Skip to main content
Log in

Size effect of nanomagnetite on magnetoresistance of core-shell structured polyaniline nanocomposites

  • Research
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

Abstract

In this work, magnetoresistive nanomagnetite@polyaniline (Fe3O4@PANI) composites with a core-shell structure were prepared by in situ polymerization method with KH-550 as coupling agent. All the samples demonstrated the positive MR, and compared with PANI composites reinforced with small (diameter 80 nm) size or large (diameter 450 nm) size of Fe3O4, the PANI composites reinforced with medium (diameter 220 nm) size of Fe3O4 exhibit the largest MR (8.41%) when the MK-F loading is 60 wt%. Moreover, the size effect of Fe3O4 particles on the electrical conductivity and MR behavior was analyzed by the Mott VRH model and wave functional shrinkage model. The MR value of Fe3O4@PANI composites with different loading and size of Fe3O4 particles mainly depends on localization length, density of state at Fermi level, and average hopping length. Moreover, the Fe3O4@PANI composites were systematically characterized by SEM, TEM, XRD, and FT-IR. This work could provide the guidance for fabrication of magnetic field sensors and information memory storage devices.

Graphical Abstract

The core-shell structured magnetite/polyaniline nanocomposites with tunable magnetoresistance by changing the size of magnetite nanoparticle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

No datasets were generated or analyzed during the current study.

References

  1. Hu B, Wu Y (2007) Tuning magnetoresistance between positive and negative values in organic semiconductors. Nat Mater 6(12):985–991. https://doi.org/10.1038/nmat2034

    Article  CAS  PubMed  Google Scholar 

  2. Ney A, Pampuch C, Koch R, Ploog KH (2003) Programmable computing with a single magnetoresistive element. Nature 425(6957):485–487. https://doi.org/10.1038/nature02014

    Article  CAS  PubMed  Google Scholar 

  3. Liu Y (2023) Advance piezo-actuator technologies for hard disk drive applications. Microsyst Technol 29:1117–1127. https://doi.org/10.1007/s00542-023-05460-7

    Article  Google Scholar 

  4. Mach-Batlle R, Navau C, Sanchez A (2018) Invisible magnetic sensors. Appl Phys Lett 112(16):162406. https://doi.org/10.1063/1.5023565

    Article  CAS  Google Scholar 

  5. Zheng C, Liu Y, Dong Y, He F, Zhao X, Yin J (2019) Low-temperature interfacial polymerization and enhanced electro-responsive characteristic of poly(ionic liquid)s@polyaniline core-shell microspheres. Macromol Rapid Commun 40(17):1800351. https://doi.org/10.1002/marc.201800351

  6. Ma J, Fan H, Li Z, Jia Y, Yadav AK, Dong G, Wang W, Dong W, Wang S (2021) Multi-walled carbon nanotubes/polyaniline on the ethylenediamine modified polyethylene terephthalate fibers for a flexible room temperature ammonia gas sensor with high responses. Sens Actuators B Chem 334:129677. https://doi.org/10.1016/j.snb.2021.129677

  7. Yu Z, Li H, Zhang X, Liu N, Tan W, Zhang X, Zhang L (2016) Facile synthesis of NiCo2O4@Polyaniline core–shell nanocomposite for sensitive determination of glucose. Biosens Bioelectron 5:161–165. https://doi.org/10.1016/j.bios.2015.08.024

    Article  CAS  PubMed  Google Scholar 

  8. Zeng J, Xie W, Guo Y, Zhao T, Zhou H, Wang Q, Li H, Guo Z, Xu B, Gu H (2024) Magnetic field facilitated electrocatalytic degradation of tetracycline in wastewater by magnetic porous carbonized phthalonitrile resin. Appl Catal B-Environ 340:123225. https://doi.org/10.1016/j.apcatb.2023.123225

    Article  CAS  Google Scholar 

  9. Li T, Wei H, Zhang Y, Wan T, Cui D, Zhao S, Zhang T, Ji Y, Algadi H, Guo Z, Chu L, Cheng B (2023) Sodium alginate reinforced polyacrylamide/xanthan gum double network ionic hydrogels for stress sensing and self-powered wearable device applications. Carbohyd Polym 309:120678. https://doi.org/10.1016/j.carbpol.2023.120678

    Article  CAS  Google Scholar 

  10. Zheng C, Lei Q, Zhao J, Zhao X, Yin J (2020) The effect of dielectric polarization rate difference of filler and matrix on the electrorheological responses of poly(ionic liquid)/polyaniline composite particles. Polymers 12(3):703. https://doi.org/10.3390/polym12030703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hu X, Zhang Y, Liu C, Cui H (2024) Polydopamine wrapped polyaniline nanosheets: synthesis and anticorrosion application for waterborne epoxy coatings. J Mater Sci Technol 176:155–166. https://doi.org/10.1016/j.jmst.2023.07.054

    Article  Google Scholar 

  12. Zheng C, Dong Y, Liu Y, Zhao X, Yin J (2017) Enhanced stimuli-responsive electrorheological property of poly(ionic liquid)s-capsulated polyaniline particles. Polymers 9(9):385. https://doi.org/10.3390/polym9090385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Tanrıverdi EE, Uzumcu AT, Kavas H, Demir A, Baykal A (2011) Conductivity study of polyaniline-cobalt ferrite (PANI-CoFe2O4) nanocomposite. Nano-Micro Lett 3:99–107. https://doi.org/10.1007/bf03353658

    Article  Google Scholar 

  14. Lan D, Wang Y, Wang Y, Zhu X, Li H, Guo X, Ren J, Guo Z, Wu G (2023) Impact mechanisms of aggregation state regulation strategies on the microwave absorption properties of flexible polyaniline. J Colloid Interf Sci 651:494–503. https://doi.org/10.1016/j.jcis.2023.08.019

    Article  CAS  Google Scholar 

  15. Gu H, Guo J, Yan X, Wei H, Zhang X, Liu J, Huang Y, Wei S, Guo Z (2014) Electrical transport and magnetoresistance in advanced polyaniline nanostructures and nanocomposites. Polymer 55(17):4405–4419. https://doi.org/10.1016/j.polymer.2014.05.024

    Article  CAS  Google Scholar 

  16. Gu H, Huang Y, Zhang X, Wang Q, Zhu J, Shao L, Haldolaarachchige N, Young DP, Wei S, Guo Z (2012) Magnetoresistive polyaniline-magnetite nanocomposites with negative dielectrical properties. Polymer 53(3):801–809. https://doi.org/10.1016/j.polymer.2011.12.033

    Article  CAS  Google Scholar 

  17. Gu H, Guo J, Wei H, Guo S, Liu J, Huang Y, Khan MA, Wang X, Young DP, Wei S, Guo Z (2015) Strengthened magnetoresistive epoxy nanocomposite papers derived from synergistic nanomagnetite-carbon nanofiber nanohybrids. Adv Mater 27(40):6277–6282. https://doi.org/10.1002/adma.201501728

    Article  CAS  PubMed  Google Scholar 

  18. Xu X, Yao F, Ali OAA, Xie W, Mahmoud SF, Xie P, El-Bahy SM, Huang M, Liu C, Fan R, Guo Z, Du A, Estevez D, Qin F, Peng H, Young DP, Gu H (2022) Adjustable core-sheath architecture of polyaniline-decorated hollow carbon nanofiber nanocomposites with negative permittivity for superb electromagnetic interference shielding. Adv Compos Hybrid Mater 5:2002–2011. https://doi.org/10.1007/s42114-022-00538-8

    Article  CAS  Google Scholar 

  19. Zhao X, Du Y, Li W, Zhao Z, Lei M (2023) Organic/inorganic hybrids for intelligent sensing and wearable clean energy applications. Adv Compos Hybrid Mater 6:167. https://doi.org/10.1007/s42114-023-00751-z

    Article  Google Scholar 

  20. Maity KP, Tanty N, Prasad V (2020) Influence of chemical functionalization of carbon nanotube on magnetoresistance transition in polyaniline composite. Synthetic Met 262:116345. https://doi.org/10.1016/j.synthmet.2020.116345

    Article  CAS  Google Scholar 

  21. Guo J, Li X, Liu H, Young DP, Song G, Song K, Zhu J, Kong J, Guo Z (2021) Tunable magnetoresistance of core-shell structured polyaniline nanocomposites with 0-, 1-, and 2-dimensional nanocarbons. Adv Compos Hybrid Mater 4:51–64. https://doi.org/10.1007/s42114-021-00211-6

    Article  CAS  Google Scholar 

  22. Jo Y, Kim EJ, Kim J, An K (2023) Efficient Fe3O4 nanoparticle catalysts for depolymerization of polyethylene terephthalate. Green Chem 25(20):8160–8171. https://doi.org/10.1039/d3gc01707a

    Article  CAS  Google Scholar 

  23. Li F, Wu N, Kimura H, Wang Y, Xu B, Wang D, Li Y, Algadi H, Guo Z, Du W, Hou C (2023) Initiating binary metal oxides microcubes electromagnetic wave absorber toward ultrabroad absorption bandwidth through interfacial and defects modulation. Nano-Micro Lett 15:220. https://doi.org/10.1007/s40820-023-01197-0

    Article  CAS  Google Scholar 

  24. Gao Z, Li H, Gu J, Zhang Q, Kirillov AM (2016) Metal-organic and supramolecular networks driven by 5-chloronicotinic acid: hydrothermal self-assembly synthesis, structural diversity, luminescent and magnetic properties. J Solid State Chem 241:121–130. https://doi.org/10.1016/j.jssc.2016.05.034

    Article  CAS  Google Scholar 

  25. Zhi C, Yang W (2021) Improvement of Mo-doping on sulfur-poisoning of Ni catalyst: activity and selectivity to CO methanation. Comput Theor Chem 1197:113140. https://doi.org/10.1016/j.comptc.2020.113140

    Article  CAS  Google Scholar 

  26. Yang S, Shi C, Qu K, Sun Z, Li H, Xu B, Huang Z, Guo Z (2023) Electrostatic self-assembly cellulose nanofibers/MXene/nickel chains for highly stable and efficient seawater evaporation and purification. Carbon Lett 33:2063–2074. https://doi.org/10.1007/s42823-023-00540-0

    Article  Google Scholar 

  27. Zhang J, Yang J, Cheng L, Wang Y, Feng G (2020) Adsorption of acetylene on Sn-doped Ni(111) surfaces: a density functional study. J Mol Model 26:310. https://doi.org/10.1007/s00894-020-04568-1

    Article  CAS  PubMed  Google Scholar 

  28. Bhaumik M, Mahule TS, Srinivasu VV, Maity A (2019) Investigation of the electrical charge transport mechanism and magnetoresistance response in chloride-doped polyaniline–Fe composite nanofibers. J Phys D Appl Phys 52(34):345304. https://doi.org/10.1088/1361-6463/ab1d39

    Article  CAS  Google Scholar 

  29. Zhao T, Ji X, Guo X, Jin W, Dang A, Li H, Li T (2016) Preparation and electrochemical property of Fe3O4/MWCNT nanocomposite. Chem Phys Lett 653:202–206. https://doi.org/10.1016/j.cplett.2016.04.083

    Article  CAS  Google Scholar 

  30. Wang C, Liu X, Yang T, Sridhar D, Algadi H, Xu B, El-Bahy ZM, Li H, Ma Y, Li T, Guo Z (2023) An overview of metal-organic frameworks and their magnetic composites for the removal of pollutants. Sep Purif Technol 320:124144. https://doi.org/10.1016/j.seppur.2023.124144

    Article  CAS  Google Scholar 

  31. Xie W, Yao F, Gu H, Du A, Lei Q, Naik N, Guo Z (2022) Magnetoresistive and piezoresistive polyaniline nanoarrays in-situ polymerized surrounding magnetic graphene aerogel. Adv Compos Hybrid Mater 5:1003–1016. https://doi.org/10.1007/s42114-021-00413-y

    Article  CAS  Google Scholar 

  32. Guo J, Chen Z, Abdul W, Kong J, Khan MA, Young DP, Zhu J, Guo Z (2021) Tunable positive magnetoresistance of magnetic polyaniline nanocomposites. Adv Compos Hybrid Mater 4:534–542. https://doi.org/10.1007/s42114-021-00242-z

    Article  CAS  Google Scholar 

  33. Liu J, Sun Z, Deng Y, Zou Y, Li C, Guo X, Xiong L, Gao Y, Li F, Zhao D (2009) Highly water-dispersible biocompatible magnetite particles with low cytotoxicity stabilized by citrate groups. Angew Chem Int Edit 48(32):5875–5879. https://doi.org/10.1002/anie.200901566

    Article  CAS  Google Scholar 

  34. Liu J, Li K, Song Y, Song C, Guo X (2021) Selective hydrogenation of CO2 to hydrocarbons: Effects of Fe3O4 particle size on reduction, carburization, and catalytic performance. Energ Fuel 35(13):10703–10709. https://doi.org/10.1021/acs.energyfuels.1c01265

    Article  CAS  Google Scholar 

  35. Wu Z, Wang Y, Xiong Z, Ao Z, Pu S, Yao G, Lai B (2020) Core-shell magnetic Fe3O4@Zn/Co-ZIFs to activate peroxymonosulfate for highly efficient degradation of carbamazepine. Appl Catal B-Environ 277:119136. https://doi.org/10.1016/j.apcatb.2020.119136

    Article  CAS  Google Scholar 

  36. Sajjadi S, Khataee A, Darvishi Cheshmeh Soltani R, Bagheri N, Karimi A, Ebadi Fard Azar A (2018) Implementation of magnetic Fe3O4@ZIF-8 nanocomposite to activate sodium percarbonate for highly effective degradation of organic compound in aqueous solution. J Ind Eng Chem 68:406–415. https://doi.org/10.1016/j.jiec.2018.08.016

    Article  CAS  Google Scholar 

  37. Yu M, Huang Y, Liu X, Zhao X, Fan W, She K (2023) In situ modification of MXene nanosheets with polyaniline nanorods for lightweight and broadband electromagnetic wave absorption. Carbon 208:311–321. https://doi.org/10.1016/j.carbon.2023.03.066

    Article  CAS  Google Scholar 

  38. Yao K, Liu Y, Yang H, Yuan J, Shan S (2020) Polyaniline-modified 3D-spongy SnS composites for the enhanced visible-light photocatalytic degradation of methyl orange. Colloid Surface A 603:125240. https://doi.org/10.1016/j.colsurfa.2020.125240

    Article  CAS  Google Scholar 

  39. Chi Y, Yuan Q, Li Y, Tu J, Zhao L, Li N, Li X (2012) Synthesis of Fe3O4@SiO2–Ag magnetic nanocomposite based on small-sized and highly dispersed silver nanoparticles for catalytic reduction of 4-nitrophenol. J Colloid Interf Sci 383(1):96–102. https://doi.org/10.1016/j.jcis.2012.06.027

    Article  CAS  Google Scholar 

  40. Chi Y, Geng W, Zhao L, Yan X, Yuan Q, Li N, Li X (2012) Comprehensive study of mesoporous carbon functionalized with carboxylate groups and magnetic nanoparticles as a promising adsorbent. J Colloid Interf Sci 369(1):366–372. https://doi.org/10.1016/j.jcis.2011.12.051

    Article  CAS  Google Scholar 

  41. Yadav N, Singh A, Kaushik M (2020) Hydrothermal synthesis and characterization of magnetic Fe3O4 and APTS coated Fe3O4 nanoparticles: physicochemical investigations of interaction with DNA. J Mater Sci-Mater M 31:68. https://doi.org/10.1007/s10856-020-06405-6

    Article  CAS  Google Scholar 

  42. Wang G, Ma Y, Tong Y, Dong X (2016) Synthesis, characterization and magnetorheological study of 3-aminopropyltriethoxysilane-modified Fe3O4 nanoparticles. Smart Mater Struct 25(3):035028. https://doi.org/10.1088/0964-1726/25/3/035028

    Article  CAS  Google Scholar 

  43. Zhang B, Wang Y, Zhang J, Qiao S, Fan Z, Wan J, Chen K (2020) Well-defined 3-Aminopropyltriethoxysilane functionalized magnetite nanoparticles and their adsorption performance for partially hydrolyzed polyacrylamide from aqueous solution. Colloid Surface A 586:124288. https://doi.org/10.1016/j.colsurfa.2019.124288

    Article  CAS  Google Scholar 

  44. Xu H, Zheng D, Liu F, Li W, Lin J (2020) Synthesis of an MXene/polyaniline composite with excellent electrochemical properties. J Mater Chem A 8(12):5853–5858. https://doi.org/10.1039/d0ta00572j

    Article  CAS  Google Scholar 

  45. Li L, Song H, Zhang Q, Yao J, Chen X (2009) Effect of compounding process on the structure and electrochemical properties of ordered mesoporous carbon/polyaniline composites as electrodes for supercapacitors. J Power Sources 187(1):268–274. https://doi.org/10.1016/j.jpowsour.2008.10.075

    Article  CAS  Google Scholar 

  46. Sozeri H, Kurtan U, Topkaya R, Baykal A, Toprak MS (2013) Polyaniline (PANI)–Co0.5Mn0.5Fe2O4 nanocomposite: synthesis, characterization and magnetic properties evaluation. Ceram Int 39:5137–5143. https://doi.org/10.1016/j.ceramint.2012.12.009

    Article  CAS  Google Scholar 

  47. Li J, Zhu L, Wu Y, Harima Y, Zhang A, Tang H (2006) Hybrid composites of conductive polyaniline and nanocrystalline titanium oxide prepared via self-assembling and graft polymerization. Polymer 47(21):7361–7367. https://doi.org/10.1016/j.polymer.2006.08.059

    Article  CAS  Google Scholar 

  48. Xie S, Gan M, Ma L, Li Z, Yan J, Yin H, Shen X, Xu F, Zheng J, Zhang J, Hu J (2014) Synthesis of polyaniline-titania nanotube arrays hybrid composite via self-assembling and graft polymerization for supercapacitor application. Electrochim Acta 120:408–415. https://doi.org/10.1016/j.electacta.2013.12.067

    Article  CAS  Google Scholar 

  49. Guo J, Gu H, Wei H, Zhang Q, Haldolaarachchige N, Li Y, Young DP, Wei S, Guo Z (2013) Magnetite–polypyrrole metacomposites: dielectric properties and magnetoresistance behavior. J Phys Chem C 117(19):10191–10202. https://doi.org/10.1021/jp402236n

    Article  CAS  Google Scholar 

  50. Shi C, An Y, Gao G, Xue J, Algadi H, Huang Z, Guo Z (2024) Insights into selective glucose photoreforming for coproduction of hydrogen and organic acid over biochar-based heterojunction photocatalyst cadmium sulfide/titania/biochar. Acs Sustain Chem Eng 12:2538–2549. https://doi.org/10.1021/acssuschemeng.3c04835

    Article  CAS  Google Scholar 

  51. Daikh S, Zeggai FZ, Bellil A, Benyoucef A (2018) Chemical polymerization, characterization and electrochemical studies of PANI/ZnO doped with hydrochloric acid and/or zinc chloride: differences between the synthesized nanocomposites. J Phys Chem Solids 121:78–84. https://doi.org/10.1016/j.jpcs.2018.02.003

    Article  CAS  Google Scholar 

  52. Gu H, Zhang H, Lin J, Shao Q, Young DP, Sun L, Shen TD, Guo Z (2018) Large negative giant magnetoresistance at room temperature and electrical transport in cobalt ferrite-polyaniline nanocomposites. Polymer 143:324–330. https://doi.org/10.1016/j.polymer.2018.04.008

    Article  CAS  Google Scholar 

  53. Fan W, Wang Q, Rong K, Shi Y, Peng W, Li H, Guo Z, Xu B, Hou H, Algadi H, Ge S (2023) MXene enhanced 3D needled waste denim felt for high-performance flexible supercapacitors. Nano-Micro Lett 16:36. https://doi.org/10.1007/s40820-023-01226-y

    Article  CAS  Google Scholar 

  54. Zhang X, Wei S, Haldolaarachchige N, Colorado HA, Luo Z, Young DP, Guo Z (2012) Magnetoresistive conductive polyaniline–barium titanate nanocomposites with negative permittivity. J Phys Chem C 116(29):15731–15740. https://doi.org/10.1021/jp303226u

    Article  CAS  Google Scholar 

  55. Lafta SH (2020) Evaluation of hematite nanoparticles weak ferromagnetism. J Supercond Nov Magn 33:3765–3772. https://doi.org/10.1007/s10948-020-05626-8

    Article  CAS  Google Scholar 

  56. Lafta SH (2022) Hydrothermal temperature influence on magnetic and FMR properties of hematite nanoparticles. Surf Rev Lett 29(07):2250096. https://doi.org/10.1142/s0218625x22500962

    Article  CAS  Google Scholar 

  57. Al-Shakarchi EK, Lafta SH, Musa A, Farle M, Salikhov R (2017) The FMR behaviour of Li–Ni ferrite prepared by hydrothermal method. J Supercond Nov Magn 30:2575–2579. https://doi.org/10.1007/s10948-017-4058-9

    Article  CAS  Google Scholar 

  58. Tareq MH, Lafta SH (2023) Investigation the magnetic properties of CsyCo1-0.5yFe2O4 nanoparticles at low molar ratio variation. Eurasian Phys Tech J 20:6–16. https://doi.org/10.31489/2023No4/6-16

    Article  Google Scholar 

  59. Lafta SH (2017) The relation of crystallite size and Ni2+ content to ferromagnetic resonance properties of nano nickel ferrites. J Magn 22:188–195. https://doi.org/10.4283/jmag.2017.22.2.188

    Article  Google Scholar 

  60. El-Okr MM, Salem MA, Salim MS, El-Okr RM, Ashoush M, Talaat HM (2011) Synthesis of cobalt ferrite nano-particles and their magnetic characterization. J Magn Magn Mater 323(7):920–926. https://doi.org/10.1016/j.jmmm.2010.11.069

    Article  CAS  Google Scholar 

  61. Li S, Tang L, Kan J (2013) Synthesis and characterisation of PANI–Co in presence of magnetic field. Mater Res Innov 14:262–267. https://doi.org/10.1179/143307510x12719005364909

    Article  Google Scholar 

  62. Li X, Yu L, Yu L, Dong Y, Gao Q, Yang Q, Yang W, Zhu Y, Fu Y (2018) Chiral polyaniline with superhelical structures for enhancement in microwave absorption. Chem Eng J 352:745–755. https://doi.org/10.1016/j.cej.2018.07.096

    Article  CAS  Google Scholar 

  63. Liu Y, Park BJ, Kim YH, Choi HJ (2011) Smart monodisperse polystyrene/polyaniline core–shell structured hybrid microspheres fabricated by a controlled releasing technique and their electro-responsive characteristics. J Mater Chem 21(43):17396–17402. https://doi.org/10.1039/C1JM12443A

    Article  CAS  Google Scholar 

  64. Qasim M, Ahmad N, Ahmad I, Mustafa G, Farid MT, Kanwal M, Ali A, Abbas G, Murtaza G, Khan MA, Aziz MH, Ali SM, Baig MR, Alkhuraiji TS, Ahmad M (2017) Synthesis, structural and high frequency dielectric properties of polypyrrole (PPy)/holmium ferrite composites. J Mater Sci-Mater El 29:3884–3890. https://doi.org/10.1007/s10854-017-8326-z

    Article  CAS  Google Scholar 

  65. Li B, Sui G, Zhong WH (2009) Single negative metamaterials in unstructured polymer nanocomposites toward selectable and controllable negative permittivity. Adv Mater 21(41):4176–4180. https://doi.org/10.1002/adma.200900653

    Article  CAS  Google Scholar 

  66. Cheng C, Fan R, Ren Y, Ding T, Qian L, Guo J, Li X, An L, Lei Y, Yin Y, Guo Z (2017) Radio frequency negative permittivity in random carbon nanotubes/alumina nanocomposites. Nanoscale 9(18):5779–5787. https://doi.org/10.1039/c7nr01516j

    Article  CAS  PubMed  Google Scholar 

  67. Guo J, Chen Z, El-Bahy ZM, Liu H, Abo-Dief HM, Abdul W, Abualnaja KM, Alanazi AK, Zhang P, Huang M, Hu G, Zhu J (2022) Tunable negative dielectric properties of magnetic CoFe2O4/graphite-polypyrrole metacomposites. Adv Compos Hybrid Mater 5(2):899–906. https://doi.org/10.1007/s42114-022-00485-4

    Article  CAS  Google Scholar 

  68. Guo J, Guan L, Wei H, Khan MA, Zhang X, Li B, Wang Q, Weeks BL, Young DP, Shen T, Wei S, Guo Z (2016) Enhanced negative magnetoresistance with high sensitivity of polyaniline interfaced with nanotitania. J Electrochem Soc 163(8):H664–H671. https://doi.org/10.1149/2.0371608jes

    Article  CAS  Google Scholar 

  69. Gu H, Guo J, Zhang X, He Q, Huang Y, Colorado HA, Haldolaarachchige N, Xin H, Young DP, Wei S, Guo Z (2013) Giant magnetoresistive phosphoric acid doped polyaniline–silica nanocomposites. J Phys Chem C 117(12):6426–6436. https://doi.org/10.1021/jp311471f

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors extend their appreciation to the Deanship of Scientific Research at Northern Border University, Arar, KSA, for funding this research work through the project number (NBU-FPEJ-2024-540-01).

Funding

This work is supported by the Natural Science Foundation of China (grant no. 62304126; 51972200; U23B2084), the Natural Science Basic Research Program of Shaanxi (program no. 2022JQ-441; 2022JM-285), Foreign Expert Project of Ministry of Science and Technology of China (Program no. G2023041005L), the Key Scientific Research Program of Shaanxi Province Education Department (No. 23JY011), and the Research Foundation for Thousand Young Talent Plan of Shaanxi province of China.

Author information

Authors and Affiliations

Authors

Contributions

Shaohua Xi synthesized the materials and conducted most of the measurements and data analysis. Jiang Guo conceived the idea, wrote the paper, and coordinated the overall project. Yukun Sun and Wenhao Dong contributed to the data analysis. Yazeed M. Asiri, Nawal D. Alqarni, and Mohamed H. Helal revised the paper. Fujian Zhou reviewed and revised the manuscript. Jianfeng Zhu provided supervision and resources. All authors reviewed the manuscript.

Corresponding authors

Correspondence to Jiang Guo or Jianfeng Zhu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1846 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, J., Xi, S., Sun, Y. et al. Size effect of nanomagnetite on magnetoresistance of core-shell structured polyaniline nanocomposites. Adv Compos Hybrid Mater 7, 62 (2024). https://doi.org/10.1007/s42114-024-00868-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42114-024-00868-9

Keywords

Navigation