Skip to main content
Log in

Robust Cooperative Control of Multiple Autonomous Vehicles for Platoon Formation Considering Parameter Uncertainties

  • Published:
Automotive Innovation Aims and scope Submit manuscript

Abstract

This paper proposes a robust cooperative control strategy for multiple autonomous vehicles to achieve safe and efficient platoon formation, and it analyzes the effects of vehicle stability boundaries and parameter uncertainties. The cooperative vehicle control framework is composed of the upper planning level and lower tracking control level. In the planning level, the trajectory of each vehicle is generated by using the multi-objective flocking algorithm to form the platoon. The parameters of the flocking algorithm are optimized to prevent the vehicle speed and yaw rate from going beyond their limits. In the lower level, to realize the stable platoon formation, a lumped disturbance observer is designed to gain the stable-state reference, and a distributed robust model predictive controller is proposed to achieve the offset-free trajectory tracking while downsizing the effects of parameter uncertainties. The simulation results show the proposed cooperative control strategy can achieve safe and efficient platoon formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. China’s major urban traffic analysis report in 2017. Tech. rep., Auto Navi Map, Beijing (2018)

  2. Zheng, Y., Li, S.E., Wang, J., et al.: Stability and scalability of homogeneous vehicular platoon: study on the influence of information flow topologies. IEEE Trans. Intell. Transp. Syst. 17(1), 14–26 (2016)

    Article  Google Scholar 

  3. Zhuang, W., Qu, L., Xu, S., et al.: Integrated energy-oriented cruising control of electric vehicle on highway with varying slopes considering battery aging. Sci. China Technol. Sci. 63(1), 155–165 (2020)

    Article  Google Scholar 

  4. Sabău, Ş., Oară, C., Warnick, S., et al.: Optimal distributed control for platooning via sparse coprime factorizations. IEEE Trans. Autom. Control 62(1), 305–320 (2017)

    Article  MathSciNet  Google Scholar 

  5. Xu, L., Zhuang, W., Yin, G., et al.: Energy-oriented cruising strategy design of vehicle platoon considering communication delay and disturbance. Transp. Res. Part C Emerg. Technol. 107, 34–53 (2019)

    Article  Google Scholar 

  6. Zhuang, W., Zhang, X., Yin, G., et al.: Mode shift schedule and control strategy design of multimode hybrid powertrain. IEEE Trans. Control Syst. Technol., 1–12 (2019)

  7. Ali, A., Garcia, G., Martinet, P.: The flatbed platoon towing model for safe and dense platooning on highways. IEEE Intell. Transp. Syst. Mag. 7(1), 58–68 (2015)

    Article  Google Scholar 

  8. Ghasemi, A., Rouhi, S.: A safe stable directional vehicular platoon. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 229(8), 1083–1093 (2015)

    Article  Google Scholar 

  9. Herman, I., Martinec, D., Hurák, Z., et al.: Nonzero bound on Fiedler eigenvalue causes exponential growth of h-infinity norm of vehicular platoon. IEEE Trans. Autom. Control 60(8), 2248–2253 (2015)

    Article  MathSciNet  Google Scholar 

  10. Naus, G.J., Vugts, R.P., Ploeg, J., et al.: String-stable CACC design and experimental validation: a frequency-domain approach. IEEE Trans. Veh. Technol. 59(9), 4268–4279 (2010)

    Article  Google Scholar 

  11. Öncü, S., Ploeg, J., van de Wouw, N., et al.: Cooperative adaptive cruise control: network-aware analysis of string stability. IEEE Trans. Intell. Transp. Syst. 15(4), 1527–1537 (2014)

    Article  Google Scholar 

  12. Xu, L., Zhuang, W., Yin, G., et al.: Modeling and robust control of heterogeneous vehicle platoons on curved roads subject to disturbances and delays. IEEE Trans. Veh. Technol. 68(12), 11551–11564 (2019)

    Article  Google Scholar 

  13. Olfati-Saber, R.: Flocking for multi-agent dynamic systems: algorithms and theory. IEEE Trans. Autom. Control 51(3), 401–420 (2006)

    Article  MathSciNet  Google Scholar 

  14. Reynolds, C.W.: Flocks, herds and schools: a distributed behavioral model. ACM SIGGRAPH Comput. Graph. 21(4), 25–34 (1987)

    Article  Google Scholar 

  15. Iftekhar, L.: Safety-Aware Intelligent Transportation Systems: Cooperative Autonomous Driving for Vehicular Networks. Dartmouth College, Hanover (2012)

    Google Scholar 

  16. Liu, Y., Xu, B.: Improved protocols and stability analysis for multivehicle cooperative autonomous systems. IEEE Trans. Intell. Transp. Syst. 16(5), 2700–2710 (2015)

    Article  Google Scholar 

  17. Carlson, C.R., Gerdes, J.C.: Consistent nonlinear estimation of longitudinal tire stiffness and effective radius. IEEE Trans. Control Syst. Technol. 13(6), 1010–1020 (2005)

    Article  Google Scholar 

  18. Sienel, W.: Estimation of the tire cornering stiffness and its application to active car steering. In: Proceedings of the 36th IEEE Conference on Decision and Control, vol. 5, pp. 4744–4749. IEEE (1997)

  19. Du, H., Zhang, N., Dong, G.: Stabilizing vehicle lateral dynamics with considerations of parameter uncertainties and control saturation through robust yaw control. IEEE Trans. Veh. Technol. 59(5), 2593–2597 (2010)

    Article  Google Scholar 

  20. Jin, X.J., Yin, G., Chen, N.: Gain-scheduled robust control for lateral stability of four-wheel-independent-drive electric vehicles via linear parameter-varying technique. Mechatronics 30, 286–296 (2015)

    Article  Google Scholar 

  21. Yin, G., Wang, R., Wang, J.: Robust control for four wheel independently-actuated electric ground vehicles by external yaw-moment generation. Int. J. Autom. Technol. 16(5), 839–847 (2015)

    Article  Google Scholar 

  22. Boyd, S., El Ghaoui, L., Feron, E., et al.: Linear Matrix Inequalities in System and Control Theory. SIAM, Philadelphia (1994)

    Book  Google Scholar 

  23. Muske, K.R., Badgwell, T.A.: Disturbance modeling for offset-free linear model predictive control. J. Process Control 12(5), 617–632 (2002)

    Article  Google Scholar 

  24. Olfati-Saber, R.: Near-identity diffeomorphisms and exponential \(\varepsilon\)-tracking and \(\varepsilon\)-stabilization of first-order nonholonomic se (2) vehicles. In: American Control Conference, 2002. Proceedings of the 2002, vol. 6, pp. 4690–4695. IEEE (2002)

  25. Rajamani, R.: Vehicle Dynamics and Control. Springer, Berlin (2011)

    MATH  Google Scholar 

  26. Jia, Y.: Robust control with decoupling performance for steering and traction of 4WS vehicles under velocity-varying motion. IEEE Trans. Control Syst. Technol. 8(3), 554–569 (2000)

    Article  Google Scholar 

Download references

Acknowledgements

Funding was privided by National Natural Science Foundation of China (Grant Nos. 51805081, 51575103 and U1664258).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weichao Zhuang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhuang, W., Xu, L. & Yin, G. Robust Cooperative Control of Multiple Autonomous Vehicles for Platoon Formation Considering Parameter Uncertainties. Automot. Innov. 3, 88–100 (2020). https://doi.org/10.1007/s42154-020-00093-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42154-020-00093-2

Keywords

Navigation