Skip to main content
Log in

p-Toluenesulfonic acid doped vanadium pentoxide/polypyrrole film for highly sensitive hydrogen sensor

  • Research
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

Abstract

Properly assembled nanostructure of hybrid materials leads to better hydrogen gas sensing performance. In this study, a nove, and facile assembly approach was developed to construct a relatively quick and sensitive conductive polymer sensor for detecting trace quantities of hydrogen gas in a nitrogen atmosphere. Through chemical polymerization, hybrid thin films of vanadium pentoxide (V2O5) and polypyrrole (PPY) were fabricated to form the ordered structure of the composites. Also, the effect of p-toluenesulfonic acid, a dopant, on the structure and properties of conducting polymer and vanadium pentoxide composite was investigated. The dopant effect was proved to improve sensing performance via a hydrogen sensing experiment. These sensors are able to detect minor current changes induced by low-coordinated hydrogen exposure (5–250 ppm) interactions at room temperature and have quick response and recovery times of 42 s and 37 s, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Panarello D, Gatto A (2023) Decarbonising Europe – EU citizens’ perception of renewable energy transition amidst the European Green Deal. Energy Policy 172:113272. https://doi.org/10.1016/j.enpol.2022.113272

    Article  Google Scholar 

  2. Buttner WJ, Post MB, Burgess R, Rivkin C (2011) An overview of hydrogen safety sensors and requirements. Int J Hydrogen Energy 36:2462–2470. https://doi.org/10.1016/j.ijhydene.2010.04.176

    Article  CAS  Google Scholar 

  3. Dash MK, Giri S, Chakraborty I et al (2023) Li (0)-pyridine (1:1) template for efficient hydrogen storage. ES Mater Manuf 1–10. https://doi.org/10.30919/esmm5f825

  4. Dash MK, Jain A, Dhruw L et al (2023) Pyridine-M2+ [M = Mg, Ca]: a promising organometallic system for potential hydrogen storage: in silico study. J Indian Chem Soc 100:101048. https://doi.org/10.1016/j.jics.2023.101048

    Article  CAS  Google Scholar 

  5. Lu J, Yang Y, Zhong Y et al (2022) The study on activated carbon, magnetite, polyaniline and polypyrrole development of methane production improvement from wastewater treatment. ES Food Agrofor 10:30–38. https://doi.org/10.30919/esfaf802

  6. Zhang H, Ding X, Wang S et al (2022) Heavy metal removal from wastewater by a polypyrrolederived N-doped carbon nanotube decorated with fish scale-like molybdenum disulfide nanosheets. Eng Sci 18:320–328. https://doi.org/10.30919/es8d649

  7. ur Rehman S, Ahmed R, Ma K et al (2021) Composite of strip-shaped ZIF-67 with polypyrrole: A conductive polymer-MOF electrode system for stable and high specific capacitance. Eng Sci 13:71–78. https://doi.org/10.30919/es8d1263

  8. Yang J, Lin J, Sun S et al (2023) Multidimensional network of polypyrrole nanotubes loaded with ZIF-67 to construct multiple proton transport channels in composite proton exchange membranes for fuel cells. J Mater Sci Technol 152:75–85. https://doi.org/10.1016/j.jmst.2022.11.063

    Article  CAS  Google Scholar 

  9. Cheng K, Zou L, Chang B et al (2022) Mechanically robust and conductive poly(acrylamide) nanocomposite hydrogel by the synergistic effect of vinyl hybrid silica nanoparticle and polypyrrole for human motion sensing. Adv Compos Hybrid Mater 5:2834–2846. https://doi.org/10.1007/s42114-022-00465-8

    Article  CAS  Google Scholar 

  10. Abutalip M, Zhigerbayeva G, Kanzhigitova D et al (2023) Strategic synthesis of 2D and 3D conducting polymers and derived nanocomposites. Adv Mater 35:1–8. https://doi.org/10.1002/adma.202208864

    Article  CAS  Google Scholar 

  11. Ahmed J, Faisal M, Alsareii SA, Harraz FA (2022) Highly sensitive and selective non-enzymatic uric acid electrochemical sensor based on novel polypyrrole-carbon black-Co3O4 nanocomposite. Adv Compos Hybrid Mater 5:920–933. https://doi.org/10.1007/s42114-021-00391-1

    Article  CAS  Google Scholar 

  12. Pan X, Zheng Z, Zhang X et al (2022) Multi-metallic nanosheets for high-performance hydrogen evolution reaction. Eng Sci 19:253–261. https://doi.org/10.30919/es8e708

  13. Hua Z, Yuasa M, Kida T et al (2013) High sensitive gas sensor based on Pd-loaded WO3 nanolamellae. Thin Solid Films 548:677–682. https://doi.org/10.1016/j.tsf.2013.04.088

    Article  CAS  Google Scholar 

  14. Livage J (2010) Hydrothermal synthesis of nanostructured vanadium oxides. Materials (Basel) 3:4175–4195. https://doi.org/10.3390/ma3084175

    Article  CAS  Google Scholar 

  15. Xu D, Wang H, Li F et al (2019) Conformal conducting polymer shells on V2O5 nanosheet arrays as a high-rate and stable zinc-ion battery cathode. Adv Mater Interfaces 6:1–8. https://doi.org/10.1002/admi.201801506

    Article  CAS  Google Scholar 

  16. Yang Y, Wang C, Yue B et al (2012) Electrochemically synthesized polypyrrole/graphene composite film for lithium batteries. Adv Energy Mater 2:266–272. https://doi.org/10.1002/aenm.201100449

    Article  CAS  Google Scholar 

  17. Jayakannan M, Annu S, Ramalekshmi S (2005) Structural effects of dopants and polymerization methodologies on the solid-state ordering and morphology of polyaniline. J Polym Sci Part B Polym Phys 43:1321–1331. https://doi.org/10.1002/polb.20443

    Article  CAS  Google Scholar 

  18. Kim DK, Oh KW, Ahn HJ, Kim SH (2008) Synthesis and characterization of polypyrrole rod doped with p-toluenesulfonic acid via micelle formation. J Appl Polym Sci 107:3925–3932. https://doi.org/10.1002/app.27509

    Article  CAS  Google Scholar 

  19. Wu J, Sun Y, Xu W, Zhang Q (2014) Investigating thermoelectric properties of doped polyaniline nanowires. Synth Met 189:177–182. https://doi.org/10.1016/j.synthmet.2014.01.007

    Article  CAS  Google Scholar 

  20. Chou TR, Chen SH, Te CY et al (2017) Highly conductive PEDOT:PSS film by doping p-toluenesulfonic acid and post-treatment with dimethyl sulfoxide for ITO-free polymer dispersed liquid crystal device. Org Electron 48:223–229. https://doi.org/10.1016/j.orgel.2017.05.052

    Article  CAS  Google Scholar 

  21. Kundu S, Satpati B, Mukherjee M et al (2017) Hydrothermal synthesis of polyaniline intercalated vanadium oxide xerogel hybrid nanocomposites: Effective control of morphology and structural characterization. New J Chem 41:3634–3645. https://doi.org/10.1039/c7nj00372b

    Article  CAS  Google Scholar 

  22. Feng Z, Sun J, Liu Y et al (2021) Engineering interlayer space of vanadium oxide by pyridinesulfonic acid-assisted intercalation of polypyrrole enables enhanced aqueous zinc-ion storage. ACS Appl Mater Interfaces 13:61154–61165. https://doi.org/10.1021/acsami.1c18950

    Article  CAS  Google Scholar 

  23. Wang S, Kang Y, Wang L et al (2013) Organic/inorganic hybrid sensors: a review. Sens Actuators B Chem 182:467–481. https://doi.org/10.1016/j.snb.2013.03.042

    Article  CAS  Google Scholar 

  24. Wu CG, DeGroot DC, Marcy HO et al (1996) Redox intercalative polymerization of aniline in V2O5 xerogel. The postintercalative intralamellar polymer growth in polyaniline/metal oxide nanocomposites is facilitated by molecular oxygen. Chem Mater 8:1992–2004. https://doi.org/10.1021/cm9600236

    Article  CAS  Google Scholar 

  25. Casal B, Ruiz-Hitzky E, Crespin M et al (1989) Intercalation mechanism of nitrogenated bases into V2O5 xerogel. J Chem Soc Faraday Trans 1 Phys Chem Condens Phases 85:4167–4177. https://doi.org/10.1039/F19898504167

  26. Briggs D (2005) X-ray photoelectron spectroscopy (XPS). Handb Adhes (Second Ed) 621–622. https://doi.org/10.1002/0470014229.ch22

  27. Mendialdua J, Casanova R, Barbaux Y (1995) XPS studies of V2O5, V6O13, VO2 and V2O3. J Electron Spectros Relat Phenomena 71:249–261. https://doi.org/10.1016/0368-2048(94)02291-7

    Article  CAS  Google Scholar 

  28. Šetka M, Calavia R, Vojkůvka L et al (2019) Raman and XPS studies of ammonia sensitive polypyrrole nanorods and nanoparticles. Sci Rep 9:1–10. https://doi.org/10.1038/s41598-019-44900-1

    Article  CAS  Google Scholar 

  29. Ruangchuay L, Schwank J, Sirivat A (2002) Surface degradation of α-naphthalene sulfonate-doped polypyrrole during XPS characterization. Appl Surf Sci 199:128–137. https://doi.org/10.1016/S0169-4332(02)00564-0

    Article  CAS  Google Scholar 

  30. Ruangchuay L, Sirivat A, Schwank J (2004) Electrical conductivity response of polypyrrole to acetone vapor: effect of dopant anions and interaction mechanisms. Synth Met 140:15–21. https://doi.org/10.1016/S0379-6779(02)01319-X

    Article  CAS  Google Scholar 

  31. Jain S, Karmakar N, Shah A et al (2017) Ammonia detection of 1-D ZnO/polypyrrole nanocomposite: effect of CSA doping and their structural, chemical, thermal and gas sensing behavior. Appl Surf Sci 396:1317–1325. https://doi.org/10.1016/j.apsusc.2016.11.154

    Article  CAS  Google Scholar 

  32. Wang JG, Yang Y, Huang ZH, Kang F (2014) MnO2/polypyrrole nanotubular composites: reactive template synthesis, characterization and application as superior electrode materials for high-performance supercapacitors. Electrochim Acta 130:642–649. https://doi.org/10.1016/j.electacta.2014.03.082

    Article  CAS  Google Scholar 

  33. Raj CJ, Rajesh M, Manikandan R et al (2018) Electrochemical impedance spectroscopic studies on aging-dependent electrochemical degradation of p-toluene sulfonic acid-doped polypyrrole thin film. Ionics (Kiel) 24:2335–2342. https://doi.org/10.1007/s11581-017-2382-5

    Article  CAS  Google Scholar 

  34. Street GB, Clarke TC, Krounbi M et al (1982) Preparation and characterization of neutral and oxidized polypyrrole films. Mol Cryst Liq Cryst 83:253–264. https://doi.org/10.1080/00268948208072174

    Article  Google Scholar 

  35. Roy S, Mishra S, Yogi P et al (2018) Polypyrrole–vanadium oxide nanocomposite: polymer dominates crystallanity and oxide dominates conductivity. Appl Phys A Mater Sci Process 124:1–6. https://doi.org/10.1007/s00339-017-1472-6

    Article  CAS  Google Scholar 

  36. Hu X, Chen G, Wang X, Wang H (2015) Tuning thermoelectric performance by nanostructure evolution of a conducting polymer. J Mater Chem A 3:20896–20902. https://doi.org/10.1039/c5ta07381b

    Article  CAS  Google Scholar 

  37. Horrocks GA, Likely MF, Velazquez JM, Banerjee S (2013) Finite size effects on the structural progression induced by lithiation of V2O5: a combined diffraction and Raman spectroscopy study. J Mater Chem A 1:15265–15277. https://doi.org/10.1039/c3ta13690f

    Article  CAS  Google Scholar 

  38. Chen Y, Yang G, Zhang Z et al (2010) Polyaniline-intercalated layered vanadium oxide nanocomposites - one-pot hydrothermal synthesis and application in lithium battery. Nanoscale 2:2131–2138. https://doi.org/10.1039/c0nr00246a

    Article  CAS  Google Scholar 

  39. Liu C, Tian M, Wang M et al (2020) Catalyzing zinc-ion intercalation in hydrated vanadates for aqueous zinc-ion batteries. J Mater Chem A 8:7713–7723. https://doi.org/10.1039/d0ta01468k

    Article  CAS  Google Scholar 

  40. Mjejri I, Etteyeb N, Sediri F (2014) H2V3O8 nanobelts as a novel stable electrode material with good reversible redox performance. J Alloys Compd 611:372–380. https://doi.org/10.1016/j.jallcom.2014.05.151

    Article  CAS  Google Scholar 

  41. Lee SH, Cheong HM, Seong MJ et al (2003) Raman spectroscopic studies of amorphous vanadium oxide thin films. Solid State Ionics 165:111–116. https://doi.org/10.1016/j.ssi.2003.08.022

    Article  CAS  Google Scholar 

  42. Wang Y, Song R, Li L, Fu R, Liu Z, Li B (2021) High crystalline quality conductive polypyrrole film prepared by interface chemical oxidation polymerization method. Appl Sci 12:58–58. https://doi.org/10.3390/app12010058

    Article  CAS  Google Scholar 

  43. Jiang K, Baburin IA, Han P, Yang C, Fu X, Yao Y, Li J, Cánovas E, Seifert G, Chen J, Bonn M, Feng X, Zhuang X (2019) Interfacial approach toward benzene‐bridged polypyrrole film–based micro‐supercapacitors with ultrahigh volumetric power density. Adv Funct Mater 30:1908243. https://doi.org/10.1002/adfm.201908243

  44. Ayad MM, Zaki EA (2008) Doping of polyaniline films with organic sulfonic acids in aqueous media and the effect of water on these doped films. Eur Polym J 44:3741–3747. https://doi.org/10.1016/j.eurpolymj.2008.08.012

    Article  CAS  Google Scholar 

  45. Al-Mashat L, Tran HD, Wlodarski W et al (2008) Conductometric hydrogen gas sensor based on polypyrrole nanofibers. IEEE Sens J 8:365–369. https://doi.org/10.1109/JSEN.2008.917476

    Article  CAS  Google Scholar 

  46. Al-Mashat L, Debiemme-Chouvy C, Borensztajn S, Wlodarski W (2012) Electropolymerized polypyrrole nanowires for hydrogen gas sensing. J Phys Chem C 116:13388–13394. https://doi.org/10.1021/jp3015854

    Article  CAS  Google Scholar 

  47. Su PG, Shiu CC (2011) Flexible H2 sensor fabricated by layer-by-layer self-assembly of thin films of polypyrrole and modified in situ with Pt nanoparticles. Sens Actuators B Chem 157:275–281. https://doi.org/10.1016/j.snb.2011.03.062

    Article  CAS  Google Scholar 

  48. Su PG, Liao SL (2016) Fabrication of a flexible H2 sensor based on Pd nanoparticles modified polypyrrole films. Mater Chem Phys 170:180–185. https://doi.org/10.1016/j.matchemphys.2015.12.037

    Article  CAS  Google Scholar 

  49. Zou Y, Wang Q, Jiang D et al (2016) Pd-doped TiO2@polypyrrole core-shell composites as hydrogen-sensing materials. Ceram Int 42:8257–8262. https://doi.org/10.1016/j.ceramint.2016.02.038

    Article  CAS  Google Scholar 

  50. Mofdal MEE, Al-Hazeem NZ, Ahmed NM, Al-Hardan NH (2022) Amperometric room temperature hydrogen gas sensor based on the conjugated polymers of polypyrrole–polyethylene oxide nanofibers synthesised via electrospinning. J Mater Sci Mater Electron 33:7068–7078. https://doi.org/10.1007/s10854-022-07889-4

    Article  CAS  Google Scholar 

  51. Virji S, Kaner RB, Weiller BH (2006) Hydrogen sensors based on conductivity changes in polyaniline nanofibers. J Phys Chem B 110:22266–22270. https://doi.org/10.1021/jp063166g

    Article  CAS  Google Scholar 

  52. Macdiarmid AG (2006) Conducting polymers as new materials for hydrogen storage. Time 488–490

Download references

Acknowledgements

The authors are thankful to Aygul Nuraje for editing and proofreading the manuscript. The authors express their gratitude to Zh. Balgin, N. Daniyeva, and A. Rapikov from the Core Facilities at Nazarbayev University for their valuable support in performing the physical characterizations of the samples. The authors acknowledge thanks to Prof Zh. Bakenov and Dr B. Soltabayev from Nazarbayev University for providing the use of the sensor laboratory.

Funding

This work was supported by the Ministry of Education and Science of the Republic of Kazakhstan under project No. AP09258910 “Multifunctional Desulfurization Polymer Nanocomposites”, and Faculty Development Competitive Research Grant of Nazarbayev University (Project ref. No. 021220FD4551) “Crosslinked 3D Nanoporous Conducting Polymer Materials via Bicontinuous Microemulsion-based Approach”.

Author information

Authors and Affiliations

Authors

Contributions

The experimental framework was developed by D.K., who also carried out the synthesis of the composite materials. The researcher performed a comprehensive analysis of the gathered data about material characterization, discovering correlations between different variables. P.A. contributed to the development of the experimental configuration for conducting measurements on hydrogen gas sensors and collaborated in the composition of sections related to the interpretation of results obtained from the hydrogen detection section of the paper. A.T. actively engaged in the synthesis and production of the composite samples. The XPS data has been analyzed by V.K. M.A., R.R., and S.A. supervised the whole research. N.N. developed ways to effectively include gas sensing measurements in the analysis of the material’s structure and surface. Additionally, N.N. performed an active role in the creation of the manuscript, making substantial contributions to sections such as the Introduction, Results and discussion.

Corresponding author

Correspondence to Nurxat Nuraje.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2368 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kanzhigitova, D., Askar, P., Tapkharov, A. et al. p-Toluenesulfonic acid doped vanadium pentoxide/polypyrrole film for highly sensitive hydrogen sensor. Adv Compos Hybrid Mater 6, 218 (2023). https://doi.org/10.1007/s42114-023-00796-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42114-023-00796-0

Keywords

Navigation