Skip to main content

Advertisement

Log in

Comparative Study on Traction Battery Charging Strategies from the Perspective of Material Structure

  • Published:
Automotive Innovation Aims and scope Submit manuscript

Abstract

The service life of an electric vehicle is, to some extent, determined by the life of the traction battery. A good charging strategy has an important impact on improving the cycle life of the lithium-ion battery. Here, this paper presents a comparative study on the cycle life and material structure stability of lithium-ion batteries, based on typical charging strategies currently applied in the market, such as constant current charging, constant current and constant voltage charging, multi-stage constant current charging, variable current intermittent charging, and pulse charging. Compared with the reference charging strategy, the charging capacity of multi-stage constant current charging reaches 88%. Moreover, the charging time is reduced by 69%, and the capacity retention rate after 500 cycles is 93.3%. Through CT, XRD, SEM, and Raman spectroscopy analysis, it is confirmed that the smaller the damage caused by this charging strategy to the overall structure of the battery and the layered structure and particle size of the positive electrode material, the higher the capacity retention rate is. This work facilitates the development of a better charging strategy for a lithium-ion battery from the perspective of material structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Armaroli, N., Balzani, V.: Towards an electricity-powered world. Energy Environ. Sci. 4(9), 3193–3222 (2011)

    Article  Google Scholar 

  2. Luo, X., Wang, J.H., Dooner, M., Clarke, J.: Overview of current development in electrical energy storage technologies and the application potential in power system operation. Appl. Energy 137, 511–536 (2015)

    Article  Google Scholar 

  3. Berckmans, G., Messagie, M., Smekens, J., Omar, N., Vanhaverbeke, L., Van Mierlo, J.: Cost projection of state of the art lithium-ion batteries for electric vehicles up to 2030. Energies 10(9), 1314 (2017)

    Article  Google Scholar 

  4. Zeng, X.Q., Li, M., Abd El-Hady, D., Alshitari, W., Al-Bogami, A.S., Lu, J., Amine, K.: Commercialization of lithium battery technologies for electric vehicles. Adv. Energy Mater. 9(27), 1900161 (2019)

    Article  Google Scholar 

  5. Klein, R., Chaturvedi, N. A., Christensen, J., Ahmed, J., Findeisen, R., Kojic, A.: Optimal charging strategies in lithium-ion battery. In: Proceedings of the 2011 American Control Conference, 18 August 2011

  6. Fernández, I.J., Calvillo, C.F., Sánchez-Miralles, A., Boal, J.: Capacity fade and aging models for electric batteries and optimal charging strategy for electric vehicles. Energy 60, 35–43 (2013)

    Article  Google Scholar 

  7. Li, Y.J., Li, K.N., Xie, Y., Liu, J.Y., Fu, C.Y., Liu, B.: Optimized charging of lithium-ion battery for electric vehicles: adaptive multistage constant current-constant voltage charging strategy. Renew. Energy 146, 2688–2699 (2020)

    Article  Google Scholar 

  8. Jiang, L., Li, Y., Ma, J.M., Cao, Y.J., Huang, C., Xu, Y., Huang, Y.D.: Hybrid charging strategy with adaptive current control of lithium-ion battery for electric vehicles. Renew. Energy 160, 1385–1395 (2020)

    Article  Google Scholar 

  9. Monem, M.A., Trad, K., Omar, N., Hegazy, O., Mantels, B., Mulder, G., Van Mierlo, J.: Lithium-ion batteries: Evaluation study of different charging methodologies based on aging process. Appl. Energy 152, 143–155 (2015)

    Article  Google Scholar 

  10. Huber, G., Bogenberger, K., van Lint, H.: Optimization of charging strategies for battery electric vehicles under uncertainty. IEEE Trans. Intell. Transp. Syst. (2020). https://doi.org/10.1109/TITS.2020.3027625

    Article  Google Scholar 

  11. Notten, P.H., Veld, J.O., Van Beek, J.R.G.: Boostcharging Li-ion batteries: a challenging new charging concept. J. Power Sources 145(1), 89–94 (2005)

    Article  Google Scholar 

  12. Khan, A.B., Pham, V.L., Nguyen, T.T., Choi, W.: Multistage constant-current charging method for Li-Ion batteries. In: 2016 IEEE Transportation Electrification Conference and Expo, Asia-Pacific (ITEC Asia-Pacific), 1 June 2016

  13. Chen, L.R., Wu, S.L., Shieh, D.T., Chen, T.R.: Sinusoidal-ripple-current charging strategy and optimal charging frequency study for Li-ion batteries. IEEE Trans. Ind. Electron. 60(1), 88–97 (2012)

    Article  Google Scholar 

  14. Kumar, K.N., Tseng, K.J.: Efficiency evaluation of coordinated charging methods used for charging electric vehicles. In: 2016 IEEE Innovative Smart Grid Technologies-Asia (ISGT-Asia), 1 Nov 2016

  15. Haupt, L., Schöpf, M., Wederhake, L., Weibelzahl, M.: The influence of electric vehicle charging strategies on the sizing of electrical energy storage systems in charging hub microgrids. Appl. Energy 273, 115231 (2020)

    Article  Google Scholar 

  16. Ji, D.Y., Chen, L.D., Ma, T.Y., Wang, J., Liu, S.Q., Ma, X., Wang, F.: Research on adaptability of charging strategy for electric vehicle power battery. J. Power Sources 437, 226911 (2019)

    Article  Google Scholar 

  17. Yao, D., Tang, Y., Xie, X., Wang, J., Wang, S., Wang, Y.: Research of rapid charging method with variable current for all vanadium redox battery. Chem. Ind. Eng. Prog. 31(4), 820–824 (2012)

    Google Scholar 

  18. Jiang, L., Li, Y., Huang, Y.D., Yu, J.Q., Qiao, X.B., Wang, Y.X., Cao, Y.J.: Optimization of multi-stage constant current charging pattern based on Taguchi method for Li-Ion battery. Appl. Energy 259, 114148 (2020)

    Article  Google Scholar 

  19. An, F.Q., Zhang, R., Wei, Z.G., Li, P.: Multi-stage constant-current charging protocol for a high-energy-density pouch cell based on a 622NCM/graphite system. RSC Adv. 9(37), 21498–21506 (2019)

    Article  Google Scholar 

  20. Li, S.Q., Wu, Q., Zhang, D., Liu, Z.S., He, Y., Wang, Z.L., Sun, C.W.: Effects of pulse charging on the performances of lithium-ion batteries. Nano Energy 56, 555–562 (2019)

    Article  Google Scholar 

  21. Li, J., Murphy, E., Winnick, J., Kohl, P.A.: The effects of pulse charging on cycling characteristics of commercial lithium-ion batteries. J. Power Sources 102(1–2), 302–309 (2001)

    Article  Google Scholar 

  22. Zhang, Q.Y., Su, Y.F., Chen, L., Lu, Y., Bao, L.Y., He, T., Wu, F.: Pre-oxidizing the precursors of Nickel-rich cathode materials to regulate their Li+/Ni2+ cation ordering towards cyclability improvements. J. Power Sources 396, 734–741 (2018)

    Article  Google Scholar 

  23. Huang, X.L., Wang, M., Che, R.C.: Modulating the Li+/Ni2+ replacement and electrochemical performance optimizing of layered lithium-rich Li1.2Ni0.2Mn0.6O2 by minor Co dopant. J. Mater. Chem. A 2(25), 9656–9665 (2014)

    Article  Google Scholar 

  24. Li, X., Zhang, K.J., Wang, S.Y., Wang, M.S., Jiang, F., Liu, Y., Zheng, J.M.: Optimal synthetic conditions for a novel and high performance Ni-rich cathode material of LiNi0.68Co0.10Mn0.22O2. Sustain. Energy Fuels 2(8), 1772–1780 (2018)

    Article  Google Scholar 

  25. Thackeray, M.M.: Structural considerations of layered and spinel lithiated oxides for lithium ion batteries. J. Electrochem. Soc. 142(8), 2558 (1995)

    Article  Google Scholar 

  26. Lin, X.K., Park, J., Liu, L., Lee, Y., Sastry, A.M., Lu, W.: A comprehensive capacity fade model and analysis for Li-ion batteries. J. Electrochem. Soc. 160(10), A1701 (2013)

    Article  Google Scholar 

  27. Kim, Y.A., Fujisawa, K., Muramatsu, H., Hayashi, T., Endo, M., Fujimori, T., Casiraghi, C.: Raman spectroscopy of boron-doped single-layer graphene. ACS Nano 6(7), 6293–6300 (2012)

    Article  Google Scholar 

  28. Negri, F., di Donato, E., Tommasini, M., Castiglioni, C., Zerbi, G., Müllen, K.: Resonance Raman contribution to the D band of carbon materials: modeling defects with quantum chemistry. J. Chem. Phys. 120(24), 11889–11900 (2004)

    Article  Google Scholar 

  29. Chang, B.B., Guo, Y.Z., Li, Y.C., Yin, H., Zhang, S.R., Yang, B.C., Dong, X.P.: Graphitized hierarchical porous carbon nanospheres: simultaneous activation/graphitization and superior super capacitance performance. J. Mater. Chem. A 3(18), 9565–9577 (2015)

    Article  Google Scholar 

  30. Xu, K., von Cresce, A., Lee, U.: Differentiating contributions to “ion transfer” barrier from interphasial resistance and Li+ desolvation at electrolyte/graphite interface. Langmuir 26(13), 11538–11543 (2010)

    Article  Google Scholar 

Download references

Funding

Funding was supported by National Key R&D Program of China (2021YFB2501500),Young Elite Scientists Sponsorship Program by CAST (2021QNRC001), Key R&D Program of Tianjin (20JCZDJC00520).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tianyi Ma.

Ethics declarations

conflict of interest

On behalf of all the authors, the corresponding author states that there is no conflict of interest

Additional information

Academic Editor: Ziyou Song

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, M., Chen, L., Ma, T. et al. Comparative Study on Traction Battery Charging Strategies from the Perspective of Material Structure. Automot. Innov. 5, 427–437 (2022). https://doi.org/10.1007/s42154-022-00199-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42154-022-00199-9

Keywords

Navigation