Skip to main content

Advertisement

Log in

Near-infrared light-activatable upconversion nanoparticle/curcumin hybrid nanodrug: a potent strategy to induce the differentiation and elimination of glioma stem cells

  • Research
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

Abstract

Glioma stem cells (GSCs) are major contributors to the recurrence and drug resistance of glioblastoma (GBM) and are therefore a key target for GBM treatment. However, due to the therapeutic resistance of GSCs, innovative and efficient clinical treatment tools to eliminate GSCs are urgently needed. Photodynamic therapy (PDT) is a new strategy for killing GSCs because of its high safety and sensitive targeting ability. However, the existing photosensitizers applied to kill GSCs generally lack long-wavelength excitation light with effective tissue penetration, which prevents their effective application in vivo. Hence, a novel near-infrared light (NIR)-activated photosensitive drug was developed from upconversion nanoparticles (UCNPs), Pluronic F127 (F127) and curcumin (Cur) to form UCNPs-F127@Cur. This hybrid nanodrug significantly promoted the apoptosis of GSCs, increased the production of intracellular reactive oxygen species, inhibited the expression of pluripotency-related genes in GSCs, and inhibited the growth of transplanted GSCs into tumors in vivo under 980 nm excitation light. However, UCNPs-F127@Cur did not exert the above anti-GSC effects without excitation by 980 nm light. Transcriptome sequencing analysis revealed that PDT with UCNPs-F127@Cur could cause cell cycle arrest and induce the differentiation of GSCs by suppressing the Wnt-β-catenin and Jak-Stat signaling pathways. In conclusion, we constructed a novel NIR-activated, targeted GSC-killing hybrid nanodrug and elucidated its molecular mechanism, thereby providing a new strategy for the treatment of GBM.

Graphical abstract

UCNPs-F127@Cur activated by NIR light with good tissue penetration were constructed and shown to effectively eliminate GSCs by inducing cell apoptosis, arresting cell cycle progression and the self-renewal of GSCs both in vivo and in vitro.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The data that support the findings of this study are available upon request from the corresponding author. The data are not publicly available due to privacy or ethical restrictions.

References

  1. Radhakrishnan K, Mokri B, Parisi JE, Ofallon WM, Sunku J, Kurland LT (1995) The trends in incidence of primary brain-tumors in the population of Rochester, Minnesota. Ann Neurol 37(1):67–73. https://doi.org/10.1002/ana.410370113

    Article  CAS  PubMed  Google Scholar 

  2. Ostrom QT, Patil N, Cioffi G, Waite K, Kruchko C, Barnholtz-Sloan JS (2022) Corrigendum to: CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2013–2017. Neurooncology 24(7):1214–1214. https://doi.org/10.1093/neuonc/noaa269

    Article  Google Scholar 

  3. Reya T, Morrison SJ, Clarke MF, Weissman IL (2001) Stem cells, cancer, and cancer stem cells. Nature 414:105–111. https://doi.org/10.1038/35102167

    Article  CAS  PubMed  Google Scholar 

  4. Bao SD, Wu QL, McLendon RE, Hao YL, Shi Q, Hjelmeland AB, Dewhirst MW, Bigner DD, Rich JN (2006) Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 444:756–760. https://doi.org/10.1038/nature05236

    Article  CAS  PubMed  Google Scholar 

  5. Chen J, Li YJ, Yu TS, McKay RM, Burns DK, Kernie SG, Parada LF (2012) A restricted cell population propagates glioblastoma growth after chemotherapy. Nature 488:522–526. https://doi.org/10.1038/nature11287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kolenda J, Jensen SS, Aaberg-Jessen C, Christensen K, Andersen C, Brunner N, Kristensen BW (2011) Effects of hypoxia on expression of a panel of stem cell and chemoresistance markers in glioblastoma-derived spheroids. J Neuro-Oncol 103(1):43–58. https://doi.org/10.1007/s11060-010-0357-8

    Article  CAS  Google Scholar 

  7. Agostinis P, Berg K, Cengel KA, Foster TH, Girotti AW, Gollnick SO, Hahn SM, Hamblin MR, Juzeniene A, Kessel D, Korbelik M, Moan J, Mroz P, Nowis D, Piette J, Wilson BC, Golab J (2011) Photodynamic therapy of Cancer: an update. CA Cancer J Clin 61(4):250–281. https://doi.org/10.3322/caac.20114

    Article  PubMed  PubMed Central  Google Scholar 

  8. Li XS, Lovell JF, Yoon J, Chen XY (2020) Clinical development and potential of photothermal and photodynamic therapies for cancer. Nat Rev Clin Oncol 17(11):657–674. https://doi.org/10.1038/s41571-020-0410-2

    Article  PubMed  Google Scholar 

  9. Hadjipanayis CG, Stummer W (2019) 5-ALA and FDA approval for glioma surgery. J Neuro-Oncol 141(3):479–486. https://doi.org/10.1007/s11060-019-03098-y

    Article  CAS  Google Scholar 

  10. Schimanski A, Ebbert L, Sabel MC, Finocchiaro G, Lamszus K, Ewelt C, Etminan N, Fischer JC, Sorg RV (2016) Human glioblastoma stem-like cells accumulate protoporphyrin IX when subjected to exogenous 5-aminolaevulinic acid, rendering them sensitive to photodynamic treatment. J Photoch Photobio B 163:203–210. https://doi.org/10.1016/j.jphotobiol.2016.08.043

    Article  CAS  Google Scholar 

  11. Fujishiro T, Nonoguchi N, Pavliukov M, Ohmura N, Kawabata S, Park Y, Kajimoto Y, Ishikawa T, Nakano I, Kuroiwa T (2018) 5-Aminolevulinic acid-mediated photodynamic therapy can target human glioma stem-like cells refractory to antineoplastic agents. Photodiagn Photodyn 24:58–68. https://doi.org/10.1016/j.pdpdt.2018.07.004

    Article  CAS  Google Scholar 

  12. Omura N, Nonoguchi N, Fujishiro T, Park Y, Ikeda N, Kajimoto Y, Hosomi R, Yagi R, Hiramatsu R, Furuse M, Kawabata S, Fukunaga K, Kuroiwa T, Nakano I, Wanibuchi M (2023) Ablation efficacy of 5-aminolevulinic acid-mediated photodynamic therapy on human glioma stem cells. Photodiagn Photodyn. https://doi.org/10.1016/j.pdpdt.2022.103119

    Article  Google Scholar 

  13. Ashrafizadeh M, Najafi M, Makvandi P, Zarrabi A, Farkhondeh T, Samarghandian S (2020) Versatile role of curcumin and its derivatives in lung cancer therapy. J Cell Physiol 235(12):9241–9268. https://doi.org/10.1002/jcp.29819

    Article  CAS  PubMed  Google Scholar 

  14. Liu FR, Gao S, Yang YX, Zhao XD, Fan YM, Ma WX, Yang DR, Yang AM, Yu Y (2018) Antitumor activity of curcumin by modulation of apoptosis and autophagy in human lung cancer A549 cells through inhibiting PI3K/Akt/mTOR pathway. Oncol Rep 39(3):1523–1531. https://doi.org/10.3892/or.2018.6188

    Article  CAS  PubMed  Google Scholar 

  15. Feng SY, Wang Y, Zhang RK, Yang GW, Liang ZB, Wang ZW, Zhang GH (2017) Curcumin exerts its antitumor activity through regulation of miR-7/Skp2/p21 in nasopharyngeal carcinoma cells. Oncotargets Ther 10:2377–2388. https://doi.org/10.2147/Ott.S130055

    Article  CAS  Google Scholar 

  16. Xi Y, Gao H, Callaghan MU, Fribley AM, Garshott DM, Xu ZX, Zeng QH, Li YL (2015) Induction of BCL2-Interacting killer, BIK, is mediated for anti-cancer activity of curcumin in human head and neck squamous cell carcinoma cells. J Cancer 6(4):327–332. https://doi.org/10.7150/jca.11185

    Article  PubMed  PubMed Central  Google Scholar 

  17. Li YY, Zhang T (2014) Targeting cancer stem cells by curcumin and clinical applications. Cancer Lett 346(2):197–205. https://doi.org/10.1016/j.canlet.2014.01.012

    Article  CAS  PubMed  Google Scholar 

  18. Bano N, Yadav M, Das BC (2018) Differential inhibitory effects of curcumin between HPV+ve and HPV-ve oral cancer stem cells. Front Oncol 8. https://doi.org/10.3389/fonc.2018.00412

    Article  Google Scholar 

  19. Liu HT, Ho YS (2018) Anticancer effect of curcumin on breast cancer and stem cells. Food Sci Hum Well 7(2):134–137. https://doi.org/10.1016/j.fshw.2018.06.001

    Article  Google Scholar 

  20. Jaiswal AS, Marlow BP, Gupta N, Narayan S (2002) beta-catenin-mediated transactivation and cell - cell adhesion pathways are important in curcumin (diferuylmethane)-induced growth arrest and apoptosis in colon cancer cells. Oncogene 21(55):8414–8427. https://doi.org/10.1038/sj.onc.1205947

    Article  CAS  PubMed  Google Scholar 

  21. Ryu MJ, Cho M, Song JY, Yun YS, Choi IW, Kim DE, Park BS, Oh S (2008) Natural derivatives of curcumin attenuate the Wnt/beta-catenin pathway through down-regulation of the transcriptional coactivator p300. Biochem Bioph Res Co 377(4):1304–1308. https://doi.org/10.1016/j.bbrc.2008.10.171

    Article  CAS  Google Scholar 

  22. Bisht S, Mizuma M, Feldmann G, Ottenhof NA, Hong SM, Pramanik D, Chenna V, Karikari C, Sharma R, Goggins MG, Rudek MA, Ravi R, Maitra A, Maitra A (2010) Systemic administration of polymeric nanoparticle-encapsulated curcumin (NanoCurc) blocks tumor growth and metastases in preclinical models of pancreatic cancer. Mol Cancer Ther 9(8):2255–2264. https://doi.org/10.1158/1535-7163.Mct-10-0172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lin L, Fuchs J, Li CL, Olson V, Bekaii-Saab T, Lin JY (2011) STAT3 signaling pathway is necessary for cell survival and tumorsphere forming capacity in ALDH(+)/CD133(+) stem cell-like human colon cancer cells. Biochem Bioph Res Co 416(3–4):246–251. https://doi.org/10.1016/j.bbrc.2011.10.112

    Article  CAS  Google Scholar 

  24. Lin L, Liu Y, Li H, Li PK, Fuchs J, Shibata H, Iwabuchi Y, Lin J (2011) Targeting colon cancer stem cells using a new curcumin analogue, GO-Y030. Brit J Cancer 105(2):212–220. https://doi.org/10.1038/bjc.2011.200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Jiang S, Zhu RR, He XL, Wang J, Wang M, Qian YC, Wang SL (2017) Enhanced photocytotoxicity of curcumin delivered by solid lipid nanoparticles. Int J Nanomed 12:167–178. https://doi.org/10.2147/ijn.S123107

    Article  CAS  Google Scholar 

  26. Priyadarsini KI (2009) Photophysics, photochemistry and photobiology of curcumin: studies from organic solutions, bio-mimetics and living cells. J Photochem Photobiol C-Photochem Rev 10(2):81–95. https://doi.org/10.1016/j.jphotochemrev.2009.05.001

    Article  CAS  Google Scholar 

  27. Nelson KM, Dahlin JL, Bisson J, Graham J, Pauli GF, Walters MA (2017) The essential Medicinal Chemistry of Curcumin. J Med Chem 60(5):1620–1637. https://doi.org/10.1021/acs.jmedchem.6b00975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Cai Y, Si WL, Huang W, Chen P, Shao JJ, Dong XC (2018) Organic dye based nanoparticles for cancer phototheranostics. Small. https://doi.org/10.1002/smll.201704247

    Article  PubMed  Google Scholar 

  29. Muniyandi K, George B, Parimelazhagan T, Abrahamse H (2020) Role of photoactive phytocompounds in photodynamic therapy of cancer. Molecules 25(18):22. https://doi.org/10.3390/molecules25184102

    Article  CAS  Google Scholar 

  30. Jing GX, Yang LN, Wang H, Niu JT, Li YY, Wang SL (2022) Interference of layered double hydroxide nanoparticles with pathways for biomedical applications. Adv Drug Deliver Rev. https://doi.org/10.1016/j.addr.2022.114451

    Article  Google Scholar 

  31. Gong XY, Jadhav ND, Lonikar VV, Kulkarni AN, Zhang HK, Sankapal BR, Ren JN, Xu BB, Pathan HM, Ma Y, Lin ZP, Witherspoon E, Wang Z, Guo ZH (2024) An overview of green synthesized silver nanoparticles towards bioactive antibacterial, antimicrobial and antifungal applications. Adv Colloid Interfac. https://doi.org/10.1016/j.cis.2023.103053

    Article  Google Scholar 

  32. Ibrayev N, Nuraje A, Amanzholova G, Seliverstova E, Khamza T (2023) The effect of plasmons of silver nanoparticles on the luminescence of S,N-doped carbon dots. Eng Sci 26:22. https://doi.org/10.30919/es1037

    Article  CAS  Google Scholar 

  33. Kabdrakhmanova S, Joshy KS, Sathian A, Aryp K, Akatan K, Shaimardan E, Beisebekov M, Gulden T, Kabdrakhmanova A, Maussumbayeva A, Joseph TM, Thomas S (2023) Anti-bacterial activity of kalzhat clay functionalized with Ag and Cu nanoparticles. Eng Sci. https://doi.org/10.30919/es972

    Article  Google Scholar 

  34. Satpathy G, Chandre GK, Elayaraja K, Mahapatra DR, Subramania A, Guo ZH, Umapathy S, Manikandan E (2022) Nanoparticles and bacterial interaction of host-pathogens and the detection enhancement of biomolecules by fluorescence raman spectroscopic investigation. Eng Sci 20:341–351. https://doi.org/10.30919/es8d767

    Article  CAS  Google Scholar 

  35. Cao W, Liu B, Xia FF, Duan M, Hong YP, Niu JQ, Wang LR, Liu YL, Li C, Cui DX (2020) MnO@Ce6-loaded mesenchymal stem cells as an oxygen-laden guided-missile for the enhanced photodynamic therapy on lung cancer. Nanoscale 12(5):3090–3102. https://doi.org/10.1039/c9nr07947e

    Article  CAS  PubMed  Google Scholar 

  36. Yang GB, Gong H, Qian XX, Tan PL, Li ZW, Liu T, Liu JJ, Li YY, Liu Z (2015) Mesoporous silica nanorods intrinsically doped with photosensitizers as a multifunctional drug carrier for combination therapy of cancer. Nano Res 8(3):751–764. https://doi.org/10.1007/s12274-014-0558-0

    Article  CAS  Google Scholar 

  37. Yang XY, Wang DY, Zhu JW, Xue L, Ou CJ, Wang WJ, Lu M, Song XJ, Dong XC (2019) Functional black phosphorus nanosheets for mitochondria-targeting photothermal/photodynamic synergistic cancer therapy. Chem Sci 10(13):3779–3785. https://doi.org/10.1039/c8sc04844d

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wang P, Shi YH, Zhang SC, Huang XY, Zhang JJ, Zhang YW, Si WL, Dong XC (2019) Hydrogen Peroxide Responsive Iron-based nanoplatform for multimodal imaging-guided cancer therapy. Small. https://doi.org/10.1002/smll.201803791

    Article  PubMed  PubMed Central  Google Scholar 

  39. Yang GB, Sun XQ, Liu JJ, Feng LZ, Liu Z (2016) Light-responsive, singlet-oxygen-triggered on-demand drug release from photosensitizer-doped mesoporous silica nanorods for cancer combination therapy. Adv Funct Mater 26(26):4722–4732. https://doi.org/10.1002/adfm.201600722

    Article  CAS  Google Scholar 

  40. Dong ZL, Feng LZ, Hao Y, Chen MC, Gao M, Chao Y, Zhao H, Zhu WW, Liu JJ, Liang C, Zhang Q, Liu Z (2018) Synthesis of hollow biomineralized CaCO -polydopamine nanoparticles for multimodal imaging-guided cancer photodynamic therapy with reduced skin photosensitivity. J Am Chem Soc 140(6):2165–2178. https://doi.org/10.1021/jacs.7b11036

    Article  CAS  PubMed  Google Scholar 

  41. Zhang SC, Li QZ, Yang N, Shi YH, Ge W, Wang WJ, Huang W, Song XJ, Dong XC (2019) Phase-change materials based nanoparticles for controlled hypoxia modulation and enhanced phototherapy. Adv Funct Mater. https://doi.org/10.1002/adfm.201906805

    Article  PubMed  PubMed Central  Google Scholar 

  42. Ding BB, Shao S, Yu C, Teng B, Wang MF, Cheng ZY, Wong KL, Ma PA, Lin J (2018) Large-pore mesoporous-silica-coated upconversion nanoparticles as multifunctional immunoadjuvants with ultrahigh photosensitizer and antigen loading efficiency for improved cancer photodynamic immunotherapy. Adv Mater. https://doi.org/10.1002/adma.201802479

    Article  PubMed  PubMed Central  Google Scholar 

  43. Ding BB, Shao S, Xiao HH, Sun CQ, Cai XC, Jiang F, Zhao XY, Ma PA, Lin J (2019) MnFeO-decorated large-pore mesoporous silica-coated upconversion nanoparticles for near-infrared light-induced and O self-sufficient photodynamic therapy. Nanoscale 11(31):14654–14667. https://doi.org/10.1039/c9nr04858h

    Article  CAS  PubMed  Google Scholar 

  44. Hou ZY, Deng KR, Wang MF, Liu YH, Chang MY, Huang SS, Li CX, Wei Y, Cheng ZY, Han G, Al Kheraif AA, Lin J (2019) Hydrogenated titanium oxide decorated upconversion nanoparticles: facile laser modified synthesis and 808 nm near-infrared light triggered phototherapy. Chem Mater 31(3):774–784. https://doi.org/10.1021/acs.chemmater.8b03762

    Article  CAS  Google Scholar 

  45. Qiu HL, Tan ML, Ohulchanskyy TY, Lovell JF, Chen GY (2018) Recent progress in upconversion photodynamic therapy. Nanomaterials 8(5):18. https://doi.org/10.3390/nano8050344

    Article  CAS  Google Scholar 

  46. Guo Y, Liu SM, Wang P, Zhao SD, Wang FW, Bing LJ, Zhang YM, Ling EA, Gao JG, Hao AJ (2011) Expression profile of embryonic stem cell-associated genes Oct4, Sox2 and nanog in human gliomas. Histopathology 59(4):763–775. https://doi.org/10.1111/j.1365-2559.2011.03993.x

    Article  PubMed  Google Scholar 

  47. Jin X, Jin X, Jung JE, Beck S, Kim H (2013) Cell surface nestin is a biomarker for glioma stem cells. Biochem Biophys Res Commun 433(4):496–501. https://doi.org/10.1016/j.bbrc.2013.03.021

    Article  CAS  PubMed  Google Scholar 

  48. Singh SK, Hawkins C, Clarke ID, Squire JA, Bayani J, Hide T, Henkelman RM, Cusimano MD, Dirks PB (2004) Identification of human brain tumour initiating cells. Nature 432(7015):396–401. https://doi.org/10.1038/nature03128

    Article  CAS  PubMed  Google Scholar 

  49. Ahmed MB, Alghamdi AAA, Islam SU, Ahsan H, Lee YS (2023) The complex roles of DNA repair pathways, inhibitors, hyperthermia, and contact inhibition in cell cycle halts. Mini Rev Med Chem 23(5):514–529. https://doi.org/10.2174/1389557522666220826141837

    Article  CAS  PubMed  Google Scholar 

  50. Rainey NE, Moustapha A, Petit PX (2020) Curcumin, a multifaceted hormetic agent, mediates an intricate crosstalk between mitochondrial turnover, autophagy, and apoptosis. Oxid Med Cell Longev. https://doi.org/10.1155/2020/3656419

    Article  PubMed  PubMed Central  Google Scholar 

  51. Yang LQ, Shi PF, Zhao GC, Xu J, Peng W, Zhang JY, Zhang GH, Wang XW, Dong Z, Chen F, Cui HJ (2020) Targeting cancer stem cell pathways for cancer therapy. Signal Transduct Tar 5(1). https://doi.org/10.1038/s41392-020-0110-5

  52. Norris L, Karmokar A, Howells L, Steward WP, Gescher A, Brown K (2013) The role of cancer stem cells in the anti-carcinogenicity of curcumin. Mol Nutr Food Res 57(9):1630–1637. https://doi.org/10.1002/mnfr.201300120

    Article  CAS  PubMed  Google Scholar 

  53. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131(5):861–872. https://doi.org/10.1016/j.cell.2007.11.019

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was financially supported by the National Natural Science Foundation of China (Grant No. 32071401), the Shanghai Natural Science Foundation (Grant No. 20ZR1461600) and the China Postdoctoral Science Foundation (2021M692442).

Author information

Authors and Affiliations

Authors

Contributions

Guoxin Jing was responsible for the investigation, methodology, data curation, and writing of the original draft. Youyuan Li, Feiyue Sun and Qiang Liu were responsible for nanoparticle synthesis, characterization, cell culture and animal model construction. Hong Wang, Jintong Niu and Jialu Lu performed the characterization and the image and data analyses. Ai Du provided methodology and project administration. Shilong Wang and Yechang Qian performed the conceptualization, supervision, and project administration of this work. All the authors reviewed the manuscript.

Corresponding authors

Correspondence to Yechang Qian or Shilong Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1 (PDF 850KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jing, G., Li, Y., Sun, F. et al. Near-infrared light-activatable upconversion nanoparticle/curcumin hybrid nanodrug: a potent strategy to induce the differentiation and elimination of glioma stem cells. Adv Compos Hybrid Mater 7, 82 (2024). https://doi.org/10.1007/s42114-024-00886-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42114-024-00886-7

Keywords

Navigation