbines. Appl. Energy 137, 603–616 (2015). https://doi.org/10.1016/j.apenergy.2014.09.085

    Article  ADS  Google Scholar 

  46. State Bureau of Technical Supervision. GB/T 6323.4-94. Controllability and stabilitytest procedure for automobiles—returnability test. China.

Download references

Acknowledgements

The research presented in this work was supported by the Jiangsu Key R & D Plan under Grants BE2022053-3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wanzhong Zhao.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Academic Editor: Xiaodong Wu

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luan, Z., Zhao, W. & Wang, C. Mode Switching and Consistency Control for Electric-Hydraulic Hybrid Steering System. Automot. Innov. 7, 166–181 (2024). https://doi.org/10.1007/s42154-022-00211-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42154-022-00211-2

Keywords

Navigation